Проект геном человека кратко

Обновлено: 06.07.2024

  • идентификация 20 000–25 000 генов ДНК;
  • определение последовательности 3 млрд. пар химических оснований, составляющих ДНК человека, и сохранение этой информации в базе данных;
  • усовершенствование приборов для анализа данных;
  • внедрение новейших технологий в область частного использования;
  • исследование этических, правовых и социальных вопросов, возникающих при расшифровке генома.

6 июня 2000 г. президент США и премьер-министр Великобритании объявили о расшифровке человеческого генетического кода, и таким образом соревнование закончилось. На самом деле, был опубликован рабочий черновик человеческого генома, и лишь к 2003 г. он был расшифрован практически полностью, хотя и сегодня все еще проводят дополнительный анализ некоторых участков генома.

И вдруг все затихло. надежды не оправдались. казалось, что 3 млрд долл., вложенных в эту затею, выброшены на ветер.

Нет, не совсем так. Быть может, полученные результаты не столь грандиозны, как предполагалось во времена зарождения проекта, но они позволят достичь в будущем значительных успехов в различных областях биологии и медицины.

Еще один важный результат проекта — дополнение истории человека. Раньше все данные об эволюции были почерпнуты из археологических находок, а расшифровка генокода не только дала возможность подтвердить теории археологов, но в будущем позволит точнее узнать историю эволюции как человека, так и биоты в целом. Как предполагается, анализ сходства в последовательностях ДНК различных организмов сможет открыть новые пути в исследовании теории эволюции, и во многих случаях вопросы эволюции теперь можно будет ставить в терминах молекулярной биологии. Такие важнейшие вехи в истории эволюции, как появление рибосомы и органелл, развитие эмбриона, иммунной системы позвоночных, можно будет проследить на молекулярном уровне. Ожидается, что это позволит пролить свет на многие вопросы о сходстве и различиях между людьми и нашими ближайшими сородичами: приматами, неандертальцем (чей генокод недавно был реконструирован из 1,3 млрд фрагментов, подвергавшихся тысячелетнему разложению и загрязненных генетическими следами археологов, державших в руках останки этого существа), а также и всеми млекопитающими, и ответить на вопросы: какой же ген делает нас Homo sapiens, какие гены отвечают за наши поразительные таланты? Таким образом, поняв, как прочитать информацию о нас в генокоде, мы сможем узнать, как гены влияют на физические и умственные характеристики и даже на наше поведение. Возможно, в будущем, посмотрев на генетический код, можно будет не только предсказать, как будет выглядеть человек, но и, к примеру, будет ли у него актерский талант. Хотя, естественно, никогда нельзя будет это определить со 100%-ной точностью.

Кроме того, межвидовое сравнение покажет, чем отличается один вид от другого, как они разошлись на эволюционном древе. Межпопуляционное сравнение покажет, как этот вид эволюционирует. Сравнение ДНК отдельных особей внутри популяции покажет, чем объясняется различие особей одного вида, одной популяции. Наконец, сравнение ДНК различных клеток внутри одного организма поможет понять, как происходит дифференцирование тканей, как они развиваются и что идет не так в случае заболеваний, таких например, как рак.

Открытый доступ к информации позволит объединить опыт врачей, информацию о патологических случаях, результаты многолетнего изучения отдельных особей, и потому станет возможным соотнести генетическую информацию с данными анатомии, физиологии, поведения человека. И уже это сможет привести к лучшей медицинской диагностике и прогрессу в лечении.

Например, исследователь, изучающий определенную форму рака, сможет сузить круг поиска до одного гена. Сверив свои данные с данными открытой базы генома человека, он сможет проверить, что другие написали об этом гене, включая (потенциально) трехмерную структуру его производного белка, его функции, его эволюционную связь с другими генами человека или с генами мышей, дрожжей или дрозофилы, возможные пагубные мутации, взаимосвязь с другими генами, тканями тела, в которых ген активируется, заболеваниями, связанными с этим геном, или другие данные.

Более того, понимание хода заболевания на уровне молекулярной биологии позволит создать новые терапевтические методы. Учитывая, что ДНК играет огромную роль в молекулярной биологии, а также ее центральное значение в функционировании и принципах работы живых клеток, углубление знаний в этой области откроет путь для новых методов лечения и открытий в различных областях медицины.

Итак, привычная биология ушла в прошлое, наступил час новой эры науки: постгеномной биологии. Она полностью развенчала идею витализма, и хотя в него уже больше столетия не верил ни один биолог, новая биология не оставила места и для призраков.

Не только интеллектуальные озарения играют важную роль в науке. Такие технические прорывы, как телескоп в астрономии, микроскоп в биологии, спектроскоп в химии, приводят к неожиданным и замечательным открытиям. Похожую революцию в геномике производят сейчас мощные компьютеры и информация, содержащаяся в ДНК.

Кроме стоимости расшифровки, важным показателем является его точность. Считается, что приемлемым уровнем является не более одной ошибки в 10 000–100 000 символов. Сейчас уровень точности находится на уровне 1 ошибки в 20 000 символов.

Проект по расшифровке генома человека (англ. The Human Genome Project , HGP) — международный научно-исследовательский проект, главной целью которого было определить последовательность нуклеотидов, которые составляют ДНК и идентифицировать 20,000-25,000 генов в человеческом геноме.

Проект начался в 1990 году, под руководством Джеймса Уотсона под эгидой Национальной организации здравоохранения США (англ.). В 2000 году был выпущен рабочий черновик структуры генома, полный геном — в 2003, однако и сегодня дополнительный анализ некоторых участков ещё не закончен. Частной компанией Celera Genomics (англ.) был запущен аналогичный параллельный проект, завершенный несколько ранее международного. Основной объём секвенирования был выполнен в университетах и исследовательских центрах США, Канады и Великобритании. Кроме очевидной фундаментальной значимости, определение структуры человеческих генов является важным шагом для разработки новых медикаментов и развития других аспектов здравоохранения.

Хотя целью проекта по расшифровке генома человека является понимание строения генома человеческого вида, проект также фокусировался и на нескольких других организмах, среди которых бактерии, в частности, Escherichia coli, насекомые, такие как мушка дрозофила, и млекопитающие, например, мышь.

Изначально планировалось определение более трёх миллиардов последовательности нуклеотидов, содержащихся в гаплоидном человеческом геноме их. Затем несколько групп обьявили о попытке расширить задачу до секвенирования диплоидного генома человека, среди них международный проект HapMap (англ.), Applied Biosystems, Perlegen,

Содержание

Проект

Предпосылки

Начиная с 1988 года главой Национального Центра Исследований Человеческого Генома в Национальной Организации Здравоохранения США (NIH) был Джеймс Уотсон. В 1992 его вынудили уйти в отставку, в основном, из-за несогласия с позицией его руководителя, Бернадины Хили (англ.) по вопросам патентования генов (англ.). В апреле 1993 его заменил Френсис Коллинз (англ.), а в 1997 году название центра было изменено на Национальный Институт Исследований Человеческого Генома (англ.) (NHGRI).

Трёхмиллиардный проект был формально запущен в 1990 году министерством энергетики США и национальным институтом здравоохранения, и ожидалось что он продлится 15 лет. Помимо США, в международный консорциум вошли генетики Китая, Франции, Германии, Японии и Великобритании.

Завершённость


  • Прежде всего, центральные регионы каждой хромосомы, известные как центромеры, которые содержат большое количество повторяющихся последовательностей ДНК; их сложно секвенировать при помощи современных технологий. Центромеры имеют длину миллионы (возможно десятки миллионов) пар нуклеотидов, и, по большому счёту, остаются не секвенированными.
  • Во-вторых, концы хромосом, называемые теломерами, также состоящие из повторяющихся последовательностей, и по этой причине в большинстве из 46 хромосом их расшифровка не завершена. Точно не известно, какая часть последовательности остаётся не расшифрованной до теломер, но как и с центромерами, существующие технологические ограничения препятствуют их секвенированию.
  • В-третьих, в геноме каждого индивидуума есть несколько локусов, которые содержат членов мультигенных семейств, которые также сложно расшифровать с помощью основного на сегодняшний день метода фрагментирования ДНК (англ.). В частности, эти семейства кодируют белки, важные для иммунной системы.
  • Кроме перечисленных регионов, остаётся ещё несколько брешей, разбросанных по всему геному, некоторые из которых довольно крупные, но есть надежда, что все они будут закрыты в ближайшие годы.

Б́ольшая часть остающейся ДНК сильно повторяющаяся, и маловероятно, что она содержит гены, однако это останется неизвестным, пока они не будут полностью секвенированы. Понимание функций всех генов и их регуляции далека от завершения. Роль мусорной ДНК, эволюция генома, различия между индивидуумами, и многие другие вопросы по-прежнему являются предметом интенсивных исследований в лабораториях всего мира.

Последовательность человеческой ДНК сохраняется в базах данных, доступных любому пользователю через интернет. Национальный центр биотехнологической информации США (и его партнёрские организации в Европе и Японии) хранят геномные последовательности в базе данных известной как GenBank (англ.), вместе с последовательностями известных и гипотетических генов и белков. Другие организации, к примеру Калифорнийский Университет в Санта-Круз (англ.)[1] и Ensembl (англ.)[2] поддерживают дополнительные данные и аннотации а также мощные инструменты для визуализации и поиска в этих базах. Были разработаны компьютерные программы для анализа данных, потому что сами данные без таких программ интерпретировать практически невозможно.

Процесс идентификации границ генов и других мотивов в необработанных последовательностях ДНК называется аннотацией генома (англ.) и относится к области биоинформатики. Эту работу при помощи компьютеров выполняют люди, но они делают её медленно и, чтобы удовлетворять требованиями высокой пропускной способности проектов секвенирования геномов, здесь также всё шире используют специальные компьютерные программы. Лучшие на сегодняшний день технологии аннотации используют статистические модели основанные на параллелях между последовательностями ДНК и человеческим языком, пользуясь такими концепциями информатики как формальные грамматики.

Почти все цели, которые ставил перед собой проект, были достигнуты быстрее, чем предполагалось. Проект по расшифровке генома человека был закончен на два года раньше, чем планировалось. Проект поставил разумную, достижимую цель секвенирования 95 % ДНК. Исследователи не только достигли её, но и превзошли собственные предсказания, и смогли секвенировать 99,99 % человеческой ДНК. Проект не только превзошёл все цели и выработанные ранее стандарты, но и продолжает улучшать уже достигнутые результаты.

Как были достигнуты результаты

Сопоставление данных общего и частного проектов


Celera использовала более рискованную разновидность метода фрагментации генома (англ.), которую использовали ранее для секвенирования бактериальных геномов размером до шести миллионов пар нуклеотидов в длину, но никогда для чего-либо столь большого, как человеческий геном, состоящий из трёх миллиардов пар нуклеотидов.

В марте 2000 года, президент США Билл Клинтон заявил что последовательность генома не может быть запатентована и должна быть свободно доступна для всех исследователей. После заявления президента акции компании Celera сильно упали, что потянуло вниз весь биотехнологический сектор рыночной капитализации за два дня.

История частного проекта

Как были достигнуты результаты

IHGSC для ориентации и проверки правильности сборки последовательности каждой человеческой хромосомы использовал секвенирование концевых фрагментов в сочетании с картированием больших (около 100 тыс. пар оснований) плазмидных клонов, полученных методом фрагментирования генома, а также применял метод фрагментирования меньших субклонов тех же плазмид, а также множество других данных [7] .

Доноры генома

Учёные HGP использовали белые кровяные клетки из крови двух мужчин и двух женщин доноров (случайно выбранных из 20 образцов каждого пола) — каждый донор стал источником отдельной библиотеки ДНК. Одна из этих библиотек (RP11) использовалась значительно больше, чем другие по соображениям качества. Небольшой технический нюанс заключается в том, что мужские образцы содержали только половину количества ДНК, поступившего из X и Y хромосом в сравнении с другими 22 хромосомами (аутосомами); это происходит потому, что каждая мужская клетка содержит только одну X и одну Y хромосому, а не две, как другие хромосомы (аутосомы).

В проекте компании Celera Genomics для секвенирования использовалась ДНК, поступившая от пяти различных человек. Крейг Вентер, в то время бывший главным научным руководителем Celera Genomics, позднее признался (в публичном письме в журнал Science), что его ДНК была одним из 21 образцов в общем фонде, пять из которых были отобраны для использования в проекте [18] [19] .

4 сентября 2007 года, команда под руководством Крейга Вентера опубликовала полную последовательность его собственной ДНК [20] , впервые сняв покров тайны с шестимиллиарднонуклеотидной последовательности генома единственного человека.

Перспективы

Работа над интерпретацией данных генома находится всё ещё в своей начальной стадии. Ожидается что детальное знание человеческого генома откроет новые пути к успехам в медицине и биотехнологии. Ясные практические результаты проекта появились ещё до завершения работы. Несколько компаний, например Myriad Genetics (англ.), начали предлагать простые способы проведения генетических тестов, которые могут показать предрасположенность к различным заболеваниям, включая рак груди, нарушения свёртываемости крови, кистозный фиброз, заболевания печени и многим другим. Также ожидается, что информация о геноме человека поможет поиску причин возникновения рака, болезни Альцгеймера и другим областям клинического значения и, вероятно, в будущем может привести к значительным успехам в их лечении.

Также ожидается множество полезных для биологов результатов. Например, исследователь, изучающий определённую форму рака может сузить свой поиск до одного гена. Посетив базу данных человеческого генома в сети, этот исследователь может проверить что другие учёные написали об этом гене включая (потенциально) трёхменую структуру его производного белка, его функции, его эволюционную связь с другими человеческими генами или с генами в мышах или дрожжах или дрозофиле, возможные пагубные мутации, взаимосвязь с другими генами, тканями тела в которых ген активируется, заболеваниями, связанными с этим геном или другие данные.

Более того, глубокое понимание процесса заболевания на уровне молекулярной биологии может предложить новые терапевтические процедуры. Учитывая установленную огромную роль ДНК в молекулярной биологии и её центральную роль в определении фундаментальных принципов работы клеточных процессов, вероятно, что расширение знаний в данной области будет способствовать успехам медицины в различных областях клинического значения, которые без них были бы невозможны.

Анализ сходства в последовательностях ДНК различных организмов также открывает новые пути в исследовании теории эволюции. Во многих случаях вопросы эволюции теперь можно ставить в терминах молекулярной биологии. И в самом деле, многие важнейшие вехи в истории эволюции (появление рибосомы и органелл, развитие эмбриона, имунной системы позвоночных) можно проследить на молекулярном уровне. Ожидается что этот проект прольёт свет на многие вопросы о сходстве и различиях между людьми и нашими ближайшими сородичами (приматами, а на деле и всеми млекопитающими).

Проект определения разнообразия человеческого генома (англ.) (HGDP), отдельное исследование, нацеленное на картирование участков ДНК, которые различаются между этническими группами, который был, по слухам, приостановлен, но на самом деле продолжает работу и в настоящее время накапливает новые результаты. В будущем HGDP, вероятно, сможет получить новые данные в области контроля заболеваний, развития человека и антропологии. HGDP может открыть секреты уязвимости этнических групп к отдельным заболеваниям и подсказать новые стратегии для их преодоления (см. Раса и здоровье (англ.)). Он может также показать, как человеческие популяции адаптировались к этим заболеваниям.


Обзор

Около трёх миллиардов пар нуклеотидных остатков составляют наш геном — совокупность всех молекул ДНК в клетке человека

Авторы
Редакторы

Это было семь лет назад — 26-го июня 2000 года. На совместной пресс-конференции с участием президента США и премьер-министра Великобритании представители двух исследовательских групп — International Human Genome Sequencing Consortium (IHGSC) и Celera Genomics — объявили о том, что работы по расшифровке генома человека, начавшиеся ещё в 70-х годах, успешно завершены, и черновой его вариант составлен. Начался новый эпизод развития человечества — постгеномная эра.

  • 2010 год — генетическое тестирование, профилактические меры, снижающие риск заболеваний, и генная терапия до 25 наследственных заболеваний. Медсёстры начинают выполнять медико-генетические процедуры. Широко доступна преимплантационная диагностика, активно обсуждаются ограничения в применении данного метода. В США приняты законы для предотвращения генетической дискриминации и соблюдения конфиденциальности. Практические приложения геномики доступны не всем, особенно это чувствуется в развивающихся странах.
  • 2020 год — на рынке появляются лекарства от диабета, гипертонии и других заболеваний, разработанные на основе геномной информации. Разрабатывается терапия рака, прицельно направленная на свойства раковых клеток определенных опухолей. Фармакогеномика становится общепринятым подходом для создания многих лекарств. Изменение способа диагностики психических заболеваний, появление новых способов их лечения, изменение отношения общества к таким заболеваниям. Практические приложения геномики все еще доступны далеко не везде.
  • 2030 год — определение последовательности нуклеотидов всего генома отдельного индивида станет обычной процедурой, стоимость которой менее $1000. Каталогизированы гены, участвующие в процессе старения. Проводятся клинические испытания по увеличению максимальной продолжительности жизни человека. Лабораторные эксперименты на человеческих клетках заменены экспериментами на компьютерных моделях. Активизируются массовые движения противников передовых технологий в США и других странах.
  • 2040 год — Все общепринятые меры здравоохранения основаны на геномике. Определяется предрасположенность к большинству заболеваний (ещё до рождения). Доступна эффективная профилактическая медицина с учетом особенностей индивида. Болезни определяются на ранних стадиях путем молекулярного мониторинга.
    Для многих заболеваний доступна генная терапия. Замена лекарств продуктами генов, вырабатываемыми организмом при ответе на терапию. Средняя продолжительность жизни достигнет 90 лет благодаря улучшению социо-экономических условий. Проходят серьезные дебаты о возможности человека контролировать собственную эволюцию.
    Неравенство в мире сохраняется, создавая напряженность на международном уровне.

Финал был красивым — конкурирующие организации по взаимной договоренности одновременно объявили о завершении работ по расшифровке генома человека [4], [5]. Произошло это, как мы уже писали — 26 июня 2000 года. Но разница во времени между Америкой и Англией вывела на первое место США.

Широкая известность и масштабное финансирование — палка о двух концах. С одной стороны, за счет неограниченных средств работа продвигается легко и быстро. Но с другой стороны, результат исследований должен получиться таким, каким его заказывают. К началу 2001 года в геноме человека со стопроцентной достоверностью было идентифицировано больее 20 тыс. генов. Эта цифра оказалось в три раза меньше, чем было предсказано всего за два года до этого. Вторая команда исследователей из Национального института геномных исследований США во главе с Френсисом Коллинсом независимым способом получила те же результаты — между 20 и 25 тыс. генов в геноме каждой человеческой клетки. Однако неопределенность в окончательные оценки внесли два других международных совместных научных проекта. Доктор Вильям Хезелтайн (руководитель фирмы Human Genome Studies) настаивал, что в их банке содержится информация о 140 тыс. генов. И этой информацией он не собирается пока делиться с мировой общественностью. Его фирма вложила деньги в патенты и собирается зарабатывать на полученной информации, поскольку она относится к генам широко распространенных болезней человека. Другая группа заявила о 120 тыс. идентифицированных генов человека и также настаивала, что именно эта цифра отражает общее число генов человека.

Тут необходимо уточнить, что эти исследователи занимались расшифровкой последовательности ДНК не самого генома, а ДНК-копий информационных (называемых также матричными) РНК (иРНК или мРНК). Другими словами, исследовался не весь геном, а только та его часть, что перекодируется клеткой в мРНК и направляет синтез белков. Поскольку один ген может служить матрицей для производства нескольких различных видов мРНК (что определяется многими факторами: тип клетки, стадия развития организма и т. д.), то и суммарное число всех различных последовательностей мРНК (а это именно то, что запатентовала Human Genome Studies) будет значительно бóльшим. Скорее всего, использовать это число для оценки количества генов в геноме просто некорректно.

Автоматы для секвенирования

Рисунок 2. Слева: Автоматизированная линия подготовки образцов ДНК для секвенирования в Центре Геномных исследований института Уайтхеда. Справа: Лаборатория в Сэнгеровском институте, заполненная автоматами для высокопроизводительной расшифровки последовательностей ДНК.

Завершение расшифровки заняло еще несколько лет и привело почти что к удвоению стоимости всего проекта. Однако уже в 2004 г. было объявлено, что эухроматин прочитан на 99% с общей точностью одна ошибка на 100 000 пар оснований. Количество разрывов уменьшилось в 400 раз. Аккуратность и полнота прочтения стала достаточной для эффективного поиска генов, отвечающих за то или иное наследственное заболевание (например, диабет или рак груди). Практически это означает, что исследователям больше не надо заниматься трудоемким подтверждением последовательностей генов, с которыми они работают, так как можно полностью положиться на определенную и доступную каждому последовательность всего генома.

Другую точку зрения можно проиллюстрировать, процитировав академика Кордюма В. А.:

Действительно, чтобы разумно пользоваться новой информацией, надо ее понимать. А для того чтобы понять геном — не просто прочитать, этого далеко не достаточно, — нам потребуются десятилетия. Слишком уж сложная картина вырисовывается, и чтобы осознать её, нам надо будет поменять многие стереотипы. Поэтому на самом деле расшифровка генома ещё продолжается и будет продолжаться. И будем ли мы стоять в стороне или станем, наконец, активными участниками этой гонки — зависит от нас.

Генетический телескоп

Хотя чисто техническая возможность секвенировать геном была показана еще в 70-х годах, когда был расшифрован первый геном вируса, о человеке задумались не сразу. По легенде, эта идея оформилась благодаря биологу Роберту Синшеймеру из Калифорнийского университета в Санта-Крус. Его коллеги-астрономы работали над созданием самого большого (на тот момент) наземного телескопа, и Синшеймер раздумывал над проектом подобного масштаба в биологии.


Шкаф с фрагментом человеческого генома, который стоит в лондонском музее Wellcome Collection. Полностью расшифровка занимает сотни томов, в каждом из которых около тысячи страниц

Russ London / Wikimedia commons


Разворот одного из томов с расшифровкой человеческого генома из лондонского музея Wellcome Collection

Adam Nieman / flickr / CC BY-SA 2.0

В обсуждении участвовал Уолтер Гилберт, который за 10 лет до того предложил свой метод секвенирования ДНК (известный как метод Максама-Гилберта или метод химической деградации ДНК), практически одновременно с Фредериком Сэнгером. Он загорелся идеей создания геномного института и увлек ей первооткрывателя структуры ДНК Джеймса Уотсона и Чарльза Делиси, который возглавлял подразделение здоровья и окружающей среды в Министерстве энергетики США. Последнему геномный проект виделся логичным продолжением исследований влияния радиации на человека. В 1986 году они уже подсчитывали затраты на расшифровку последовательности генома человека.


Одна из автоматизированных линий для подготовки образцов в Институте Уайтхеда в Центре геномных исследований, где секвенировали геном человека

International Human Genome Sequencing Consortium / Nature, 2001

Несмотря на критику и ценник, им удалось продавить как Министерство энергетики, так и Национальные институты здоровья США (NIH). В 1990 году проект стартовал. Панель экспертов настоятельно порекомендовала кроме генома человека заняться также исследованием геномов модельных организмов: кишечной палочки, дрожжей, круглых червей и мыши — чтобы в случае успеха гены человека было с чем сравнивать.

В авторах статьи 2001 года были члены International Human Genome Sequencing Consortium из 20 научных групп США, Великобритании, Германии, Франции, Японии и Китая.


Обложка журнала Time, вышедшего в 26 июня 2000 года. Слева — Крейг Вентер, справа Фрэнсис Коллинз

Почти одновременно со стартом проекта в США, советский академик Александр Баев смог убедить Горбачева выделить значительное финансирование на оборудование лабораторий и создание научных групп, которые могли бы участвовать в международном консорциуме по расшифровке генома человека. По воспоминаниям академика Льва Киселева, который в то время был председателем научного совета российской части программы, отечественный проект начинался очень активно — на его развитие было выделено около 20 миллионов долларов. Однако в 90-х годах государство уже не могло финансировать столь дорогостоящие фундаментальные исследования, и участие в консорциуме, хотя и не закрылось окончательно, было сокращено до минимума.


Фрагмент физической карты 19-й хромосомы, которую читали в Ливерморской национальной лаборатории при участии ИБХ РАН


Обложки журналов Science и Nature, в которых вышли статьи HPG и Celera Genetics

Science, 2001; Nature, 2001

Предпосылки и последствия

В 80-е годы у генетиков уже были инструменты, позволяющие исследовать размер хромосом и расположение на них генов — в основном, при помощи ферментативного расщепления ДНК рестриктазами, разделения фрагментов в геле и гибридизации с радиоактивно меченой последовательностью. Взглянуть на ДНК более пристально удалось благодаря изобретению производительного метода секвенирования англичанином Фредериком Сэнгером, который до того уже придумал способ чтения аминокислотной последовательности белковых молекул.

Определение последовательности ДНК по Сэнгеру, в свою очередь, стало возможным благодаря открытию ДНК-полимеразы — фермента, который в клетке обеспечивает удвоение молекул ДНК за счет комплементарного достраивания цепи на одноцепочечной матрице.


Фрагмент расшифрованной последовательности в геле


Источник: Jennifer Commins et al. / Biological Procedures Online, 2009


Порядок действий при использовании метода секвенирования, который применяли в Celera Genomics

Источник: Jennifer Commins et al. / Biological Procedures Online, 2009

Неудивительно, что многим ведущим генетикам эта задача казалась нерешаемой. Однако по ходу выполнения проекта развитие технологий облегчило ученым работу. Среди технических достижений можно отметить появление автоматического капиллярного секвенатора, где фрагменты разделялись в тонких трубочках, а не в геле. Такие приборы, помимо того, что позволяли увеличить количество образцов, после появления флуоресцентно меченых нуклеотидов, перешли на автоматическую детекцию сигнала. Кроме того, развитие компьютерных технологий: от сетей, которые позволили ученым получать доступ к данным из любой точки, до программ для сравнения и обработки последовательностей.

Накопление последовательностей послужило толчком для развития целой науки — биоинформатики, которая занимается сборкой, обработкой и анализом геномов с использованием математических методов.

Первые итоги и дальнейшее развитие

Так к 2000 году удалось получить представление о последовательности ДНК человека в составе эухроматина — участков, с которых активно идет транскрипция, то есть считывание данных РНК-полимеразой.

Одной только сырой последовательностью букв результат проекта, конечно не ограничивается. После расшифровки число генов в геноме человека пришлось сократить со 100 тысяч до 30 тысяч — это число всего в два раза больше, чем у мухи или червя, написали авторы исторической публикации в Nature.


Как менялись оценки числа генов в геноме человека с 1964 по 2009 годы

Mihaela Pertea and Steven L Salzberg / Genome Biology, 2010

Также ученые узнали, что геном человека содержит очень много повторов и мобильных элементов, подавляющее большинство из которых уже не работает. Кроме того, геном человека очень разнообразен — генетики оценили, что количество однонуклеотидных полиморфизмов в нем (участков, в которых у разных людей может стоять тот или иной нуклеотид) достигает 1,5 миллионов. Это стало ясно в том числе благодаря тому, что в проекте была использована ДНК от большого количества добровольцев, а не от одного человека.

Геном для медицины

За двадцать лет с момента завершения сборки черновой версии генома технологии секвенирования и анализа последовательностей развились настолько, что сегодня узнать последовательность кодирующих участков генома (экзома) обойдется вам уже не в три миллиарда долларов, а лишь несколько сотен.


Изменение стоимости секвенирования генома человека после сентября 2001 года

Генотипирование, то есть определение однонуклеотидных полиморфизмов конкретного человека, уже во многом стало рутиной — в базе данных UK Biobank хранятся данные полногеномного типирования 500 тысяч человек. Кроме генетических данных, записи участников содержат информацию о показателях здоровья, привычках, семейных историях болезни и т.п. Такие наборы данных позволяют исследователям проводить так называемые полногеномные анализы ассоциаций (GWAS — Genome-Wide Association Study), которые позволяют выявить, например, генетическую предрасположенность к определенному заболеванию.

20 лет спустя

Читайте также: