Почему атмосфера получила такое название кратко

Обновлено: 06.07.2024

АТМОСФЕ́РА Зем­ли (от греч. ἀ τμ ό ς – пар, ис­па­ре­ние и σφαῖρα – шар), воз­душ­ная обо­лоч­ка, со­стоя­щая из ря­да га­зов и взве­шен­ных в ней час­тиц при­ме­сей – аэ­ро­зо­лей. Мас­са А. 5,157 · 10 15 т. Столб воз­ду­ха ока­зы­ва­ет дав­ле­ние на по­верх­ность Зем­ли: ср. ат­мо­сфер­ное дав­ле­ние на уров­не мо­ря 1013,25 гПа (ок. 760 мм рт. ст.). Сред­няя по гло­бу­су темп-ра воз­ду­ха у по­верх­но­сти Зем­ли 15 °C, при этом темп-ра из­ме­ня­ет­ся при­мер­но от 57 °C в суб­тро­пич. пус­ты­нях до –89 °C в Ан­тарк­ти­де. Плот­ность воз­ду­ха и дав­ле­ние убы­ва­ют с вы­со­той по за­ко­ну, близ­ко­му к экс­по­нен­ци­аль­но­му.

АТМОСФЕРА — газовая оболочка Земли, состоящая, исключая воду и пыль (по объему), из азота (78,08%), кислорода (20,95%), аргона (0,93%), углекислоты (около 0,09%) и водорода, неона, гелия, криптона, ксенона и ряда др. газов (в сумме около 0,01%). Состав сухой А. на всю ее толщу практически одинаков, но в нижней части возрастает содер. воды, пыли, а у почвы — углекислоты. Нижняя граница А.— поверхность суши и воды, а верхняя фиксируется на высоте 1300 км постепенным переходом в космическое пространство. А. делится на три слоя: нижний — тропосферу, средний — стратосферу и верхний — ионосферу. Тропосфера до высоты 7—10 км (над полярными обл.) и 16—18 км (над экваториальной обл.) включает более 79% массы А., а ионосфера (от 80 км и выше) всего около 0,5%. Вес столба А. определенного сечения на разных широтах и при разл. температуре несколько отличен. На широте 45° при 0° он равен весу столба ртути 760 мм, или давлению на 1 см 2 1,0333 кг.

Во всех слоях А. совершаются сложные горизонтальные (в разл. направлениях и с разными скоростями), вертикальные и турбулентные движения. Происходят поглощение солнечного и космического излучения и самоизлучение. Особо важное значение как поглотитель ультрафиолетовых лучей имеет в А. озон с общим содер. всего 0,000001% объема А., но на 60% сосредоточенный в слоях на высоте 16—32 км — озоновый слой, а для тропосферы — пары воды, пропускающие коротковолновое излучение и задерживающие “отраженное” длинноволновое. Последнее приводит к нагреванию нижних слоев А. В истории развития Земли состав А. не был постоянным. В архее количество CO 2 , вероятно, было много большим, a O 2 — меньшим и т. д. Геохим. и геол. роль А. как вместилища биосферы и агента гипергенеза весьма велика. Помимо А. как физ. тела существует понятие А. как величины технической для выражения давления. А. техническая равна давлению 1 кг на см 2 , 735,68 мм ртутного столба, 10 м водяного столба (при 4°С). В. И. Лебедев.

Геологический словарь: в 2-х томах. — М.: Недра . Под редакцией К. Н. Паффенгольца и др. . 1978 .

Земли (от греч. atmos - пар и sphaira - шар * a. atmosphere; н. Atmosphare; ф. atmosphere; и. atmosfera ) - газовая оболочка, окружающая Землю и участвующая в её суточном вращении. Macca A. составляет ок. 5,15 * 10 15 т. A. обеспечивает возможность жизни на Земле и оказывает влияние на геол. процессы.
Происхождение и роль A. Cовр. A. имеет, по-видимому, вторичное происхождение; она возникла из газов, выделенных твёрдой оболочкой Земли (литосферой) после образования планеты. B течение геол. истории Земли A. претерпела значит. эволюцию под влиянием ряда факторов: диссипации (рассеяния) газовых молекул в космич. пространство, выделения газов из литосферы в результате вулканич. деятельности, диссоциации (расщепления) молекул под влиянием солнечного ультрафиолетового излучения, хим. реакций между компонентами A. и породами, слагающими земную кору, аккреции (захвата) метеорного вещества. Pазвитие A. тесно связано не только c геол. и геохим. процессами, но также c деятельностью живых организмов, в частности человека (антропогенный фактор). Изучение изменений состава A. в прошлом показало, что уже в ранних периодах фанерозоя кол-во кислорода в воздухе составляло ок. 1/3 его совр. значения. Cодержание кислорода в A. резко возросло в девоне и карбоне, когда оно, возможно, превосходило совр. уровень. После понижения в пермском и триасовом периодах оно опять повысилось, достигнув макс. значения в юре, после чего произошло новое понижение, к-poe сохраняется в наше время. Ha протяжении фанерозоя значительно менялось также и кол-во углекислого газа. Oт кембрия до палеогена концентрация CO2 колебалась в пределах 0,1-0,4%. Понижение её до совр. уровня (0,03%) произошло в олигоцене и (после нек-рого повышения в миоцене) плиоцене. Атм. газы оказывают существ. влияние на эволюцию литосферы. Hапр., б.ч. углекислого газа, поступившего в A. первоначально из литосферы, была затем аккумулирована в карбонатных породах. Атм. кислород и водяной пар являются важнейшими факторами, воздействующими на г. п. Ha протяжении всей истории Земли атм. осадки играют большую роль в процессе гипергенеза. He меньшее значение имеет деятельность ветра (см. Выветривание), переносящего мелкие фракции разрушенных г. п. на большие расстояния. Cущественно влияют на разрушение г. п. колебания темп-ры и др. атм. факторы.
A. защищает поверхность Земли от разрушит. действия падающих камней (метеоритов), б.ч. к-рых сгорает при вхождении в её плотные слои. Флора и фауна, оказавшие существ. влияние на развитие А., сами сильно зависят от атм. условий. Cлой озона в A. задерживает б.ч. ультрафиолетового излучения Cолнца, к-poe губительно действовало бы на живые организмы. Kислород A. используется в процессе дыхания животными и растениями, углекислота - в процессе питания растений. Атм. воздух - важный источник хим. сырья для пром-сти: напр., атм. азот является сырьём для получения аммиака, азотной к-ты и др. хим. соединений; кислород используют в разл. отраслях нар. x-ва. Всё большее значение приобретает освоение энергии ветра, особенно в p-нах, где отсутствуют др. источники энергии.
Cтроение A. Для A. характерна чётко выраженная слоистость (рис.), определяемая особенностями вертикального распределения темп-ры и плотности составляющих её газов.

Cхематическое изображение основных слоев атмосферы: 1 - шары-зонды; 2 - метеоры; 3 - серебристые облака; 4 - полярные сияния; 5 - радиоволны декаметрового диапазона (3-30 м), которые испытывают многократные отражения от ионосферных слоев; 6 - радиоволны дециметрового диапазона (10см - 1 м), уходящие в мировое пространство; 7 - искусственные спутники Земли; 8, 9 - внутренний радиационный пояс (образуемый протонами, электронами и др. заряж. частицами; внешний пояс находится выше); 10 - силовые линии магнитного поля Земли (в зоне экватора).
Xод темп-ры весьма сложен, плотность убывает по экспоненциальному закону (80% всей массы A. сосредоточено в тропосфере).
Переходной областью между A. и межпланетным пространством является самая внешняя её часть - экзосфера, состоящая из разрежённого водорода. Ha высотах 1-20 тыс. км гравитац. поле Земли уже не способно удерживать газ, и молекулы водорода рассеиваются в космич. пространстве. Oбласть диссипации водорода создаёт феномен геокороны. Первые же полёты искусств. спутников обнаружили, что Земля окружена неск. оболочками заряженных частиц, газокинетич. темп-pa к-рых достигает неск. тысяч градусов. Эти оболочки получили назв. радиац. поясов. Заряженные частицы - электроны и протоны солнечного происхождения - захватываются магнитным полем Земли и вызывают в A. разл. явления, напр. полярные сияния. Pадиац. пояса составляют часть магнитосферы.
Bce параметры A. - темп-pa, давление, плотность - характеризуются значит. пространственно-временной изменчивостью (широтной, годовой, сезонной, суточной). Oбнаружена также их зависимость от вспышек на Cолнце.
Cостав A. Oсн. компонентами A. являются азот и кислород, a также аргон, углекислый газ, неон и др. газы (табл.).

Hаиболее важная переменная составляющая A. - водяной пар. Изменение его концентрации колеблется в широких пределах: от 3% y земной поверхности на экваторе до 0,2% в полярных широтах. Oсн. масса его сосредоточена в тропосфере, содержание определяется соотношением процессов испарения, конденсации и горизонтального переноса. B результате конденсации водяного пара образуются облака и выпадают атм. осадки (дождь, град, снег, poca, туман). Cуществ. переменная компонента A. - углекислый газ, изменение содержания к-рого связано c жизнедеятельностью растений (процессами фотосинтеза) и растворимостью в мор. воде (газообменом между океаном и А.). Hаблюдается рост содержания углекислого газа, обусловленный индустриальным загрязнением, что оказывает влияние на климат.
Pадиационный, тепловой и водный балансы A. Практически единств. источником энергии для всех физ. процессов, развивающихся в А., является солнечное излучение, пропускаемое "окнами прозрачности" A. Гл. особенность радиац. режима A. - т.н. парниковый эффект - состоит в том, что ею почти не поглощается излучение в оптич. диапазоне (б. ч. излучения достигает земной поверхности и нагревает её) и не пропускается в обратном направлении инфракрасное (тепловое) излучение Земли, что значительно снижает теплоотдачу планеты и повышает её темп-py. Часть падающего на A. солнечного излучения поглощается (гл. обр. водяным паром, углекислым газом, озоном и аэрозолями), др. часть рассеивается газовыми молекулами (чем объясняется голубой цвет неба), пылинками и флуктуациями плотности. Pассеянное излучение суммируется c прямым солнечным светом и, достигнув поверхности Земли, частично отражается от неё, частично поглощается. Доля отражённой радиации зависит от отражат. способности подстилающей поверхности (альбедо). Pадиация, поглощённая земной поверхностью, перерабатывается в инфракрасное излучение, направленное в A. B свою очередь, A. является также источником длинноволнового излучения, направленного к поверхности Земли (т.н. противоизлучение A.) и в мировое пространство (т.н. уходящее излучение). Pазность между коротковолновым излучением, поглощённым земной поверхностью, и эффективным излучением A. наз. радиац. балансом.
Преобразование энергии излучения Cолнца после её поглощения земной поверхностью и A. составляет тепловой баланс Земли. Потери тепла из A. в мировое пространство намного превосходят энергию, приносимую поглощённой радиацией, однако дефицит восполняется его притоком за счёт механич. теплообмена (турбуленция) и теплотой конденсации водяного пара. Bеличина последней в A. численно равна затратам тепла на испарение c поверхности Земли (см. Водный баланс).
Движение воздухa. Вследствие большой подвижности атмосферного воздуха на всех высотах в A. наблюдаются ветры. Hаправления движения воздуха зависят от мн. факторов, но главный из них - неравномерность нагрева A. в разных p-нах. Вследствие этого A. можно уподобить гигантской тепловой машине, к-рая превращает поступающую от Cолнца лучистую энергию в кинетич. энергию движущихся воздушных масс. Пo приблизит. оценкам, кпд этого процесса 2%, что соответствует мощности 2,26 * 10 15 Вт. Эта энергия тратится на формирование крупномасштабных вихрей (циклонов и антициклонов) и поддержание устойчивой глобальной системы ветров (муссоны и пассаты). Hаряду c воздушными течениями больших масштабов в ниж. слоях A. наблюдаются многочисл. местные циркуляции воздуха (бриз, бора, горно-долинные ветры и др.). Bo всех воздушных течениях обычно отмечаются пульсации, соответствующие перемещению воздушных вихрей средних и малых размеров. Заметные изменения в метеорологич. условиях достигаются такими мелиоративными мероприятиями, как орошение, полезащитное лесоразведение, осушение заболоч. p-нов, создание искусств. морей. Эти изменения в осн. ограничиваются приземным слоем воздуха.
Kроме направленных воздействий на погоду и климат, деятельность человека оказывает влияние на состав A. Загрязнение A. за счёт действия объектов энергетич., металлургии., хим. и горн. пром-сти происходит в результате выброса в воздух гл. обр. отработанных газов (90%), a также пыли и аэрозолей. Oбщая масса аэрозолей, выбрасываемых ежегодно в воздух в результате деятельности человека, ок. 300 млн. т. B связи c этим во мн. странах проводят работы по контролю за загрязнением воздуха. Быстрый рост энергетики приводит к дополнит. нагреванию А., к-poe пока заметно только в крупных пром. центрах, но в будущем может привести к изменениям климата на больших территориях. Загрязнение A. горн. предприятиями зависит от геол. природы разрабатываемого м-ния, технологии добычи и переработки п. и. Hапр., выделение метана из пластов угля при его разработке составляет ок. 90 млн. м 3 в год. При ведении взрывных работ (для отбойки г. п.) в течение года в A. выделяется ок. 8 млн. м 3 газов, из них б.ч. инертных, не оказывающих вредного воздействия на окружающую среду. Интенсивность выделения газов в результате окислит. процессов в отвалах относительно велика. Oбильное пылевыделение происходит при переработке руд, a также на горн. предприятиях, разрабатывающих м-ния открытым способом c применением взрывных работ, особенно в засушливых и подверженных действию ветров p-нах. Mинеральные частицы загрязняют воздушное пространство непродолжит. время, гл. обр. вблизи предприятий, оседая на почву, поверхность водоёмов и др. объектов.
Для предотвращения загрязнения A. газами применяют: улавливание метана, пеновоздушные и воздушно-водяные завесы, очистку выхлопных газов и электропривод (вместо дизельного) y горн. и трансп. оборудования, изоляцию выработанных пространств (заиливание, закладка), нагнетание воды или антипирогенных растворов в пласты угля и др. B процессы переработки руды внедряют новые технологии (в т.ч. c замкнутыми производств. циклами), газоочистные установки, отвод дыма и газа в высокие слои A. и др. Уменьшение выброса пыли и аэрозолей в A. при разработке м-ний достигается путём подавления, связывания и улавливания пыли в процессе буровзрывных и погрузочно-трансп. работ (орошение водой, растворами, пенами, нанесение на отвалы, борта и дороги эмульсионных или плёночных покрытий и т.д.). При транспортировке руды применяют трубопроводы, контейнеры, плёночные и эмульсионные покрытия, при переработке - очистку фильтрами, покрытие хвостохранилищ галькой, органич. смолами, рекультивацию, утилизацию хвостохранилищ.

Литература : Mатвеев Л. T., Kypc общей метеорологии, Физика атмосферы, Л., 1976; Xргиан A. X., Физика атмосферы, 2 изд., т. 1-2, Л., 1978; Будыко M. И., Kлимат в прошлом и в будущем, Л., 1980.

M. И. Будыко.

Горная энциклопедия. — М.: Советская энциклопедия . Под редакцией Е. А. Козловского . 1984—1991 .


АТМОСФЕРА

Атмосфера — газовая оболочка, окружающая планету Земля и вращающаяся вместе с ней. Совокупность разделов физики и химии, изучающих атмосферу, принято называть физикой атмосферы. Атмосфера определяет погоду на поверхности Земли, изучением погоды занимается метеорология, а длительными вариациями климата — климатология.

атмосфера

Толщина атмосферы 1500 км от поверхности Земли. Суммарная масса воздуха, то есть смеси газов, составляющих атмосферу: около 5,3 * 10 15 т. Молекулярная масса чистого сухого воздуха составляет 29. Давление при 0°С на уровне моря 101 325 Па, или 760 мм. рт. ст.; критическая температура 140,7 °С; критическое давление 3,7 МПа. Растворимость воздуха в воде при 0 °С — 0,036 %, при 25 °С — 0,22 %.

Атмосферное давление — давление атмосферного воздуха на находящиеся в нем предметы и земную поверхность. Нормальным атмосферным давлением является показатель в 760 мм рт. ст. (101 325 Па). При повышении высоты на каждый километр давление падает на 100 мм.

Строение атмосферы.

Физическое состояние атмосферы определяется погодой и климатом. Основные параметры атмосферы : плотность воздуха, давление, температура и состав. С увеличением высоты плотность воздуха и атмосферное давление уменьшаются. Температура меняется также в зависимости от изменения высоты. Вертикальное строение атмосферы характеризуется различными температурными и электрическими свойствами, разным состоянием воздуха. В зависимости от температуры в атмосфере различают следующие основные слои : тропосферу, стратосферу, мезосферу, термосферу, экзосферу (сферу рассеяния). Переходные области атмосферы между соседними оболочками называют соответственно тропопауза, стратопауза и т.д.

строение атмосферы

Тропосфера — нижний, основной, наиболее изученный слой атмосферы, высотой в полярных областях 8—10 км, в умеренных широтах до 10—12 км, на экваторе — 16—18 км. В тропосфере сосредоточено примерно 80—90 % всей массы атмосферы и почти все водяные пары. При подъеме через каждые 100 м температура в тропосфере понижается в среднем на 0,65 °С и достигает —53 °С в верхней части. Этот верхний слой тропосферы называют тропопаузой. В тропосфере сильно развиты турбулентность и конвекция, сосредоточена преобладающая часть водяного пара, возникают облака, развиваются циклоны и антициклоны.

Стратосфера — слой атмосферы, располагающийся на высоте 11—50 км. Характерно незначительное изменение температуры в слое 11—25 км (нижний слой стратосферы) и повышение ее в слое 25—40 км от —56,5 до 0,8 °С (верхний слой стратосферы или область инверсии). Достигнув на высоте около 40 км значения 273 К (0 °С), температура остается постоянной до высоты 55 км. Эта область постоянной температуры называется стратопаузой и является границей между стратосферой и мезосферой.

В стратосфере задерживается большая часть коротковолновой части ультрафиолетового излучения (180—200 нм) и происходит трансформация энергии коротких волн. Под влиянием этих лучей изменяются магнитные поля, распадаются молекулы, происходит ионизация, новообразование газов и других химических соединений. Эти процессы можно наблюдать в виде северных сияний, зарниц, и других свечений. В стратосфере почти нет водяного пара.

Мезосфера начинается на высоте 50 км и простирается до 80—90 км. Температура воздуха до высоты 75—85 км понижается до 88 °С. Верхней границей мезосферы является мезопауза.

Термосфера (другое название — ионосфера) — слой атмосферы, следующий за мезосферой, — начинается на высоте 80—90 км и простирается до 800 км. Температура воздуха в термосфере быстро и неуклонно возрастает и достигает нескольких сотен и даже тысяч градусов.

Экзосфера — зона рассеяния, внешняя часть термосферы, расположенная выше 800 км. Газ в экзосфере сильно разрежен, и отсюда идет утечка его частиц в межпланетное пространство (диссипация).

Структура атмосферы

До высоты 100 км атмосфера представляет собой гомогенную (однофазную), хорошо перемешанную смесь газов. В более высоких слоях распределение газов по высоте зависит от их молекулярных масс, концентрация более тяжелых газов убывает быстрее по мере удаления от поверхности Земли. Вследствие уменьшения плотности газов температура понижается от 0 °С в стратосфере до -110 °С в мезосфере.

На высоте около 2000—3000 км экзосфера постепенно переходит в так называемый ближнекосмический вакуум, который заполнен сильно разреженными частицами межпланетного газа, главным образом атомами водорода. Но этот газ представляет собой лишь часть межпланетного вещества. Другую часть составляют пылевидные частицы кометного и метеорного происхождения. Кроме этих чрезвычайно разреженных частиц, в это пространство проникает электромагнитная и корпускулярная радиация солнечного и галактического происхождения.

На долю тропосферы приходится около 80 % массы атмосферы, на долю стратосферы — около 20 %; масса мезосферы — не более 0,3 %, термосферы — менее 0,05 % от общей массы атмосферы. На основании электрических свойств в атмосфере выделяют нейтросферу и ионосферу. В настоящее время считают, что атмосфера простирается до высоты 2000—3000 км.

В зависимости от состава газа в атмосфере выделяют гомосферу и гетеросферу. Гетеросфера — это область, где гравитация оказывает влияние на разделение газов, т.к. их перемешивание на такой высоте незначительно. Отсюда следует переменный состав гетеросферы. Ниже ее лежит хорошо перемешанная, однородная по составу часть атмосферы называемая гомосферой. Граница между этими слоями называется турбопаузой, она лежит на высоте около 120 км.

строение атмосферы

Состав атмосферы

Атмосфера Земли — воздушная оболочка Земли, состоящая в основном из газов и различных примесей (пыль, капли воды, кристаллы льда, морские соли, продукты горения), количество которых непостоянно. Основным газами являются азот (78 %), кислород (21 %) и аргон (0,93 %). Концентрация газов, составляющих атмосферу, практически постоянна, за исключением углекислого газа CO2 (0,03 %).

Также в атмосфере содержатся SO2, СН4, N, СО, углеводороды, НСl, НF, пары Hg, I2, а также NO и многие другие газы в незначительных количествах. В тропосфере постоянно находится большое количество взвешенных твердых и жидких частиц (аэрозоль).

атмосфера таблица

атмосфера таблица 2

Земная атмосфера сформирована несколькими слоями газов, которые окружают Землю из-за эффектов гравитационного поля.

Каждый слой имеет определённый состав газов и все организованы в соответствии с их плотностью. Более плотные газы притягиваются ближе к поверхности Земли, в то время как другие (менее плотные) находятся на более дальнем расстоянии от планеты.

Из-за различных характеристик, которыми обладают газы, слои атмосферы имеют свои особенности и играют определённую роль в своих взаимодействиях с Землёй.

Пять слоёв, которые составляют атмосферу Земли:

  1. Тропосфера;
  2. Стратосфера;
  3. Мезосфера;
  4. Термосфера;
  5. Экзосфера.

Изображение расстояний каждого слоя от Земли

Изображение расстояний каждого слоя от Земли

Тропосфера

Тропосфера — это самый плотный слой атмосферы и, следовательно, самый близкий к Земной поверхности. Общая масса атмосферы оценивается в 5х1018 кг, и 75% этого количества находится в тропосфере.

Толщина тропосферы колеблется от 8 км до 14 км, в зависимости от региона Земли. Самые тонкие места (где толщина достигает 8 км) находятся на северном и южном полюсах.

Поскольку это самый нижний слой атмосферы, тропосфера ответственна за жизнь на планете, а также там, где происходят почти все климатические явления. Термин "тропосфера" происходит от греческого "tropos" (означает "изменение"), чтобы отразить динамический характер изменений климата и поведение этого слоя атмосферы.

Область тропосферы, которая ограничивает её конец и начало стратосферы, называется тропопаузой. Тропопауза легко идентифицируется по различным картинам распределения давления и температурам каждого слоя.

Состав тропосферы

По объёму тропосфера состоит из 78,08% азота, 20,95% кислорода, 0,93% аргона и 0,04% углекислого газа. Воздух также состоит из меняющихся процентных показателей водяного пара, который попадает в тропосферу через явление испарения.

Температура тропосферы

Как и давление, температура в тропосфере также уменьшается с увеличением высоты. Это связано с тем, что почва поглощает бóльшую часть солнечной энергии и нагревает нижние уровни тропосферы. Принимая во внимание, что испарение выше в более тёплых областях, водяные пары присутствуют чаще на уровне моря и реже на больших высотах.

Что встречается в тропосфере?

Некоторые примеры того, что можно найти в тропосфере:

  • климат;
  • осадки, такие как: дождь, снег и град;
  • газы, такие как: азот, кислород, аргон и углекислый газ;
  • облака;
  • птицы.

Стратосфера

Стратосфера является вторым по величине слоём атмосферы, а также вторым, ближайшим к Земной поверхности. По оценкам, он содержит около 15% от общей массы атмосферы Земли.

Толщина стратосферы составляет 35 км от тропопаузы, что означает, что она расположена между тропосферой и мезосферой. Термин "стратосфера" происходит от греческого strato (значит "слой") для обозначения того факта, что сама стратосфера подразделяется на другие более тонкие слои.

Слои стратосферы образуются из-за отсутствия климатических явлений, которые смешивают воздух. Таким образом, существует чёткое разделение между холодным и тяжёлым воздухом внизу и тёплым, лёгким воздухом сверху. Таким образом, с точки зрения температуры стратосфера работает точно противоположно тропосфере.

Поскольку эта зона более высокой вертикальной стабильности (без перемещений воздуха), пилоты самолётов, как правило, остаются в начале стратосферы, чтобы избежать турбулентности. Именно на этой высоте самолёты и воздушные шары достигают максимальной эффективности.

самолёт стратосфера

Некоторые самолёты, особенно реактивные, влетают в стратосферу, чтобы избежать воздухообмен.

Стратосфера также содержит хорошо известный озоновый слой, который поглощает большую часть ультрафиолетового излучения солнца. Без озонового слоя жизнь на Земле, какой мы её знаем, была бы невозможна.

Подобно тропосфере, стратосфера также имеет область, которая ограничивает её конец и показывает начало мезосферы, которая называется стратопауза.

Состав стратосферы

Большинство элементов, найденных на поверхности Земли и в тропосфере, не достигают стратосферы. Вместо этого они обычно:

  • разлагаются в тропосфере;
  • могут быть устранены солнечным светом;
  • могут переноситься на поверхность Земли через дождь или другие осадки.

Из-за инверсии в динамике температуры между тропосферой и стратосферой воздух практически не обменивается между двумя слоями, в результате чего испарения воды существуют в стратосфере только в незначительных количествах. По этой причине в этом слое чрезвычайно редко образование облаков.

Что касается газов, стратосфера образована преимущественно озоном, присутствующим в озоновом слое. Считается, что 90% всего озона в атмосфере находится в этой области. Кроме того, стратосфера содержит элементы, переносимые извержениями вулканов, такие, как оксиды азота, азотная кислота, галогены и т. д.

Температура стратосферы

Температура в стратосфере увеличивается с увеличением высоты, варьируя от -51 ° C в самой низкой точке (тропопауза) до -3 ° C в самой высокой точке (стратопауза).

Что встречается в стратосфере?

Некоторые примеры того, что можно найти в стратосфере:

  • озоновый слой;
  • самолёты и метеозонды;
  • некоторые птицы.

Мезосфера

Мезосфера — это последний атмосферный слой, в котором газы всё ещё смешиваются в воздухе и не организованы их массой. Этот слой считается наукой самым сложным для изучения, поэтому о нём мало подтверждённой информации.

Толщина мезосферы также составляет 35 км от стратопаузы, что означает, что она расположена между стратосферой и термосферой. Термин "мезосфера" происходит от греческого mesos (означает "центр"), так как является третьим среди пяти слоёв Земной атмосферы.

Метеозонды и самолёты не могут достичь так высоко, чтобы достичь мезосферы. В то же время спутники могут вращаться только над ним, таким образом получается, что они не могут должным образом измерять характеристики этого слоя.

Единственный способ изучения мезосферы в наши дни — это использование ракет, которые собирают довольно мало информации в каждой миссии.

Именно в мезосфере происходит сгорание небесных тел, попадающих в Земную атмосферу, что приводит к таким явлениям, как звездопад (метеорные потоки).

Метеорный поток (звёздный дождь)

Метеорный поток (звёздный дождь) происходит, когда небесное тело входит в Земную атмосферу.
Из-за очень высокой температуры небесное тело начинает гореть и обычно распадается на несколько более мелких фрагментов.

Состав мезосферы

Процентное содержание кислорода, азота и углекислого газа в мезосфере, по существу, такое же, как и в слоях ниже. Испарения воды там реже, чем в стратосфере, что, в свою очередь, переносит часть озона в мезосферу.

В мезосфере также есть материал из метеоров, которые испаряются при попадании в атмосферу. Таким образом, мезосфера также состоит из относительно высокой доли железа и других металлов.

Температура мезосферы

Температура в мезосфере уменьшается с увеличением высоты, варьируя от -3° C в самой низкой точке (стратопауза) до -143° C в самой высокой точке (мезопауза — самая холодная область всей Земной атмосферы).

Что встречается в мезосфере?

Некоторые примеры того, что можно найти в стратосфере:

  • метеоры в сгорании;
  • серебристые облака (особый вид облаков, которые светятся ночью).

Термосфера

Термосфера расположена над мезосферой и ниже экзосферы. Толщина этого слоя составляет около 513 км, что намного больше, чем у всех нижних слоёв вместе взятых.

Хотя термосфера считается частью Земной атмосферы, плотность воздуха настолько низкая, что бóльшую часть слоя ошибочно рассматривают как космическое пространство. Эта идея подкрепляется тем фактом, что в слое недостаточно молекул для перемещения звуковых волн.

В термосфере ультрафиолетовое излучение вызывает явления фотоионизации молекул, т. е. образование ионов в результате контакта фотона с атомом. Это явление ответственно за создание ионосферы, расположенной внутри термосферы. Ионосфера играет важную роль в распространении радиоволн в отдалённые районы Земли.

Именно в термосфере спутники вращаются вокруг Международной космической станции (МКС). Кроме того, именно в термосфере происходит северное сияние.

Северное сияние происходит при столкновении солнечных частиц с плотностью земной атмосферы.

Северное сияние происходит при столкновении солнечных частиц с плотностью Земной атмосферы.

Читайте подробнее про Северное сияние.

Слово "термосфера" происходит от греческого thermos (что значит "тепло"), что отражает тот факт, что температура в этом слое чрезвычайно высока.

Граница между термосферой и экзосферой называется термопаузой.

Состав термосферы

В отличие от слоёв ниже, где смешиваются газы, в термосфере частицы редко сталкиваются, что приводит к равномерному разделению элементов. Кроме этого, большинство молекул в термосфере разрушаются солнечным светом.

Верхние части термосферы состоят из атомарного кислорода, атомарного азота и гелия.

Температура термосферы

Температура в термосфере может варьироваться от 500º C до 2000º C. Это происходит потому, что большая часть солнечного света поглощается в этом слое.

Что встречается в термосфере?

Некоторые примеры того, что можно найти в термосфере:

  • спутники;
  • раньше, многоразовый транспортный космический корабль Спейс шаттл;
  • МКС;
  • северное сияние;
  • ионосфера.

Экзосфера

Экзосфера — это самый большой и крайний внешний слой Земной атмосферы. Он простирается на 600 км, пока плавно не перейдёт в межпланетное пространство. Это делает его толщиной в 10.000 км. Самая дальняя граница экзосферы достигает половины пути до Луны.

Термин "экзосфера" происходит от греческого exo (что значит "внешний"), обозначает тот факт, что это последний атмосферный слой перед космическим вакуумом.

Состав экзосферы

Частицы в экзосфере чрезвычайно далеки друг от друга и поэтому не классифицируются как газы, потому что плотность слишком низкая. Одна частица может пройти сотни километров до столкновения с другой. Они также не считаются плазмой, так как электрически они не заряжены.

В нижних областях экзосферы можно найти водород, гелий, углекислый газ и атомарный кислород, которые остаются минимально притянутыми к Земле гравитационным полем.

Температура экзосферы

Из-за того, что экзосфера находится почти в вакууме (из-за отсутствия взаимодействия между молекулами), температура в слое постоянная и холодная.

Что встречается в экзосфере?

Некоторые примеры того, что можно найти в экзосфере:

  • космический телескоп Хаббл;
  • спутники.

Атмосферы других планет

В Солнечной системе 8 планет и более 160 спутников. Из них, имеют значимые атмосферы:

  • Земля;
  • Венера;
  • Сатурн;
  • Марс;
  • Уран;
  • Юпитер;
  • Нептун;
  • Титан (спутник Сатурна);
  • Плутон (карликовая планета).

Атмосфера Венеры

Атмосфера Венеры составляет около 96% углекислого газа, а температура поверхности около 464° C. Облака из серной кислоты движутся со скоростью примерно 100 метров в секунду.

Атмосфера Марса

На Марсе есть тонкая атмосфера, состоящая примерно на 95% из углекислого газа, а остальная часть из азота и аргона. Средняя температура приземного воздуха на Марсе -63° C. На Марсе наблюдаются облака как из воды, так и из углекислого газа. Ещё там чётко определены времена года.

Узнайте больше про Землю, и смотрите также, что такое Сингулярность и Космология.

Читайте также: