Когда и кем были открыты микроорганизмы кратко

Обновлено: 05.07.2024

Первооткрыватель бактерий НЕИЗВЕСТЕН!
Сейчас считается, что Левенгук на самом деле открыл не бактерии, а микробы!
Но в популярных книгах, школьных учебниках и в интернете пишут, что именно Левенгук.
Давайте посмотрим почему сложилась такая странная ситуация.
Как Левенгук мог открыть бактерии, если он посмотрел в микроскоп дождевую воду с земли и увидел, что там одноклеточные существа, которые передвигались. Он так и писал, что они бегают. Спрашивается, если это были бактерии, то, во-первых, как они могли передвигаться (в капле же нет течений) , а, во-вторых, что они там кушали.
Он там обнаружил не бактерии, а микробы, типа, одноклеточных амебы и инфузории туфельки. Это не бактерии, т. к. , во-первых, они сами передвигаются, а, во-вторых, они не выделяют токсины, а переваривают пищу внутри себя.
Бактерии отличаются от микробов тем, что выделяют из себя в окружающее пространство яды-токсины, которые переваривают органику вне тела бактерии, а потом просто впитывают переваренный сок внутрь себя. Второе отличие - у бактерий нет двигательного аппарата, перемешаются по течению жидкостей и воздуха, как вирусы. Кстати, по этим двум признакам бактерий относят не к животным, а к растениям. А вот амебы и инфузории относятся к животным.
К сожалению, мы сейчас не знаем, кого там точно увидел в микроскоп Левенгук, т. к. эти существа были описаны и классифицированны позже другими людьми. А в свежих дождевых лужах, действительно нет бактерий.
Но ученые сами очень долго не различали, кто из одноклеточных бактерии, а кто животные, а кто вирусы, которых сейчас не относят ни к бактериям, ни к животным, т. к. вирусы вообще не питаются.
Вот поэтому, известно, что Левенгук открыл одноклеточных животных, а кто первым открыл бактерию неизвестно.

Госсспади)))) Вот так награмождение умных слов может составить совершенно безграмотный по смыслу текст. Одно утверждение про то, что в свежих лужах нет бактерий, чего стоит! Ну и конечно то, что в микробиологии вообще нет понятия "микроб" и это мещанский жаргончик.. Очень надеюс, что это писал не врач-инфекционист

Бактерии классифицируются на подвижных и неподвижных

Подвижные передвигаются за счёт волнообразных сокращений или при помощи жгутиков (скрученные винтообразные нити), которые состоят из особого белка флагеллина. Но движение присуще и многим иным бактериям, у которых жгутики отсутствуют. Так, бактерии, покрытые снаружи слизью, способны к скользящему движению

У некоторых лишённых жгутиков водных и почвенных бактерий в цитоплазме имеются газовые вакуоли. В клетке может быть 40-60 вакуолей. Каждая из них заполнена газом (предположительно — азотом). Регулируя количество газа в вакуолях, водные бактерии могут погружаться в толщу воды или подниматься на её поверхность, а почвенные бактерии — передвигаться в капиллярах почвы.

Луи Пастер в 1850-е положил начало изучению физиологии и метаболизма бактерий, а также открыл их болезнетворные свойства. Дальнейшее развитие медицинская микробиология получила в трудах Роберта Коха, которым были сформулированы общие принципы определения возбудителя болезни (постулаты Коха) . В 1905 он был удостоен Нобелевской премии за исследования туберкулёза. Основы общей микробиологии и изучения роли бактерий в природе заложили М. В. Бейеринк и С. Н. Виноградский.

Изучение строения бактериальной клетки началось с изобретением электронного микроскопа в 1930-е. В 1937 Э. Чаттон предложил делить все организмы по типу клеточного строения на прокариот и эукариот, и в 1961 Стейниер и Ван Ниль окончательно оформили это разделение. Развитие молекулярной биологии привело к открытию в 1977 К. Вёзе коренных различий и среди самих прокариот: между бактериями и археями.

В XIX веке Луи Пастер (Louis Pasteur, 1822–1895) исследовал роль бактерий в ферментативном процессе, то есть переваривании и переработки пищи. Роберт Кох (Heinrich Hermann Robert Koch, 1843–1910) создал методику культивирования отдельных бактериальных штаммов, что позволило узнавать, является ли штамм полезным или болезнетворным. Истинный прорыв в изучении взаимодействия бактерий и человека совершил Илья Мечников (1845–1916), открыв фагоцитоз — защитную реакцию организма в ответ на инфекцию. Мечников сформулировал теорию, согласно которой в организме человека обитает комплекс микробов, отвечающих за иммунитет и способных бороться с патогенными видами микроорганизмов.

Впервые бактерий увидел в оптический микроскоп и описал голландский натуралист Антони ван Левенгук в 1676 году.
Люди, вы столько задаёте вопросов, котрые легко найти самим. Хотя бы через Yandex или Google=)

Первооткрыватель бактерии - это Антони Ван Левенгук. А первооткрыватель клетки - это Роберт Гук. Бактерии были открыты в 1632 году. А клетки в 1665 году.

Это сегодня благодаря мощным электронным микроскопам и современным методам исследования мы знаем, что представляют собой мельчайшие живые организмы нашей планеты ─ бактерии. А как врачи и ученые объясняли распространение инфекционных заболеваний 250 лет назад? И кто первым описал и открыл бактерии, попытался их изучить?

мельчайшие обитатели Земли

Как объясняли возникновение инфекционных заболеваний в древности

Разновидности бактерий

Изобретение первого микроскопа

Антоний Левенгук

Антони ван Левенгук всю свою жизнь занимался усовершенствованием своих увеличительных приборов. После смерти 26 микроскопов он завещал Лондонской академии наук.

Вклад ученого в микробиологию

Ученый сделал целый ряд открытий, уникальных для своего времени.

За 50 лет исследований ученый описал более 200 видов микроорганизмов, внеся тем самым неоценимый вклад в развитие микробиологии. До сих пор остается загадкой, как при таком по современным меркам небольшом увеличении ученый смог так подробно изучить и описать эти виды.

Признание великого ученого

Свою миссию в признании ученого-самоучки сделал доктор Грааф. Именно он в 1673 году написал в Лондонское королевское общество письмо, в котором говорилось об ученом, который изобрел микроскоп, не имеющий аналогов. Королевский двор нашел Антони ван Левенгука, и между ними установилась переписка. За 50 лет переписки ученым было отправлено множество писем с подробным описанием своих исследований. В начале переписки описанное ученым подвергалось сомнениям других ученых. Но в ходе проверки была установлена правдивость всего описанного в письмах.

Антони ван Левенгук

И в 1680 году ученый-самоучка стал равноправным членом Лондонского королевского двора, а позднее и Французской академии наук. Посмотреть на его удивительные увеличительные приборы приезжали не только ученые, а и многие правители.

Другие открытия ученого

Кроме того что он впервые обнаружил и описал микроорганизмы, ему принадлежит и ряд других открытий. Так он первый обнаружил в крови эритроциты и подробно это описал в своих трудах. Им впервые были обнаружены и описаны сперматозоиды. Он подробно изучил мышечные волокна и установил, что они бывают разные по своей структуре.

открытия ученого

Работы ученого печатались во многих известных изданиях того времени. Его письма еще в те годы были переведены на латинский язык и опубликованы при жизни.

Левенгук вошел в историю как первооткрыватель удивительного мира бактерий и как величайший экспериментатор своего времени. Сегодня микробиология шагнула далеко вперед в изучении и описании бактерий, но до сих пор осталось множество неизученных видов, которые являются нераскрытыми тайнами из мира бактерий.

Образование высшее филологическое. В копирайтинге с 2012 г., также занимаюсь редактированием/размещением статей. Увлечения — психология и кулинария.

Первые жители Земли — микробы — появились 3,9 миллиарда лет назад. В ту пору на планете практически не было кислорода, но им он и не нужен был. Два миллиарда лет они оставались единственными обитателями Земли. Со временем заселили любую пригодную для жизни нишу — от глетчеров до гейзеров. Растения и животные не стали им конкурентами. Микробы изловчились создавать колонии внутри крупных организмов, процветая и размножаясь в этой богатой питательными веществами среде.

Пять столетий назад люди могли видеть лишь то, что было доступно их собственным глазам. Никто не знал, как работает организм или что происходит в далеком космосе. После изобретения микроскопа и телескопа биологи обнаружили микроскопические клетки, а астрономы – миллионы новых звезд.

Мечтая открыть новые миры, люди совершали рискованные экспедиции в потаенные уголки земного шара. Однако до XVII в. никто не подозревал, что, совсем рядом, обитают чудесные создания природы. Человеком, открывшим мир микроорганизмов, стал Антони Ван Левенгук (1632-1723).

Левенгук – первый охотник за микробами.

Двести пятьдесят лет тому назад малоизвестный человек по имени Левенгук впервые заглянул в новый таинственный мир, населенный мельчайшими живыми существами, одни из которых злы и смертоносны, другие дружественны и полезны, а некоторые играют более важную роль в жизни человечества, чем какой-нибудь материк или архипелаг. Левенгук, не воспетый и полузабытый, теперь так же мало известен, как неизвестны были его маленькие странные животные и растения в то время, когда он их открыл.

Со времени жизни и деятельности Левенгука наука далеко ушла вперед. Созданы многочисленные лаборатории и институты, в которых ученые работают над открытиями и изобретениями. В каждой стране сотни тысяч людей с захватывающим интересом следят за новыми достижениями науки, сведения о которых появляются в печати. Но, попробуйте перенестись мыслью к дням Левенгука, на двести пятьдесят лет назад, и представить себя только что окончившим высшую школу, выбирающим карьеру, стремящимся к знанию.

Каким был мир триста с лишним лет назад, когда родился Левенгук? Этот мир только начал освобождаться от суеверий. Это был мир, в котором наука с помощью тщательных наблюдений и пытливой мысли только училась стоять на своих слабых, шатающихся ногах. Это был мир, в котором Сервет (испанский врач, исследователь кровообращения; отрицал божественность Христа) был сожжен за то, что осмелился вскрыть и исследовать человеческий труп, а Галилей заточен за попытку доказать, что Земля вертится вокруг солнца.

В течение двадцати лет Левенгук ходил к оптикам и обучался у них искусству обтачивать и шлифовать стекла. Он посещал алхимиков и аптекарей, совал свой нос в их тайные способы выплавлять металлы из руд и понемногу научился обращаться с золотом и серебром. Это был чрезвычайно упорный и настойчивый человек; он не довольствовался тем, что его линзы были так же хороши, как у лучших мастеров Голландии, — нет, они должны были быть лучше самых лучших! И, добившись этого, он все еще сидел и возился с ними много часов подряд. Затем он вставлял эти линзы в небольшие оправы из меди, серебра или золота, которые он сам вытягивал на огне, среди адского дыма и чада.

Потом этот самодовольный торговец мануфактурой стал наводить свои линзы на все, что попадалось ему под руку. Он смотрел через них на мышечные волокна кита и на чешуйки своей собственной кожи. Он отправлялся к мяснику, выпрашивал или покупал у него бычьи глаза и восторгался тонким устройством хрусталика внутри глаза. Он часами изучал строение овечьих, бобровых и лосиных волосков, которые под его стеклышком превращались в толстые мохнатые бревна. Он осторожно отсекал мушиную голову и насаживал ее мозг на тонкую иголочку своего микроскопа, — с каким восхищением он рассматривал детали этого чудовищного мушиного мозга! Он исследовал поперечные срезы разных пород деревьев и, прищурившись, любовался семенами растений. “Невероятно!” — ворчал он, увидев большое грубое жало блохи и ножки вши.

- В дождевой воде маленькие животные. Они плавают! Они играют! Они в тысячу раз меньше любого существа, которое мы можем видеть простым глазом! Смотри! Ты видишь? Вот что я открыл! – с восхищением рассказывал Левенгук о наблюдениях своей дочери.

В своих письмах Лондонскому Королевскому обществу - авторитетнейшей научной организации того времени - со всей самоуверенностью неуча, не сознающего глубокой философской мудрости тех, с кем он разговаривает, писал: “Перечень некоторых наблюдений, сделанных с помощью микроскопа, изобретенного мистером Левенгуком, относительно строения кожи, мяса и т. д. , жала пчелы и т. д. ”

Это письмо очень удивило и позабавило ученых и высокомудрых джентльменов из Королевского общества, но в глубине души они были искренне поражены чудесными вещами, которые Левенгук, по его словам, мог видеть через свои замечательные линзы.

Левенгук - был первым, кому выпала великая честь приоткрыть завесу в неведомый дотоле мир живых существ — микроорганизмов, которые играют огромную роль в природе и в жизни человека.

Отдельные наиболее прозорливые умы и ранее высказывали смутные догадки о существовании каких-то мельчайших, не видимых простым глазом существ, повинных в распространении и возникновении заразных болезней. Но все эти догадки так и оставались только догадками. Ведь никто никогда не видел таких мелких организмов.

С того времени прошло более трех столетий.

За это время ученые многое узнали о жизни бактерий. Наука ушла далеко вперед. Современный микроскоп – довольно внушительный прибор со сложной системой линз.

3. Цель исследования

Целью данного исследования является изучение разновидности, жизнедеятельности бактерий, и их роль в окружающей среде.

4. Задачи исследования

1. Изучить литературу по данной теме;

2. Изучить классификацию бактерий;

3. Изучить среды обитания бактерий;

4. Изучить разновидность бактерий;

5. Изучить роль бактерий в окружающей среде;

6. Обобщить полученные результаты;

5. Материалы и методы исследования

При подготовке исследовательской работы я пользовался различными источниками информации:

6. Результаты исследования

С середины 1990-х годов в войне с микробами ученые применили новейшее разведывательное средство — лазерный микроскоп. Так впервые открылась жизнь микробов во всей ее обыденности и разнообразии.

До этого считалось как? Бактерии — крайне примитивные организмы. Каждый их вид живет изолированно друг от друга и размножается среди себе подобных. Собственно говоря, так и было. в научных лабораториях, где каждому виду бактерий отдавался во владение свой дворец из стекла или металла — свой лабораторный сосуд. В природе, как показали недавние наблюдения, все наоборот. Микробы действуют на удивление сообща. Возможно, в этом — залог их непобедимости.

Существует, по крайней мере, две тысячи видов бактерий, и живут они повсюду. Они обитают во рту, носу, кишечнике всех живых существ, включая человека. Другие живут в опавших листьях, мертвых деревьях, останках погибших животных и скелетах. Бактерии живут в пресной и соленой воде, молоке и большинстве продуктов питания. Они имеются в пыли, почве, сточных водах.

Одним словом, бактерии - вездесущи.

К счастью, большинство бактерий или безвредны, или даже полезны для других форм жизни. Бактерии способствуют разложению погибших растений и животных. Бактерии играют важную роль в пищеварительном процессе человека и животных. Они связаны с пищей и поддерживают жизнь человека. Бактерии необходимы для брожения при производстве определенных продуктов питания, напитков и некоторой промышленной продукции.

Все формы на земле за исключением вирусов имеют клеточную организацию.

Бактерии - одноклеточные микроскопические организмы (0,3-2 мкм).

Все бактерии размножаются простым делением, т. е. клетка, достигнув определенного размера, распадается на две. Но после деления бактерии могут продолжать оставаться в общей связке, образуя цепочки палочек или кокков. Иногда палочки изгибаются в виде запятой (вибрионы) или закручиваются в спираль (спириллы). Но, встречаются и более экзотические виды бактерий, например, с квадратными очертаниями и даже с выростами, как у морских звезд.

Бактерии — удивительные мастера выживания.

Вот лишь некоторые открытия, сделанные в минувшем десятилетии:

* Во время международной экспедиции в Саргассовом море — этой пустыне, лежащей посреди Атлантического океана, — было обнаружено около 1800 неизвестных прежде микробов.

*Американские исследователи отыскали в одном из горячих источников на дне океана микробы, которые могут выдержать температуру до 1300С. До сих пор не был известен ни один организм, способный выдержать такую жару. Любопытно, что врачи стерилизуют операционные инструменты при более низкой температуре.

*Микробы готовы жить в щелочах. Так, американские ученые выявили колонию бактерий, угнездившуюся в среде с водородным показателем 12,8. С таким же успехом она могла бы процветать в едком натре.

* Американские исследователи обнаружили в пробах льда, взятых в Гренландии на глубине 3000 метров, — там, где лед частично смешался с вечной мерзлотой, — многочисленные колонии микробов: всего около 40 видов. Поражал их возраст — не менее 120 тысяч лет. Некоторые из них, попав в лабораторию, стали размножаться; только делали это раз в пять медленнее, чем обычные микробы. Возможно, они размножались даже в толще льда, но очень медленно.

Поскольку микробов огромное количество и обо всех не рассказать, мы расскажем о самых интересных.

Однако светиться есть смысл, когда колония бактерий достаточно велика. Одиночные огоньки микробов ей, каракатице, не нужны. Они хороши, когда сливаются в мощный луч прожектора. Но откуда бактерии знают, сколько их?

В толще океана, куда не доходит солнечный свет, обитают загадочные глубоководные рыбы. Многие из них приспособились жить в кромешной темноте и сами освещают себе дорогу особыми выростами тела. Так рыбы приманивают к себе добычу. Мало кто знает, что светятся не сами рыбы, а живущие в их выростах бактерии. Да, да, именно бактерии. Среди бактерий встречаются такие, которые обладают способностью светиться (люминесцировать). Свечение бактерий возникает в результате интенсивных процессов окисления, сопровождающихся выделением энергии. Свечение морской воды, чешуи рыб, тела мелких ракообразных, сгнившего дерена объясняется присутствием на них светящихся бактерий или фотобактерий.

Большая часть светящихся бактерий обитает в морской воде, так как они лучше размножаются при повышенной концентрации соли. Когда фотобактерии размножаются в огромном количестве, начинает светиться как - бы само море. Это уникальное явление можно наблюдать в тропиках.

Могут светиться пауки, муравьи, термиты, живущие в симбиозе с фотобактериями.

Светящиеся бактерии излучают зеленый или голубоватый свет, хорошо заметный в темноте. Ночью светятся и грибы, например осенние опенки.

В начале XX века пытались использовать светящиеся бактерии в практических целях, их предлагали применять для "безопасных ламп" в пороховых погребах.

В январе 2004 года был расшифрован геном микроба Bdellovibrio bacteriovorus. Этот микроорганизм — по своей природе хищник, но атакует не клетки высших организмов, а лишь бактерии.

Новые строители старых соборов

От микроорганизмов страдают не только люди, но и памятники искусства. Бактерии портят краски на витражах и подтесывают стены старинных зданий. Так, по оценкам немецких биологов, Кельнский собор (Германия) неустанно гложет армия из 10 квадриллионов микроорганизмов. Но защитить памятники искусства могут. тоже микробы. Известно, что более 80 видов микробов выделяют минералы, содержащие кальций. С их помощью можно восстанавливать стены старинных зданий, сложенные из известняка.

В Италии, в Пизе, реставраторы использовали в 2003 году бактерии Pseudomonas stutzeri для восстановления фрески итальянского художника ХIV века Спинелло Аретино. Традиционный способ закрепления осыпающейся краски — с помощью клея — оставляет следы, белые полоски, от которых нельзя полностью избавиться. Однако колония изголодавшихся микробов за 12 часов съела 80 процентов клея; несъедобный остаток удалось снять с помощью соленой воды и ферментов.

По мнению итальянского микробиолога Франчески Каппителли, бактерии будут играть важную роль в сохранении культурных ценностей. Одни могут удалять с произведений искусства налет сульфатов, другие — пятна нитратов и т. п. Для любой химической реакции можно найти подходящий вид бактерий.

Бактерии и болезни

Поскольку бактерии выживают практически в любых условиях, значит ли это, что человек подвержен постоянной угрозе с их стороны?

Бактерии не могут преодолеть барьер, создаваемый неповрежденной кожей; они проникают внутрь организма через раны и тонкие слизистые оболочки, выстилающие изнутри ротовую полость, пищеварительный тракт, дыхательные и мочеполовые пути и прочее. Поэтому от человека к человеку они передаются с зараженной пищей или питьевой водой (брюшной тиф, бруцеллез, холера, дизентерия), с вдыхаемыми капельками влаги, попавшими в воздух при чихании, кашле или просто при разговоре больного (дифтерия, легочная чума, туберкулез, стрептококковые инфекции, пневмония).

Бактерии способны вызывать огромное количество инфекционных заболеваний. Как можно обезопасить себя от вредных микробов? На этот вопрос мы попытаемся ответить в дальнейших исследованиях.

Увидеть бактерии можно только с помощью микроскопа.

На первый взгляд мир бактерий может показаться скучным и лишенным разнообразия. Но это совсем не так.

В результате исследования я узнал, что мир бактерий чрезвычайно интересен и разнообразен.

Бактерии поистине вездесущи. В воздухе и воде, в любом комочке почвы и в каждом организме обитают тысячи, а то и миллионы бактерий.

Бактерии — удивительные мастера выживания. Они способны размножаться при температуре +1300°С, в толще льда и в щелочной среде.

Бактерии, населяющие Землю, ведут гигантскую геохимическую деятельность, поддерживающую круговорот жизни. Вместе с грибами бактерии разрушают мертвую органическую материю и превращают ее в углекислый газ и воду, регулируют состав атмосферы, помогают сохранить плодородие почвы.

История развития микробиологии началась 3-4 век до н.э. благодаря Гиппократу.

История развития микробиологии

Микробиология является наукой о микроорганизмах, т.е. о живых существах, размеры которых меньше 0,1 мм. Микроорганизмы весьма разнообразны. К ним относятся некоторые многоклеточные организмы, простейшие, некоторые водоросли, грибы. А также бактерии и вирусы. Несмотря на небольшие размеры, микроорганизмы по весу составляют подавляющую часть биомассы Земли. Т.е. являются основой биосферы. Кроме того, микроорганизмы являются возбудителями множества заразных заболеваний человека и животных. Однако о существовании микроорганизмов человек узнал сравнительно недавно.

История развития микробиологии. Эвристический этап

Еще в 6 веке до н. э. Гипократ высказывал, что причиной заразных болезней являются невидимые живые существа. Первый микроскоп сконструировал в 1590г. В Голландии братья Янсены, он давал увеличение в 32 раза. Однако попытки использовать линзы, дающие большее увеличение, оказались неудачными, т.к. изображение становилось нерезким.

История развития микробиологии. Морфологический этап

В сентябре 1683г. Левенгук впервые приводит изображение бактерий шарообразной, палочковидной и извитой формы, обнаруженных им в зубном налете.

Однако медицина смогла воспользоваться открытием Левенгука лишь 150 лет спустя, когда Шенлейн доказал, что паршу человека вызывает микроскопический грибок.

Микробиология – наука, которой в те времена занимались в основном зоологи (после Левенгука), описывая все новые формы микроорганизмов. С 1820 по 1870 был осуществлен ряд усовершенствлований микроскопа, и в этот период резко возрос интерес к изучению микроорганизмов.

История развития микробиологии. Физиологический этап

Исходя из результатов последней работы, Пастер предположил, что бродильный фермент, изменяющий плоскость поляризации раствора, должен быть живым организмом. Эта мысль была по тем временам еретической, т.к. господствовала тория Либиха и Берцеллиуса, доказывающая, что брожение является чисто химическим процессом. В 1857 через 10 лет Пастер начинает изучать процессы брожения и обнаруживает, что спиртовое, молочнокислое, уксуснокислое брожение вызывается совершенно разными микроорганизмами. Одновременно Пастер открывает возбудителя маслянокислого брожения, который оказался способным размножаться в бескислородной среде, т.е. Пастер открывает явление анаэробиоза у микроорганизмов.

История развития микробиологии. Иммунологический этап

Предметом исследования Пастер выбрал бешенство – заболевание, передающееся при укусе больным животным и абсолютно смертельное для человека. Пастер доказал, что заразным является мозг больного животного, однако выделить возбудителя в чистом виде ему не удалось, т.к. это была не бактерия, а вирус, не растущий на питательных средах. Несмотря на это, Пастер осуществил последовательные заражения мозгом погибшей от бешенства собаки кроликов и далее, используя высушенный мозг кроликов, доказал, что его введение собакам предотвращает развитие у собак заболевание бешенством.

После многочисленных экспериментов Пастер решился, наконец, применить свою вакцину на человеке. 26 сентября 1885 года он ввел вакцину 9-летнему мальчику, искусанному бешеной собакой и обреченному на гибель. Мальчик был спасен, а Пастер получил всемирную славу. Во всех странах начали организовывать пастеровские станции для прививки против бешенства. Первой была парижская, следующей Одесская станция, созданная по инициативе И.И.Мечникова.

История развития микробиологии

Микробиология развивается стемительно и включает второго основателя микробиологии – это немецкий ученый Роберт Кох – санитарный врач из маленького прусского городка Вальштейн. Будучи знаком с работами Пастера, Кох занимался детальным бактериологическим исследованием сибирской язвы. Открытие первого болезнетворного микроба обычно приписывают Давэну, который в 1850 г. обнаружил сибиреязвенные бациллы в крови больной овцы, но это открытие не получило признания.

В г. Бомсте в 1880-х годах возникла эпидемия сибирской язвы. У заболевших овец Кох обнаружил палочки. Не имея лаборатории, Кох работал у себя работал в комнате, которую снимал и где проводил также прием больных, без специальной посуды, используя вместо термостата керосиновую лампу. Кроме микроскопа, молодой исследователь не имел даже самого простого оборудования; переливки крови от заболевших овец домашним мышам, добываемым им самим, он производил заостренной палочкой, прожигая ее в огне свечки.

Кох разработал методы окрашивания бактерий анилиновыми красителями – метилфиолетом и фуксином. Кроме того, он все время стремился найти более совершенные методы культивирования микроорганизмов, в частности, выделения чистых культур микробов. У павших мышей Р. Кох находил такие же палочки и тончайшие нити, завивающиеся в клубки, как и у заболевших овец. Возникла гипотеза о переносе сибирской язвы найденными им микроорганизмами. Для доказательства своей гипотезы он делал посевы на питательную среду, взятую из бычьего глаза. Многократные пересевы позволили ученому обнаружить не только палочки различной длины и тончайшие нити, но и споры, которые, как он доказал, долгое время сохраняются во влажной земле.

Р. Кох не только выделил сибиреязвенного возбудителя в чистой культуре, не только открыл его способность к образованию стойких спор, но и объяснил, почему вблизи “проклятых холмов” (такие холмы создавались в местах, где зарывали падший от сибирской язвы скот) отмечается смерть многочисленных животных, причина которой долгие годы оставалась непонятной. Р. Кох на заседании ученых, созванном известным ботаником и знатоком микроорганизмов Кооном, доложил результаты своих работ, посвященных сибирской язве.

Известность и авторитет Коха были настолько велики, что никто и не мог допустить мысль о том, что он мог ошибиться. В Берлин стали съезжаться тысячи больных туберкулезом. Однако оказалось, что туберкулин не только не излечивает, но в отдельных случаях даже обостряет процесс, приводя к смерти больного. Из этой истории вышел грандиозный скандал, однако имя Коха, как основателя медицинской микробиологии, стоит рядом с именем Пастера.

В нарождавшуюся эру бактериологии, в период между серединой 70-х и 80-х годов XIX века Р. Коху принадлежит ряд крупных исследований, позволивших его современникам назвать ученого “отцом бактериологии”. При изучении возбудителя сибирской язвы Р. Кох использовал домашних серых мышей, применил вареный картофель как плотную питательную среду для выращивания болезнетворных микроорганизмов; он первым ввел окраску бактерий, использовал в бактериологических исследованиях мясо-пептонный желатин и агар.

Еще будучи студентом Геттингенского университета, Кох встретился с профессором Ф. Генле и заинтересовался его работами, посвященными инфекционным процессам. В 1840 г. Генле в статьях обратил внимание на живую природу агента, вызывающего различные раневые инфекции, но прямых доказательств своей гипотезы Генле привести не смог.

Кох возобновил исследования Ф. Генле, посвященные раневым инфекциям. Он доказал, что возбудители острых специфически протекающих процессов в ранах могут быть перенесены от животного к животному и что инфекция ран может быть вызвана различными морфологически отличающимися друг от друга возбудителями.

Здесь ученый близко подошел к знаменитой триаде Генле — Коха, т. е. к трем положениям, лишь на основании которых то или иное инфекционное заболевание можно связать с определенным возбудителем:
1) микроб должен всегда обнаруживаться у больного при данной инфекции и отсутствовать при других;
2) возбудитель каждой инфекции должен быть выделен в чистой культуре в виде хорошо очерченного морфологически микроорганизма;
3) у зараженных чистой культурой животных проявления болезни должны быть аналогичны обнаруженным у исследуемого больного, они обусловливаются числом и распределением микробов.

Вся дальнейшая история развития такой науки, как микробиология, связана с именами учеников 2-х школ: Парижской школы Пастера и берлинской школы Коха.

За 25 лет история развития микробиологии насчитывает множество открытий, так, открыто большинство бактерий, вызывающих заболевания у человека, были разработаны методы искусственной иммунизации, а также меры профилактики многих болезней. Конец 19 – начало 20 веков ознаменовался самым грандиозным переворотом в медицине за всю историю человечества. Таким образом, понадобилось всего несколько десятилетий от первых работ Р.Коха до открытия всех основных возбудителей различных заболеваний.

Неясной оставалась большая группа болезней, при которых не удавалось выделить микроба-возбудителя (корь, свинка, грипп, полиомиелит, бешенство, ящур).

В 1892 русский ботаник Д.И.Ивановский обнаружил новое явление: сок растений табака, пораженных мозаичной болезнью, оставался инфекционным после пропускания через очень мелкие фильтры, задерживающие бактерии. Так был открыт новый класс возбудителей, гораздо более мелких, чем бактерии. Их назвали вирусами. В отличие от бактерий, вирусы не имеют клеточного строения и способны размножаться внутри живой клетки, поэтому не растут на питательных средах. В начале 20 века возникла новая наука – вирусология. Она достигла рассвета в 50-70 гг..

История развития микробиологии. Молекулярно-генетический этап

Развивался во второй половине 20 веке, в генетике, биотехнологии, генной инженерии, цитологии дало толчок к развитии микробиологии и иммунологии (молекул и генетических аспектов). Была расшифрована молекулярная структура бактерий и вирусов, строение и состав генома, структура факторов иммунной защиты. В результате достижения в микробиологии и иммунологии 20 века в обеспечили успехи в борьбе с инфекционными болезнями, открыли новые пути и методы диагностики и терапии неинфекционных болезней, связанных с нарушением иммунной системы.

История развития микробиологии. Предмет и задачи микробиологии

Микробиология – наука, изучающая мельчайшие, невидимые простым глазом организмы, называемые микробами. Главные источники, откуда микроорганизмы попадают в пищевые продукты, – почва, воздух и вода.

Микроорганизмы широко распространены в природе. Они находятся в воздухе, почве, пище, на окружающих нас предметах, на поверхности и внутри нашего организма. Такое широкое распространение микробов свидетельствует об их значительной роли в природе и жизни человека. Микроорганизмы обуславливают круговорот веществ в природе, осуществляют расщепление органических соединений и синтез белка.

С помощью микроорганизмов происходят важные производственные процессы : хлебопечение, производство ферментов, гормонов, антибиотиков и других веществ.

Наряду с полезными микроорганизмами существует группа патогенных микробов – возбудители различных заболеваний человека, животных, растений.

Микроорганизмы были открыты в конце 18 века, но микробиология как наука сформировалась только в начале 19 века, после гениальных открытий французского ученого Луи Пастера.

В связи с огромной ролью и задачами микробиологи не могут справится со всеми вопросами в пределах одной дисциплины и в следствие этого происходит ее дифференцировка в различные дисциплины.

Микробиология общая – изучает морфологию, физиологию, биохимию микроорганизмов, их роль в круговороте веществ и распространение в природе.

Микробиология техническая – изучает микробов участвующих в производстве антибиотиков, спиртов, витаминов, также разработка методов защиты материалов от воздействия микроорганизмов.

Микробиология сельскохозяйственная – изучает роль и значение микробов в формирование структуры почвы, ее плодородия, минерализация и питание растений.

Микробиология ветеринарная – изучает возбудители заболеваний у животных, разрабатывает методы специфической профилактики и терапии инфекционных заболеваний.

Микробиология медицинская – рассматривает свойства патогенных и условно – патогенных микробов, их роль в развитие инфекционного процесса и иммунного ответа, разрабатывает методы лабораторной диагностики и специфической профилактики и терапии инфекционных заболеваний.

Вирусология – изучает неклеточные микробы – вирусы, их природу, химический состав, взаимоотношение с клеткой хозяина, механизмы внутриклеточного паразитизма и т.д.

Микробиология медицинская, вирусология, иммунология. Задачи дисциплин.

  • дальнейшие изучение роли отдельных видов патогенных агентов в этиологии и патогенезе различных заболеваний людей
  • дальнейшие изучение возникновения опухолей
  • дальнейшие изучение механизмов формирования наследственного и приобретенного иммунитета
  • разработка методов лечения и профилактики инфекционных заболеваний при помощи иммунологических и химиотерапевтических средств
  • разработка методов специфической диагностики, в том числе экспресс-методов.

Микробиология. Основные методы исследования.

  1. Микроскопические (бактериоскопический, вирусоскопические).
  2. Биологические (бактериологические, микологические, вирусологические ) .
  3. Химический
  4. Иммунологические (серодиагностика, кожно – аллергические пробы ).

Микроскопический метод – основан на применение микроскопа различной модификации . Преимущество перед другими методами быстрота (30-60 мин.).

Микрометод – основан на выделение чистой культуры возбудителя и ее последующей идентификации на основании морфологических, культурных, биохимических, антигенных (серологических) и других признаков.

Микробиологические исследования осуществляются реже, чем бактериологические, поскольку микроскопическая диагностика микозов достаточно надежна.

Вирусологический метод – является наиболее достоверным в диагностике вирусных инфекций. Однако он трудоемок, что связано с приготовлением клеточных культур.

Все микробиологические исследования наиболее информативны и достоверны, особенно если они подтверждены дополнительными серологическими данными (выявление антител к выявленному возбудителю или возбудителям).

Биопробы.
Основаны на неодинаковой чувствительности разных лабораторных животных к определенным микроорганизмам. Данный метод заключается в выражении животных определенного вида, возраста и массы тела чистым культурам микробов или исследуемым материалам.

Иммунологические методы.
Включают серодиагностику, кожно-аллергические пробы, методы оценки клеточного (Т-системы) и гуморального (В-системы) иммунитета.

Серодиагностика основана на обнаружении специфических антител в сыворотке крови больного человека и определении накопления их в процессе заболевания.

В последнем случае сроки исследования значительно удлиняются и ответ может быть получен из серологической лаборатории в период реконвалесценции, что придает данному методу ретроспективный характер.

Кожно-аллергические пробы применяются для выявления гиперчувствительности к различного рода антигенам (аллергенам) при диагностике ряда инфекционных заболеваний (туберкулез, бруцеллез, туляремия и др.), а также атопий и других неинфекционных аллергических состояний.

Методы оценки иммунологического состояния организма человека включают ряд тестов, по которым судят о количестве и функциональной активности Т- и В – лимфоцитов.

Предмет и методы микробиологии. Микробиология — наука, изучающая строение, систематику, физиологию, биохимию, генетику и экологию организмов, имеющих малые размеры и невидимых невооруженным глазом. Эти организмы получили название микро­организмов или микробов (от греч. micros — малый).

Краткий исторический очерк развития микробиологии.

3. Ценный вклад в развитие медицинской микробиологии внес Р. Кох (1843—1910). Он разработал методы посева и выделе­ния микроорганизмов в чистую культуру, ввел в практику окрас­ку микробов анилиновыми красителями, иммерсионную систему микроскопирования и микрофотографию. Р. Кох изучил возбудителя сибирской язвы (1876), открыл возбудителей туберкулеза (1882) и холеры (1883).

4. Развитие микробиологии неразрывно связано с именами русских ученых. Одним из основоположников микробиологии в России был Л. С. Ценковский (1822—1887). установлена близость бактерий к сине-зеленым водорослям, бактерии отнесены к растительным организмам.

5. Удивительно многогранна была научная деятельность И. И. Меч­никова (1845—1916). С его именем связано развитие нового направления в микробиологии — иммунологии (невосприимчивость организма к инфекциям). Классические работы И. И. Мечникова по внутриклеточному пищеварению позволили ему создать фагоцитар­ную теорию иммунитета.

6. Ближайшим соратником И. И. Мечникова был Н. Ф. Гамалея (1859—1949). Ему принадлежат оригинальные теории инфекции и иммунитета, крупные исследования по изучению туберкулеза, холеры и бешенства. В 1898 г. Н. Ф. Гамалея впервые описал явление бактериофагии — растворение бактерий под влиянием особого агента.

Трудами отечественных ученых заложен прочный фундамент эколого-физиологического направления в микробиологии. Развитие экологии почвенных микроорганизмов неразрывно связано с име­нами С. Н. Виноградского (1856—1953) и В. Л. Омелянского (1867—1928). Применив оригинальный метод элективных пита­тельных сред, С. Н. Виноградский на примере ряда групп почвенных микроорганизмов (нитрифицирующих, серных и железобакте­рий) открыл новый хемолитоавтотрофныи тип питания микробов.

В. Л. Омелянский был не только выдающимся ученым, но и прекрасным педагогом. Его исследования связаны с изучением роли микроорганизмов в круговороте веществ в природе.

Экологическое направление в области водной микробиологии успешно развивал Б. Л. Исаченко (1871 —1948). Он впервые указал на роль микроорганизмов в круговороте веществ в водоемах.

Отцом вирусологии по праву считается Д. И. Ивановский (1864—1920), впервые в 1892 г. применивший метод фильтрации для выделения инфекционного агента — вируса табачной мозаики..

В 40—50-е годы XX столетия сделаны выдающиеся открытия в области генетики микроорганизмов. В 1944 г. О. Эйвери, К. Мак Леод, М Мак-Карти доказали, что веществом, ответственным за передачу наследственных свойств у бактерий, является ДНК.

В 1953 г. Дж. Уотсон и Ф. Крик расшифровали строение молекулы ДНК, раскрыли генетический код и механизмы репликации ДНК и регуляции синтеза белка, единые для всех живых организмов.

bakterii

Впервые бактерии были обнаружены в XVII в. благодаря изобретению увеличительных приборов.

Антони ван Левенгук

Голландский ученый Антони ван Левенгук (1632-1723) (Рис.1) впервые открыл мельчайшие живые существа, рассматривая под микроскопом разнообразные микропрепараты: стоячая вода, капли морской воды, перцовый настой и др. Первоначальные сведения о формах, объемах и движении бактерий Левенгук отправил в Лондонское королевское общество в 1683 году.

Antoni-van-Levenguk

Рис.1 Антони ван Левенгук

Луи Пастер

Благодаря открытию французского ученого Луи Пастера в 1870-1880 гг. (Рис.2), стало известно, что микроорганизмы вызывают порчу пищевых продуктов и вызывают заболевания человека. Кроме того Пастер доказал, что в процессе брожения вина, пива и прочих пищевых продуктов происходит выделение ядовитых веществ.

Lui-Paster

Рис.2 Луи Пастер

Открытия Луи Пастера внесли огромный вклад в развитие микробиологии. Для уничтожения микроорганизмов ученым была предложена технология однократного нагревания продуктов до 70°С, в частности всех молочных. Это технология получила название — пастеризация.

Клеточное строение и жизнедеятельность бактерий.

Клеточное строение бактерии представлено клеточной мембраной, прочной клеточной стенкой и цитоплазмой (Рис.3).

Stroyeniye bakterialnoy kletki

Рис.3 Строение бактериальной клетки (Kirill Borisenko, CC BY-SA 4.0)

Определенную форму, а также функции защиты и опоры для бактериальной клетки придает клеточная стенка.

В зависимости от строения клеточной стенки выделяют две группы бактерий:

  1. Грамположительные — имеют внутреннюю мембрану и более толстый слой пептидогликана (окрашиваются в синий или фиолетовый цвет по методу Г.Грама).
  2. Грамотрицательные — имеют три слоя: внутренняя мембрана, тонкий слой пептидогликана и наружная мембрана (окрашиваются в розовый или красный цвет) (Рис.4).

Строение клеточной стенки грамположительных и грамотрицательных бактерий

Рис.4 Строение клеточной стенки грамположительных и грамотрицательных бактерий

Клеточная стенка многих бактерий покрыта капсулой — особый слой, защищающий от высыхания (за счет нее некоторые цианобактерии могут жить в пустыне).

Цитоплазма включает в себя белки, жиры и кольцевую молекулу ДНК — нуклеоид (основное наследственное вещество бактерии). Оформленного ядра нет.

Передвижение бактериальной клетки обеспечивает один или несколько жгутиков.

Формы и цвет бактерий:

По форме бактерии подразделяют на три группы: шаровидные, палочковидные и извитые. Наиболее простыми считаются шаровидные, их называют кокками. (Рис.5)

Formy bakterialnykh kletok

Рис.5 Формы бактериальных клеток (Kirill Borisenko, CC BY-SA 4.0)

Кокки могут группироваться попарно — диплококки; по 4 — тетракокки; по 8 и более — сарцины. Формы в виде виноградной грозди называют — стафилококки, в виде цепочки — стрептококки.

По цвету бактерии в основном бесцветны, однако есть и с пигментами (зеленые и пурпурные, способные к фотосинтезу).

Распространение и среда обитания бактерий

Наиболее благоприятная для бактерий влажная среда с температурой +10-40°С. Некоторые представители бактерий способны выдерживать высокие температуры горячих источников (около +100°С) и низких температур ледников. В экспериментах споры бактерий выдерживали холод в -200°С.

Бактерии распространены повсеместно. Больше всего их можно встретить в плодородном слое почты (чернозем). Меньше всего их в воздухе на высоте более 5 км. Очень много бактерий находится на покровах живых и мертвых организмов. Хемосинтезирующие бактерии обнаружены в почве на глубине 5 и более метров, а также на глубине до 1000 метров дна океанов.

Образование спор у бактерий

При недостатке питания, влаги, резком понижении или повышении температуры, бактерии способны образовывать споры. Это временная защитная форма бактерий, когда клетка не двигается и не питается, находясь в состоянии покоя долгое время (Рис.6).

obrazovaniye-spory-u-bakterii

Рис.6 Образование спор у бактерий.

Цианобактерии

Именно цианобактерии стали одними из первых представителей живых организмов на Земле. Некоторые ископаемые останки цианобактерий имеют возраст превышающий 3 мдрд лет (Рис.7).

Tsianobakterii

Рис.7 Цианобактерии (синезеленые водоросли)

Второе название цианобактерий — синезеленые водоросли. У них отсутствует ядро, что объединяет их с бактериями, а возможность фотосинтезировать относит к водорослям. Именно благодаря фотосинтезу, они первыми обогатили атмосферу нашей планеты кислородом, что сделало ее пригодной для существования живых организмов.

Цианобактерии представлены как одноклеточными, так и многоклеточными формами.

Носток — съедобная синезеленая водоросль, употребляемая в пищу в разных странах (Китай, Монголия, Южная Америка) (Рис.8).

Nostoc

Рис.8 Носток (Lamiot, CC BY 3.0)

Питание бактерий

По способу питания (получения энергии) бактерии подразделяются на две основные группы:

Отношение бактерий к кислороду

По отношению к кислороду все бактерии, как и другие организмы, делятся на две большие группы:

1. Анаэробы — бактерии способные обходиться без кислорода полностью или частично.

Бактерии, которые могут жить как в присутствии кислорода, так и без него — называют факультативными (от фр. факультатиф — необязательный, возможный) анаэробами. К ним относят бактерии гниения или уксуснокислые бактерии.

Микроаэрофильные бактерии лучше растут в атмосфере с низким содержанием кислорода.

Бактерии, для которых кислород губителен, называют облигатными (от лат. облигатус — обязательный, непременный) анаэробами. К ним относят винные бактерии или бактерии ботулизма.

2. Аэробы — дышащие кислородом бактерии (синегнойные, лактобактерии и др.). Дыхание многих бактерий похоже на дыхание растений и животных. Они поглощают кислород воздуха и выделяют углекислый газ и энергию.

Отношение бактерий к азоту

Определенная часть бактерий способна обходиться без органического азота, входящего в состав белковой пищи, так как они самостоятельно могут его усваивать из атмосферы.

Благодаря такой группе азотфиксирующих бактерий, азот входящий в состав воздуха, усваивается растениями, далее через пищевую цепь он поступает в другие живые организмы, встраиваясь в органические соединения (белки и нуклеиновые кислоты). Подобные бактерии образуют симбиоз с корнями бобовых растений (клубеньковые бактерии).

Размножение бактерий

размножение бактерий поперечной перетяжкой

Рис.9 Размножение бактерий поперечным делением клеток (перетяжкой)


Темп деления бывает очень высоким. Процесс деления может следовать один за другим через 20-30 мин. При наступлении неблагоприятных условий, бактерии прекращают деление, теряя свою жизнеспособность, что приводит к их гибели или образовании споры.

Бактериальные заболевания

Болезнетворные (патогенные) бактерии — это паразитические представители, способные вызвать заболевания людей, животных и растений. Они являются причиной таких инфекционных заболевании, как чума, столбняк, туберкулез, тиф, холера, сибирская язва, скарлатина и др. (таблица 1).

Таблица 1. Бактериальные заболевания, пути заражения и меры профилактики

После того как болезнетворные бактерии проникнут в организм человека, они начинают очень быстро размножаются. Бактерии выделяют ядовитые вещества (токсины), вызывающие отравление организма. Токсины разносятся кровью по всему телу вызывая серьезные последствия.

Организм человека наделен защитными функциями, которые позволяют многим людям долгие годы не прибегать к помощи врачей. Так, проникновению микробов в организм препятствует наша кожа. В носу микробов улавливают реснички и слизь. В ушах их задерживает ушная сера.

Слезная жидкость содержит небольшое количество солей и белки, которые помогают уничтожать болезнетворные организмы, оказавшиеся на поверхности глаза. Миндалины и аденоиды убивают микробов в горле, а соляная кислота в составе желудочного сока — в желудке.

Внутри организма с ними борются иммунные клетки крови.
Болезнетворные бактерии распространены в воде, воздухе, почве. Чем чище воздух в помещениях, тем меньше люди болеют. Необходимо ежедневно проветривать и дом, и классные комнаты.

Туберкулезные палочки вместе с пылью распространяются по воздуху. Они сохраняют жизнеспособность до 3 месяцев. Бактерии брюшного тифа сохраняются в почве тоже до 3 месяцев. Массовое поражение людей инфекционными заболеваниями называется эпидемией.

Туберкулез считается опасным инфекционным заболеванием. Передается он воздушно-капельным путем, поражая ткани легких (Рис 10).

Flyurografiya

Рис.10 Флюрография грудной клетки человека

При заболевании скота туберкулезом возбудители болезни могут передаваться человеку через молоко.

В 1882 г. немецкий микробиолог Р. Кох открыл возбудителя туберкулеза (палочка Коха), за что в 1905 был награжден Нобелевской премией.


Возбудителями тифа и сальмонеллеза человек заражается через продукты питания и воду.

Возбудителями дизентерии являются дизентерийные бактерии (а также одноклеточные животные — дизентерийные амебы). При употреблении сырого молока от больных коров человек может заразиться бруцеллезом.

Иногда при консервировании овощей, даже после их стерилизации при высоких температурах, могут сохраниться бактерии. В процессе развития они выделяют ядовитые вещества. Употребление таких продуктов вызывает у людей тяжелое отравление ботулизм.

Только благодаря интенсивному развитию медицины и микробиологии были найдены методы борьбы с микробами. Получены необходимые лекарства. Они убивают бактерий и очищают человеческий организм от болезнетворных микроорганизмов.

Так, при употреблении антибиотиков (пенициллин, ампициллин, бисептол) погибают многие бактерии. При простуде в человеческом организме также увеличивается количество болезнетворных бактерий. С помощью антибиотиков можно ускорить выздоровление.

В сладкой, а также соленой среде бактерии не развиваются. Поэтому, заготавливая впрок мясо, рыбу и овощи, их солят, из ягод и фруктов делают варенье и др.

Растения также поражаются многими видами бактерий. Такие заболевания растений называют бактериозами. Они поражают корни, стебли, листья и плоды овощных, бахчевых, фруктово-ягодных и технических культур, нанося тем самым огромный вред.

Основными мерами борьбы с бактериозами являются обработка семян ядохимикатами перед посевом, отбор устойчивых к болезням сортов.

Ученые установили, что вещества, выделяемые листьями грецкого ореха, лоха, черемухи, тополя, сосны, уничтожают бактерий. Поэтому наряду с использованием этих деревьев в озеленении населенных пунктов их нужно садить и вблизи скотных дворов.

Значение бактерий в природе и жизни человека

Бактерии играют большую роль в круговороте веществ в природе. Бактерии гниения (сапрофиты) наряду с некоторыми растениями, животными и грибами санитары нашей планеты.

Они участвуют в разложении растительных остатков, мертвых тел и выделений животных, в образовании и почве перегноя.

Почвенные бактерии способствуют питанию растений. Они превращают перегной в минеральные вещества, которыми затем питаются растения. Бактерии не только обогащают почву минеральными веществами, но и улучшают ее структуру.

Чем плодороднее почва, тем больше в ней бактерий. В 1 г чернозема содержится 5-6 млрд бактерий. Почвенные бактерии оказывают влияние на рост и развитие растений. Многие бактерии развиваются на корнях растений и вблизи от них, воздействуя на жизнедеятельность растений.

Некоторые виды бактерий поглощают из воздуха азот и обогащают почву его соединениями. К ним относятся клубеньковые бактерии. Они живут в симбиозе с люцерной, горохом, донником, соей и другими бобовыми растениями. Другой вид бактерий выделяет азот в воздух.

Азот — основной компонент воздуха (78%). Он входит в состав всех живых организмов. На его основе строятся белки. Азот постоянно циркулирует между атмосферой и живыми организмами. Попав в почву, он преобразуется в нитраты, которые затем поглощаются растениями. Животные поедают растения и используют эти белки.

Вместе с отходами животных, а также в процессе разложения растений и животных после их смерти соединения азота возвращаются в почву. Внося удобрения, земледельцы повышают уровень содержания нитратов в почве, необходимый для роста растений.

Цианобактерии обогащают воздух молекулами кислорода, осуществляя фотосинтез. Образование в недрах земли селитры (азотное удобрение), железной руды, торфа и угля, я в море — сероводородов также связано с жизнедеятельностью бактерий. Тем самым бактерии, принимают участие в круговороте веществ, способствуют непрерывности жизни на Земле.

Велика роль бактерий и в народном хозяйстве. Их издавна использовали в хлебопечении, кожевенном производстве и т. д. Молочнокислые бактерии используются в сыродельном производстве, в молочной промышленности, при квашении овощей и фруктов, силосовании кормов.

Бактерии сбраживают углеводы. При этом образуется молочная кислота (например, при скисании молока, квашении капусты и др.), которая предотвращает порчу капусты и силоса. Одни бактерии обязательно необходимы для производства вина (винные), другие вызывают его порчу (уксусные).

Некоторые виды болезнетворных бактерий, наряду с вирусами и грибами, выращиваются на специальных питательных средах и применяются в качестве бактериологического оружия, что является преступлением против человечества.

Во многих странах в специальных водохранилищах выращивается цианобактерия спирулина для производства пищевого белка.

Читайте также: