Какими скоростями характеризуют движение молекул газа в физике кратко

Обновлено: 18.05.2024

Основное уравнение кинетической теории газов устанавливает связь между средней кинетической энергией поступательного движения молекул и абсолютной температурой:

Тем самым определяется и средняя квадратичная скорость молекул

которая для данного газа (при данном значении массы молекулы зависит только от температуры. Если числитель и знаменатель дроби в подкоренном выражении правой части равенства (6.1) умножить на число Авогадро, то

так как Поскольку по уравнению состояния где V — объем, занимаемый молем газа, равенство (6.2) можно представить в виде:

где плотность газа, равная, очевидно, т. е. массе моля, деленной на его объем.

Формула (6.3) показывает, что средняя квадратичная скорость молекул может быть вычислена из данных измерений чисто макроскопических величин — давления газа и его плотности. Так, например, плотность азота при атмосферном давлении и температуре 0°С

равна Средняя квадратичная скорость молекул азота в этом случае равна

Плотность водорода при тех же условиях примерно в 15 раз меньше, чем у азота. Поэтому средняя квадратичная скорость молекул водорода почти в 4 раза больше и равна примерно 2000 м/с.

Интересно отметить, что скорости молекул газа близки к скорости звука в том же газе. Это объясняется тем, что звуковые волны в газе переносятся движущимися молекулами. Неудивительно поэтому, что скорость звука с в газе приближенно определяется формулой:

Большой интерес представляет экспериментальное определение скорости газовых молекул, так как это дает возможность определить опытным путем значение постоянной Больцмана важность которой в кинетической теории очевидна. Первое непосредственное опытное определение скорости газовых молекул было проведено Штерном (1920 г.).

Опыт Штерна. Схема опыта (в плане) представлена на рис. 6. Источником частиц (в данном случае атомов), скорость которых исследуется, в опыте служила платиновая проволока покрытая слоем серебра.

Она окружена двумя цилиндрическими диафрагмами, в которых прорезаны узкие щели так, что проволока и щели лежат в одной вертикальной плоскости. Это устройство помещено внутрь цилиндра на внутренней поверхности которого против щели имеется мишень — съемная латунная пластинка. Вся эта система помещена под колокол насоса, создающего высокий вакуум тора), и может вращаться с большой скоростью около оси, вдоль которой натянута проволока

Пропусканием электрического тока через проволоку Штерн нагревал ее до температуры, при которой серебро заметно испарялось (1235 К). При этом атомы серебра, скорости которых

соответствуют температуре проволоки, вылетают по всем направлениям. Часть атомов проходит через щели которые вырезают из потока атомов узкий, резко очерченный пучок, состоящий из движущихся в одном направлении и не сталкивающихся между собой частиц (такие направленные потоки молекул носят общее название молекулярных пучков).

Когда вся система неподвижна, атомы серебра, образующие пучок, конденсируются на мишени в месте, обозначенном на рис. 6 буквой А, образуя на мишени полоску, являющуюся как бы изображением щели Но если привести прибор во вращение, атомы пучка попадут уже не в а окажутся смещенными относительно А на некоторое расстояние (на рисунке Ведь расстояние от щели до мишени атомы, движущиеся со скоростью проходят за время Но за это время каждая точка вращающегося цилиндра сместится на расстояние равное где число оборотов цилиндра в секунду и радиус этого цилиндра:

Подставив сюда вместо его значение получаем:

При вращении црибора в обратном направлении полоска сместится на такое же расстояние по другую сторону от А. Таким образом на мишени получаются две полоски, разделенные расстоянием 26. Это повышает точность измерения

Измерив расстояние между полосками и зная вычисляют по формуле (6.4) скорость атомов при температуре проволоки.

Измеренные таким образом значения скорости атомов оказались близкими к значениям, вычисленным по формуле (6.1).

Метод молекулярных пучков, разработанный Штерном, до сих пор широко используется для исследования различных свойств частиц.

Важно отметить, что смещенные полоски на мишени в опытах Штерна получались довольно широкими, размытыми и вовсе не были изображением щели, в отличие от резкой, узкой несмещенной полоски. Этого следовало ожидать, имея в виду, что атомы серебра вылетают из источника с различными скоростями. Ясно, что более быстрые атомы попадают на мишень с меньшим смещением относительно места попадания атомов при неподвижном приборе, чем атомы более медленные. Расстояние 26 между полосками — это расстояние между теми их частями, где наблюдалась наибольшая плотность серебра и куда, следовательно, попадало наибольшее число молекул.

Можно показать, что с максимальной плотностью на мишень попадут молекулы, скорость которых примерно в 1,3 раза больше средней квадратичной скорости. Поэтому скорость вычисленная из формулы (6.4), в которой есть половина расстояния между наиболее плотными частями осадков серебра, равна

Получив значение средней квадратичной скорости из описанных опытов Штерна, можно, пользуясь (6.1), определить значение постоянной Больцмана. Опыты Штерна позволяют не только измерить среднюю квадратичную скорость, но и по размытию осадка грубо определить распределение молекул по скоростям,


Говорят, что нет предела совершенству — но газ бывает идеальным. Сегодня мы узнаем, что эта физическая модель из себя представляет и как ее использовать.

О чем эта статья:

Газ: агрегатное состояние

У веществ есть три агрегатных состояния — твердое, жидкое и газообразное.

Их характеристики — в таблице:

Агрегатные состояния

Свойства

Расположение молекул

Расстояние между молекулами

Движение молекулы

Твердое

сохраняет форму и объем

в кристаллической решетке

соотносится с размером молекул

колеблется около положения равновесия в кристаллической решетке

Жидкое

сохраняет объем и текучесть

близко друг к другу

молекулы малоподвижны, при нагревании скорость движения увеличивается

Газообразное

занимает весь предоставленный объем

больше размеров молекул

хаотичное и непрерывное

В жизни мы встречаем вещества в газообразном состоянии, когда чувствуем запахи. Запах очень легко распространяется, потому что газ не имеет ни формы, ни объема (занимает весь предоставленный объем) и состоит из хаотично движущихся молекул, расстояние между которыми больше, чем размеры молекул.

Агрегатных состояний точно три?

На самом деле есть еще четвертое — плазма. Звучит как что-то из научной фантастики, но это просто ионизированный газ — газ, в котором, помимо нейтральных частиц, есть еще и заряженные. Ионизаторы воздуха как раз строятся на принципе перехода из газообразного вещества в плазму.

Модель идеального газа

В физике есть такое понятие, как модель. Модель — это что-то идеализированное, она нужна в случаях, когда можно пренебречь некоторыми параметрами объекта или процесса.

Идеальный газ — это модель реального газа. Молекулы идеального газа представляют собой материальные точки, которые не взаимодействуют друг с другом на расстоянии, но взаимодействуют при столкновениях друг с другом или со стенками сосуда. При работе с идеальным газом можно пренебречь потенциальной энергией молекул (но не кинетической).

Модель идеального газа не может описать ситуацию, когда газ сжимают так сильно, что он конденсируется — переходит в жидкое состояние.

В повседневной жизни идеальный газ, конечно, не встречается. Но реальный газ может вести себя почти как идеальный. Такое случается, если среднее расстояние между молекулами во много раз больше их размеров, то есть если газ очень разреженный.

Свойства идеального газа

Расстояние между молекулами значительно больше размеров молекул.

Молекулы газа очень малы и представляют собой упругие шары.

Силы притяжения между молекулами пренебрежимо малы.

Молекулы взаимодействуют только при соударениях.

Молекулы движутся хаотично.

Молекулы движутся по законам Ньютона.

Среднеквадратичная скорость

Потенциальной энергией молекул газа пренебречь можно, а вот кинетической — никак нельзя. Потому что кинетическая энергия — это энергия движения, а мы не можем пренебрегать скоростью движения молекул.

На графике показано распределение Максвелла — то, как молекулы распределяются по скоростям. Судя по графику, большинство молекул движутся со средним значением скорости. Хотя есть и быстрые, и медленные молекулы, просто их значительно меньше.


Распределение Максвелла

Но наш газ идеальный, а в идеальном газе случаются чудеса. Одно из таких чудес — то, что все молекулы идеального газа двигаются с одинаковой скоростью. Эта скорость называется средней квадратичной.

Средняя квадратичная скорость




vср. кв. — средняя квадратичная скорость [м/с]

v1, v2, vn — скорости разных молекул [м/с]

N — количество молекул [—]

Попробуйте курсы подготовки к ЕГЭ по физике с опытным преподавателем в онлайн-школе Skysmart!

Давление идеального газа

Молекулы газа беспорядочно движутся. Во время движения они сталкиваются друг с другом, а также со стенками сосуда, в котором этот газ находится. Поскольку молекул много, ударов тоже много.

Например, в комнате, в которой вы сейчас находитесь, за одну секунду на каждый квадратный сантиметр молекулы воздуха наносят столько ударов, что их количество выражается двадцатитрехзначным числом.


Соударения молекул газа

Хотя сила удара отдельной молекулы мала, действие всех молекул на стенки сосуда приводит к значительному давлению. Представьте, что комар пытается толкать машину — она не сдвинется с места. Но если за работу возьмется пара сотен миллионов комаров, то машину получится сдвинуть.

Эксперимент

Чтобы смоделировать давление газа, возьмите песок и лист бумаги, зажатый между двумя книгами. Песчинки будут выступать в роли молекул газа, а лист — в роли сосуда, в котором этот газ находится. Когда вы начинаете сыпать песок на лист бумаги, бумага отклоняется под воздействием множества песчинок. Так же и молекулы газа оказывают давление на стенки сосуда, в котором находятся.


Давление газа — эксперимент

Зависимость давления от других величин

Зависимость давления от объема

В механике есть формула давления, которая показывает, что давление прямо пропорционально силе и обратно пропорционально площади, на которую эта сила оказывается.

Давление

p = F/S

F — сила [Н]

S — площадь [м 2 ]

То есть если наши двести миллионов комаров будут толкать легковую машину, они распределятся по меньшей площади, чем если бы толкали грузовой автомобиль, — просто потому, что легковушка меньше грузовика. Из формулы давления следует, что давление на легковой автомобиль будет больше из-за его меньшей площади.

Рассмотрим аналогичный пример с двумя сосудами разной площади.


Зависимость давления от объема

Давление в левом сосуде будет больше, чем во втором, потому что его площадь меньше. А раз меньше площадь сосуда, то меньше и его объем. Значит, давление зависит от объема следующим образом: чем больше объем, тем меньше давление, и наоборот.

При этом зависимость будет не линейная, а примет вот такой вид (при условии, что температура постоянна):


Закон Бойля-Мариотта

Зависимость давления от объема называется законом Бойля-Мариотта. Она экспериментально проверяется с помощью такой установки:


Доказательство закона Бойля-Мариотта

Объем шприца увеличивают с помощью насоса, а манометр измеряет давление. Эксперимент показывает, что при увеличении объема давление действительно уменьшается.

Зависимость давления от температуры

Рассмотрим зависимость давления газа от температуры при условии неизменного объема определенной массы газа. Исследования в этой области впервые провел французский изобретатель Жак Шарль в XVIII веке.

В ходе эксперимента газ нагревали в большой колбе, соединенной с ртутным манометром в виде узкой изогнутой трубки. Незначительным увеличением объема колбы при нагревании можно пренебречь, как и столь же незначительным изменением объема при смещении ртути в узкой манометрической трубке. Таким образом, объем газа можно считать неизменным.

Подогревая воду в сосуде, окружающем колбу, ученый измерял температуру газа термометром, а давление — манометром.


Зависимость давления от температуры

Эксперимент показал, что давление газа увеличивается с увеличением температуры. Это связано с тем, что при нагревании молекулы газа движутся быстрее, из-за чего чаще ударяются о стенки сосуда.

С температурой все проще. Зависимость давления от температуры при постоянных объеме и массе будет линейной:


Закон Шарля

Эта зависимость называется законом Шарля в честь ученого, открывшего ее.

Основное уравнение МКТ

Основная задача молекулярно-кинетической теории газа заключается в том, чтобы установить соотношение между давлением газа и его микроскопическими параметрами: массой молекул, их средней скоростью и концентрацией. Это соотношение называется основным уравнением молекулярно-кинетической теории газа или кратко — основным уравнением МКТ.

В основе молекулярно-кинетической теории лежат три положения.

Все вещества образованы из мельчайших частиц — молекул, которые состоят из атомов.

Молекулы химического вещества могут быть простыми и сложными, то есть состоять из одного или нескольких атомов. Молекулы и атомы представляют собой электрически нейтральные частицы. При определенных условиях молекулы и атомы могут приобретать дополнительный электрический заряд и превращаться в положительные или отрицательные ионы.

Атомы и молекулы находятся в непрерывном хаотическом движении.

Частицы взаимодействуют друг с другом силами, которые имеют электрическую природу. Гравитационное взаимодействие между частицами пренебрежимо мало.

Мы уже выяснили, что причина давления газа на стенки — это удары молекул. Давление напрямую зависит от количества молекул — чем их больше, тем больше ударов о стенки и тем больше давление. А количество молекул в единице объема — это концентрация. Значит, давление газа зависит от концентрации.

Также давление пропорционально квадрату скорости, так как чем больше скорость молекулы, тем чаще она бьется о стенку сосуда. Расчеты показывают, что основное уравнение молекулярно-кинетической теории для идеального газа имеет следующий вид.

Основное уравнение МКТ

p = nkT




p — давление газа [Па]

n — концентрация [м −3 ]

T — температура газа [К]

m 0 — масса одной молекулы [кг]

v — средняя квадратичная скорость [м/с]

Коэффициент 1/3 обусловлен трехмерностью пространства: во время хаотического движения молекул все три направления равноправны.

Важный нюанс: средняя квадратичная скорость сама по себе не в квадрате! Ее формула указана выше, а в основном уравнении МКТ (да и не только в нем) она возведена в квадрат. Это значит, что формулу средней квадратичной скорости нужно подставлять не вместо v 2 , а вместо v — и потом уже возводить эту формулу в квадрат. Это часто провоцирует путаницу.

Мы знаем, что кинетическая энергия вычисляется по следующей формуле:

Кинетическая энергия

Ек = mv 2 /2

Ек — кинетическая энергия [Дж]

m — масса тела [кг]

v — скорость [м/с]

Для молекулы газа формула примет вид:

Средняя кинетическая энергия поступательного движения молекулы

Ек — средняя кинетическая энергия поступательного движения молекулы [Дж]

m0 — масса молекулы [кг]

v — скорость молекулы [м/с]

Из этой формулы можно выразить m0v 2 и подставить в основное уравнение МКТ. Подставим и получим, что давление идеального газа пропорционально произведению концентрации молекул на среднюю кинетическую энергию поступательного движения молекулы.

Основное уравнение МКТ




p — давление газа [Па]

n — концентрация [м −3 ]

E — средняя кинетическая энергия поступательного движения молекулы [Дж]

Хранение и транспортировка газов

Если нужно перевезти значительное количество газа из одного места в другое или если газ необходимо длительно хранить, его помещают в специальные прочные металлические сосуды. Из-за того, что при уменьшении объема увеличивается давление, газ можно закачать в небольшой баллон, но он должен быть очень прочным.

Сосуды, предназначенные для транспортировки газов, выдерживают высокие давления. Поэтому с помощью специальных насосов (компрессоров) туда можно закачать значительные массы газа, которые в обычных условиях занимали бы в сотни раз больший объем.

Поскольку давление газов в баллонах даже при комнатной температуре очень велико, их ни в коем случае нельзя нагревать. Например, держать под прямыми лучами солнца или пытаться сделать в них отверстие — даже после использования.

Вопрос по физике:

Какими скоростями характеризуют движение молекул газа

Трудности с пониманием предмета? Готовишься к экзаменам, ОГЭ или ЕГЭ?

Воспользуйся формой подбора репетитора и занимайся онлайн. Пробный урок - бесплатно!

  • 01.01.2018 22:42
  • Физика
  • remove_red_eye 12737
  • thumb_up 9
Ответы и объяснения 1

Средняя квадратичная.
Для характеристики состояния газа надо говорить о некоторой средней скорости. Можно считать, что это есть среднее значение скорости одной из молекул за достаточно длительный промежуток времени или что это есть среднее значение скоростей всех молекул газа в данном объеме в какой-нибудь момент времени. Средняя скорость молекулы (средняя арифметическая скорость). Для определения среднего давления нужно знать среднее значение квадрата скорости молекул –Скорости молекул беспорядочно меняются (в результате столкновений), но средний квадрат скорости вполне определённая величина (для разных температур). Ведь средний рост учеников в 7 и 11 классах отличаются, хотя и там, и там могут быть ученики и высокого, и низкого роста.p=1/3monv²(со чертой)
p – давление mo – масса молекулы, кг; n = N/V – концентрация –число частиц в единице объёма; N – число частиц; V – объём, м³; v² (со чертой)– средний квадрат скорости. ⅓ в формуле – отражение трёхмерности пространства, то есть у вектора скорости существуют 3 проекции. Формула связывает макроскопическую величину – давление, которое может быть измерено манометром, – с микроскопическими величинами, характеризующими молекулы: масса, скорость хаотичного движения.

Давление идеального газа пропорционально произведению концентрации молекул и средней кинетической энергии поступательного движения молекул:p=2/3nE, где E=mv²/2- энергия поступательного движения молекул
Среднюю квадратичную скорость молекул воздуха при нормальных условиях:

Знаете ответ? Поделитесь им!

Как написать хороший ответ?

Чтобы добавить хороший ответ необходимо:

  • Отвечать достоверно на те вопросы, на которые знаете правильный ответ;
  • Писать подробно, чтобы ответ был исчерпывающий и не побуждал на дополнительные вопросы к нему;
  • Писать без грамматических, орфографических и пунктуационных ошибок.

Этого делать не стоит:

Есть сомнения?

Не нашли подходящего ответа на вопрос или ответ отсутствует? Воспользуйтесь поиском по сайту, чтобы найти все ответы на похожие вопросы в разделе Физика.

Трудности с домашними заданиями? Не стесняйтесь попросить о помощи - смело задавайте вопросы!

Физика — область естествознания: естественная наука о простейших и вместе с тем наиболее общих законах природы, о материи, её структуре и движении.

Нагревание, охлаждение, плавление, кипение, конденсация, кристализация и т.д.

2. Что характеризует температура?

Температура характеризует среднюю кинетическую энергию молекул.

3. Как связана температура тела со скоростью движения его молекул?

При повышении температуры скорость движения молекул увеличивается, при понижении — уменьшается.

4. Чем отличается движения молекул в газах, жидкостях и твёрдых телах?

Молекулы в газе движутся с большими скоростями в разных направлениях, а их скорости изменяются только при взаимодействии с другими молекулами или со стенками сосуда.

В жидкостях молекулы могут колебаться, вращаться и перемещаться относительно друг друга.

В твердых телах молекулы и атомы колеблются около некоторых средних положений.

Читайте также: