Какими основными параметрами характеризуется операционный усилитель кратко

Обновлено: 05.07.2024

ОУ характеризуются усилительными, входными, выходными, энергетическими, дрейфовыми, частотными и скоростными характеристиками.

Коэффициент усиления (KU) равен отношению приращения выходного напряжения к вызвавшему это приращение дифференциальному входному напряжению при отсутствии обратной связи (ОС). Он изменяется в пределах от 10 3 до 10 6 .

Важнейшими характеристиками ОУ являются амплитудные (передаточные) характеристики (рис. 8.4). Их представляют в виде двух кривых, относящихся соответственно к инвертирующему и неинвертирующему входам. Характеристики снимают при подаче сигнала на один из входов при нулевом сигнале на другом. Каждая из кривых состоит из горизонтального и наклонного участков.

Горизонтальные участки кривых соответствуют режиму полностью открытого (насыщенного), либо закрытого транзисторов выходного каскада. При изменении входного напряжения на этих участках выходное напряжение усилителя остается постоянным и определяется напряжениями +Uвых max) -Uвых max. Эти напряжения близки к напряжению источников питания.

Наклонному (линейному) участку кривых соответствует пропорциональная зависимость выходного напряжения от входного. Этот диапазон называется областью усиления. Угол наклона участка определяется коэффициентом усиления ОУ:

Большие значения коэффициента усиления ОУ позволяют при охвате таких усилителей глубокой отрицательной обратной связью получать схемы со свойствами, которые зависят только от параметров цепи отрицательной обратной связи.

Амплитудные характеристики (см. рис. 8.4), проходят через нуль. Состояние, когда Uвых = 0 при Uвх = 0,называется балансом ОУ. Однако для реальных ОУ условие баланса обычно не выполняется. При Uвх = 0 выходное напряжение ОУ может быть больше или меньше нуля:

Напряжение (Uсмо), при котором Uвых = 0, называется входным напряжением смещения нуля (рис. 8.5). Оно определяется значением напряжения, которое необходимо подавать на вход ОУ для получения нуля на выходе ОУ. Обычно составляет не более единиц милливольт. Напряжения Uсмо и ∆Uвых (∆Uвых = Uсдв — напряжение сдвига) связаны соотношением:

Основной причиной появления напряжения смещения является существенный разброс параметров элементов дифференциального усилительного каскада.

Зависимость параметров ОУ от температуры вызывает температурный дрейф входного напряжения смещения. Дрейф входного напряжения смещения – это отношение изменения входного напряжения смещения к изменению окружающей температуры:

Обычно Eсмо составляет 1…5 мкВ / °С.


Передаточная характеристика ОУ для синфазного сигнала показана на (рис. 8.6). Из него видно, что при достаточно больших значениях Uсф (соизмеримых с напряжением источника питания) коэффициент усиления синфазного сигнала (Ксф) резко возрастает.

Используемый диапазон входного напряжения называется областью ослабления синфазного сигнала. Операционные усилители характеризуется коэффициентом ослабления синфазного сигналаосс) – отношением коэффициента усиления дифференциального сигнала (Кuд) к коэффициенту усиления синфазного сигнала (Кu сф).

Коэффициент усиления синфазного сигнала определяется как отношение изменения выходного напряжения к вызвавшему его изменению синфазног
о входного сигнала). Коэффициент ослабления синфазного сигнала обычно выражается в децибелах.

Вследствие наличия входного напряжения смещения и входных токов смещения схемы ОУ приходится дополнять элементами, предназначенными для начальной их балансировки. Балансировка осуществляется подачей на один из входов ОУ некоторого дополнительного напряжения и введения резисторов в его входные цепи.

Температурный дрейф входного тока коэффициент, равный отношению максимального изменения входного тока ОУ к вызвавшему его изменению окружающей температуры.

Температурный дрейф входных токов приводит к дополнительной погрешности. Температурные дрейфы важны для прецизионных усилителей, так как, в отличии от напряжения смещения и входных токов, их очень сложно скомпенсировать

Максимальным дифференциальным входным напряжением лимитируется напряжение, подаваемое между входами ОУ в схеме, для исключения повреждения транзисторов дифференциального каскада

· дифференциальное входное сопротивление (Rвх диф) – (сопротивление между входами усилителя);

· синфазное входное сопротивление (Rвх сф) – сопротивление между объединенными входными выводами и общей точкой.

Выходными параметрами ОУ являются выходное сопротивление, а также максимальное выходное напряжение и ток.

Операционный усилитель должен обладать малым выходным сопротивлением (Rвых) для обеспечения высоких значений напряжения на выходе при малых сопротивлениях нагрузки. Малое выходное сопротивление достигается применением на выходе ОУ эмиттерного повторителя. Реальное Rвых составляет единицы и сотни ом.

Максимальное выходное напряжение (положительное или отрицательное) близко к напряжению питания. Максимальный выходной ток ограничивается допустимым коллекторным током выходного каскада ОУ.

Энергетические параметры ОУ оценивают максимальными потребляемыми токами от обоих источников питания и соответственно суммарной потребляемой мощностью.

Усиление гармонических сигналов характеризуется частотными параметрами ОУ, а усиление импульсных сигналов – его скоростными или динамическими параметрами.

Частотная зависимость коэффициента усиления ОУ без обратной связи называется амплитудно-частотной характеристикой (АЧХ).

На низких частотах коэффициент усиления операционного усилителя без ОС очень велик и остается постоянным до частоты, называемой частотой среза (fср,), а затем появляется спад АЧХ, коэффициент усиления начинает уменьшаться. Причиной этого является частотная зависимость параметров транзисторов и паразитных емкостей схемы ОУ. По граничной частоте (fгр), которой соответствует снижение коэффициента усиления ОУ в , оценивают полосу пропускания частот усилителя, составляющую для соврем
енных ОУ десятки мегагерц.

Частота (f1), при которой коэффициент усиления ОУ равен единице, называется частотой единичного усиления.

Вследствие создаваемого усилителем в области высоких частот фазового сдвига выходного сигнала относительно входного фазо-частотная характеристика ОУ по инвертирующему входу приобретает дополнительный (сверх 180°) фазовый сдвиг (рис. 8.8).

Для обеспечения устойчивой работы ОУ необходимо уменьшать запаздывание по фазе, т.е. корректировать амплитудно-частотную характеристику ОУ.

Динамическими параметрами ОУ являются скорость нарастания выходного напряжения (скорость отклика) и время установления выходного напряжения. Они определяются по реакции ОУ на воздействие скачка напряжения на входе (рис. 8.9).

Скорость нарастания выходного напряжения – это отношение приращения ( Uвых) к интервалу времени ( t), за который происходит это приращение при подаче на вход прямоугольного импульса. То есть

Чем выше частота среза, тем больше скорость нарастания выходного напряжения. Типовые значения VU вых – единицы вольт на микросекунды.

Время установления выходного напряжения (tуст) – время, в течение которого Uвых операционного усилителя изменяется от уровня 0,1 до уровня 0,9 установившегося значения Uвых при воздействии на вход ОУ прямоугольных импульсов. Время установления обратно пропорционально частоте среза.

Операционным усилителем (ОУ) принято называть интегральный усилитель постоянного тока с дифференциальным входом и двухтактным выходом, предназначенный для работы с цепями обратных связей.

Интегральный ОУ имеет следующие основные параметры:

1. Коэффициент усиления напряжения KyU - отношение изменения выходного напряжения к вызвавшему его изменению входного напряжения. В общем случае коэффициент напряжения ОУ, не охваченного обратной связью, равен произведению KyU всех его каскадов.

2. Частота единичного усиления fI - значение частоты входного сигнала, при котором значение коэффициента усиления напряжения ОУ падает до единицы. Этот параметр определяет максимально реализуемую полосу усиления ОУ.

3. Максимальное выходное напряжение UВЫХ макс - максимальное значение выходного напряжения, при котором искажения не превышают заданного значения.

4. Скорость нарастания выходного напряжения VUвых - отношение изменения UВЫХ от 10 до 90% от своего номинального значения ко времени, за которое произошло это изменение. Параметр характеризует скорость отклика ОУ на ступенчатое изменение сигнала на входе; при измерении ОУ охвачен ООС с общим коэффициентом усиления от 1 до 10.

5. Напряжение смещения UСМ - значение напряжения, которое необходимо подать на вход ОУ, чтобы на выходе напряжение было равно 0.

8. Максимальное входное напряжение UВХ - напряжение, прикладываемое между входными выводами ОУ, превышение которого ведет к выходу параметров за установленные границы или к разрушению прибора.

9. Максимальное синфазное входное напряжение UВХ СФ - наибольшее значение напряжения прикладываемого одновременно к обоим входным выводам ОУ относительно нулевого потенциала, превышение которого нарушает работоспособность прибора.

10. Коэффициент ослабления синфазного сигнала КОССФ - отношение коэффициента усиления напряжения, приложенного между входами ОУ, к коэффициенту усиления общего для обоих входов напряжения.

11. Выходной ток IВЫХ - максимальное значение выходного тока ОУ, при котором гарантируется работоспособность прибора. Это значение определяет минимальное сопротивление нагрузки.

Как правило достичь максимальных значений для всех параметров невозможно. Достижение максимального значения одного параметра часто осуществляется за счет ухудшения другого. Так, увеличение коэффициента усиления по напряжению влечет за собой снижение частотных свойств, и наоборот.

29. Инвертирующий усилитель. Коэффициент усиления.
При инвертирующем включении (Рис. 2.8.) неинвертируюший вход ОУ соединен с общей шиной.


Типовая схема инвертирующего включения операционного усилителя

В типовой схеме (рис. 2.8.а) R3 = ∞ и R4 = 0 и коэффициент усиления по напряжению определяется соотношением

K = -VOUT / V2 = - R2 / R1
Таким образом, типовое выходное напряжение усилителя в инвертирующем включении находится в противофазе по отношению к входному. Для этой схемы коэффициент усиления входного сигнала по напряжению в зависимости от соотношения сопротивлений резисторов может быть как больше единицы, так и меньше единицы.





30. Неинвертирующий усилитель. Коэффициент усиления неинвертирующего усилителя.
Данная схема позволяет использовать в качестве неинвертирующего усилителя ОУ, схема обладает высоким полным входным сопротивлением, причем коэффициент усиления всей схемы по напряжению может быть жестко задан с помощью сопротивлений R1 и Rос.

В данной схеме входной сигнал подается на неинвертирующий вход ОУ.

Усилитель содержит последовательную отрицательную обратную связь по напряжению, создаваемую на резисторе Rоси поданную на инвертирующий вход.

Полное входное сопротивление всей схемы оказывается высоким, так как единственным путем для тока между входом и землей является высокое полное входное сопротивление ОУ.

Сопротивления R1 и Rос образуют делитель напряжения с очень малой нагрузкой, так как ток, необходимый для управления усилителем, очень мал ( Iсм >> 0 ).

Поэтому через R1 и Rос течет одинаковый ток и напряжение, приложенное к инвертирующему входу, равно:

то если K , Uq >>0, можно написать

Найдем отсюда коэффициент усиления схемы Uвых / Uвх , который называют коэффициентом усиления с замкнутой ОС (Kос), или коэффициентом усиления замкнутого усилителя, т.е.

Сопротивления R1 + Rос следует выбирать так, чтобы общий ток нагрузки с учетом этого сопротивления не превышал максимального выходного тока усиления.




32. Усилитель разности напряжений на ОУ.


Дифференциа́льный усили́тель — электронный усилитель с двумя входами, выходной сигнал которого равен разности входных напряжений, умноженной на константу. Применяется в случаях, когда необходимо выделить небольшую разность напряжений на фоне значительной синфазной составляющей.
Дифференциатор создает на выходе напряжение, пропорциональное скорости изменения входного

33. Инвертирующий сумматор на ОУ. Неинвертирующий сумматор.

Инвертирующий сумматор формирует алгебраическую сумму двух напряжений и меняет знак на обратный.

Схема алгебраического сумматора на два входа:

Если Rвх ОУ достаточно велико и ток смещения пренебрежительно мал по сравнению с током обратной связи (ОС), то по закону Кирхгофа :

Если коэффициент усиления без ОС также достаточно велик, так что Uд= 0, то

Для n- входов Uвых = - ( U1+ U2+ . + Un) ,где n- число входов.

Суммирующие схемы могут работать как при постоянных, так и при переменных напряжениях.

Неинвертирующий сумматор.

Схема на два входа:

Можно также осуществить суммирование с весами, при этом обязательно соблюдение условия

,где n - число входов.

1. Инвертирующий сумматор суммирует входные напряжения и инвертиpyeт результат.

2. Неинвертирующий сумматор - это вариант схемы сложения-вычитания, в котором использованы только неинвертирующие входы.

3. Суммирующие схемы можно использовать при решении алгебраических уравнений и для построения пропорциональных регуляторов

34. Интегратор на ОУ. Погрешность реального интегратора и пути ее уменьшения.
Интегратор используется в схемах управления во всех тех случаях, когда надо решать дифференциальное уравнение или надо вычислить интеграл напряжения
Интегрирующие цепи предназначены для интегрирования во времени электрических входных сигналов.
Реальный ОУ имеет некоторое напряжение сдвига и нуждается в некотором токе смещения. Напряжение сдвига интегрируется как ступенчатая функция, что дает дополнительный линейно-нарастающий (или падающий) выходной сигнал, полярность сигнала определяется полярностью Uсдв, а наклон величиной Uсдв. Ток смещения течет через конденсатор обратной связи, что также приводит к появлению наклонного выходного сигнала. Кроме того, Uсдвдобавляется к напряжению на конденсаторе, и поскольку это напряжение равно Uвых, такая прибавка вносит в результат ошибку, равную Uсдв.
Ошибку напряжения сдвига можно уменьшить следующими приемами :использовать ОУ с низким Uсдв;
периодически сбрасывать интегратор;
шунтировать конденсатор С сопротивлением Rp.
Схема простейшего интегратора на ОУ:

35) Дифференциатором называется устройство, выходной сигнал которого пропорционален производной от его входного сигнала. Другими словами, выходной сигнал дифференциатора пропорционален скорости изменения его входного сигнала. RC-дифференциатор оказывается слишком примитивным и имеет два основных недостатка: он ослабляет входной сигнал и его выходное сопротивление слишком велико.



Изменения входного напряжения вызывают протекание тока через конденсатор С1; этот ток должен течь также через резистор R2. За счет большого внутреннего коэффициента усиления ОУ его инвертирующий вход является виртуальной землей, поэтому выходное напряжение ОУ оказывается пропорциональным скорости изменения входного напряжения. Схема с резистором R2, конденсатором C1 и ОУ потенциально неустойчива и склонна к генерации на высоких частотах. Для повышения устойчивости в схему включаются резистор R1 или конденсатор С2, или оба этих элемента.

36)Логарифмическим называется усилитель, выходное напряжение которого пропорционально логарифму от его входного напряжения.

Для получения логарифмической характеристики в цепь ООС ОУ включают p-n-переход. Это могут быть диод или биполярный транзистор, включенный по схеме с общей базой. логарифмических усилителей приведены на рисунках

37) Антилогарифмическим называется усилитель, выходное напряжение которого пропорционально экспоненциальной функции от его входного напряжения.


38) Схема активного RC фильтра нижних частот первого порядка на операционном усилителе СМ ФАЙЛ. Данная схема позволяет реализовать полюс коэффициента передачи на нулевой частоте, величинами сопротивления резистора R1 и емкости конденсатора C1 можно задать его частоту среза. Именно значения емкости и сопротивления определят полосу пропускания данной схемы активного фильтра.

Для увеличения значения емкости обычно обходятся интегрирующей RC-цепочкой, в которой уменьшение частоты среза достигается увеличением сопротивления резистора при постоянном значении емкости конденсатора. Для того, чтобы устранить влияние цепей нагрузки, на выходе RC-цепочки обычно ставится буферный усилитель с единичным коэффициентом усиления по напряжению. при достаточно низкой частоте среза фильтра низких частот может потребоваться большое значение емкости конденсатора. Электролитические конденсаторы, обладающие значительной емкостью, не подходят для создания фильтров из-за большого разброса параметров и низкой стабильности. Конденсаторы, выполненные на основе керамики с большим значением электрической постоянной ε, тоже не отличаются стабильностью значения емкости. Поэтому применяются высокостабильные конденсаторы малой емкости.


Параметры схемы: коэффициент передачи:

частота полюса:
40. Компараторы напряжений. Компаратор положительных напряжений Интег­ральные компараторы напряжений это микросхемы, предназначенные для сравнения двух аналоговых напряжений и выдачи результата сравнения в логической форме: больше или меньше. Компаратор напряжения чувствителен к полярности напряжения, приложенного между его сигнальными входами. Напряжение на выходе будет иметь высокий уровень U 1 вых всякий раз, когда разность напряжений между неинвертирующим и инвертирующим сигнальными входами положительна и, наоборот, когда разностное напряжение отрицательно, то выходное напряжение компаратора соответствует логическому нулю U 0 в.

Стробирование (англ, strobing, от strobe - посылать избирательные импульсы, от греч. strobos - кружение, беспорядочное движение) - это метод выделения некоторого интервала на временной оси, шкале частот и т. п. для увеличения вероятности обнаружения полезных сигналов на фоне помех

Кроме этого, устройство смещения устанавливает также соответствующие уровни напряжения и тока в выходном логическом каскаде. Таким образом, обеспечивается работа компаратора с определенным типом логики — ТТЛ, ЭСЛ или КМОП.

Простейший компаратор представляет собой дифференциальный усилитель. Компаратор отличается от линейного операционного усилителя (ОУ) устройством и входного, и выходного каскадов:


41. Компараторы с положительной обратной связью. Триггер Шмитта

Триггер Шмитта или схема компаратора с положительной обратной связью позволяет устранить недостатки простых схем компаратора (рис. 2.3.1), избежать дребезга выходного напряжения, возникающего вследствие неизбежного наличия шумов во входном сигнале. В триггере Шмитта на инвертирующий вход подаѐтся входной сигнал, а на неинвертирующий поступает сигнал положительной обратной связи – опорное напряжение UОП. Величину опорного напряжения можно регулировать с помощью резисторов R1 и R2. Регулировочная характеристика триггера Шмитта представляет собой прямоугольную петлю гистерезиса (рис. 2.3.2). Это позволяет использовать схему в качестве формирователя прямоугольных импульсов из некоторого входного напряжения, в частности, из синусоидального. Рассмотрение работы схемы начнѐм с момента t = 0. В данной схеме входное напряжение UВХ сравнивается с положительным опорным напряжением UОП, и как только входное напряжение превысит опорное напряжение, схема переключится и на выходе появится отрицательное напряжение. После момента переключения входное напряжение, достигнув некоторого максимального значения, снова уменьшится до величины, равной входному напряжению в момент переключения, однако компаратор не переключится. Это связано с тем, что опорное напряжение снимается с резистивного делителя, подключенного к выходу компаратора, и изменение знака выходного напряжения при переключении приводит к изменению знака опорного напряжения. В дальнейшем входное гармоническое напряжение не только спадает до нуля, но меняет свой знак и увеличивается до величины равной отрицательному опорному напряжению. Именно в этот момент будет происходить переключение схемы и на выходе установится положительное выходное напряжение.


Схема триггера Шмитта не реагирует на шумы, т.е. переключение происходит только в те моменты, когда входное напряжение превышает модуль опорного напряжения

Счётчики тригеры суматоры регистры мультиплексоры
45. Асинхронные элементы памяти и триггеры типов D, R-S.

Триггер- это цифровая электронная схема с двумя устойчивыми состояниями, которые устанавливаются при подаче соответствующей комбинации входных сигналов и сохраняются, по крайней мере, до поступления новой комбинации. Общая структура триггера показана на рис.2.2.

На рис.2.2 показано, что в состав триггера, кроме бистабильной ячейки,
входит схема управления. Схема управления - это комбинационная схема, при
помощи которой осуществляется запись информации в триггер (изменение состояний триггера). Конкретный вид схемы управления зависит от типа триггера..

Триггер имеет два выхода - прямой и инверсный (Q и Q). Сигналы
на выходах триггера всегда имеют различные значения. Если на прямом выходе сигнал равен 1, то на инверсном - 0 и наоборот.

Информация, записанная в триггере, называется его состоянием. Состояние триггера - это значение сигнала на прямом выходе (Q). Если сигнал на прямом выходе равен 1, то триггер находится в состоянии 1. Таким образом, если в триггере записана единица, то он находится в состоянии 1..

Триггеры могут быть асинхронными или синхронными. В асинхронных
триггерах для изменения состояния триггера используются только основные
или информационные входы. Изменение состояния асинхронного триггера
может происходить в произвольные моменты времени, определяемые моментами изменения сигналов на информационных входах.

В синхронных триггерах, кроме информационных входов, имеется вход
синхронизации. На этот вход подается сигнал синхронизации С, который вы-
полняет функции сигнала, разрешающего переключение триггера из одного со-
стояния в другое. Если сигнал синхронизации С равен нулю, то состояние син-
хронного триггера не изменяется ни при какой комбинации сигналов на ин-
формационных входах. Для переключения синхронного триггера из одного со-
стояния в другое необходимо подать на информационные входы определенную, зависящую от типа триггера, комбинацию сигналов и, кроме того, установить значение сигнала С, равное 1.

Логика переключения триггера из одного состояния в другое определяется типом триггера и зависит от количества и назначения входов. Наиболее часто используются следующие типы триггеров: RS-триггеры, JK-триггеры, D-триггеры и Т-триггеры.

2.2. Асинхронный и синхронный RS-триггеры
Асинхронный RS-триггер

Работа триггера описывается таблицей переходов, которая имеет вид

при R=0 и S=0 состояние триггера не меняется.
Такой режим называется режимом хранения. При R=0 и S=1 триггер перехо-
дит в состояние 1 независимо от того, в каком состоянии он находился до
изменения входных сигналов, При R=l и S=0 триггер переходит в состоя-
ние 0. Таким образом, для записи 1 в RS-триггер необходимо подать на его входы сигналы R=0 и S=1, для записи 0 - сигналы R=l и S=0. Комбинация сигналов R=1 и S=1 является запрещенной и состояние триггера при этом не определено. (Реально в этом случае состояние триггера зависит от типа элементов, из которых состоит триггер)


Обозначение на схеме операционного усилителя

На схемах операционный усилитель обозначается вот так:

операционный усилитель обозначение на схеме

операционный усилитель обозначение на старых схемах

Чаще всего ОУ на схемах обозначаются без выводов питания

операционный усилитель обозначение на схеме

Итак, далее по классике, слева два входа, а справа – выход.

ОУ

Питание операционных усилителей

Если выводы питания не указаны, то считается, что на ОУ идет двухполярное питание +E и -E Вольт. Его также помечают как +U и -U, VCC и VEE, Vc и VE. Чаще всего это +15 и -15 Вольт. Двухполярное питание также называют биполярным питанием. Как это понять — двухполярное питание?

Давайте представим себе батарейку

Операционный усилитель

А давайте возьмем еще одну такую батарейку и соединим их последовательно:

операционный усилитель двухполярное питание

Итак, общее напряжение у нас будет 3 Вольта, если брать за ноль минус первой батарейки.

А что если взять на ноль минус второй батарейки и относительно него уже замерять все напряжения?

операционный усилитель питание

Вот здесь мы как раз и получили двухполярное питание.

Идеальная и реальная модель операционного усилителя

Для того, чтобы понять суть работы ОУ, рассмотрим его идеальную и реальную модели.

входное сопротивление операционный усилитель

В реальных ОУ значение входного сопротивления зависит от назначения ОУ (универсальный, видео, прецизионный и т.п.) типа используемых транзисторов и схемотехники входного каскада и может составлять от сотен Ом и до десятков МОм. Типовое значение для ОУ общего применения — несколько МОм.

2) Второе правило вытекает из первого правила. Так как входное сопротивление идеального ОУ бесконечно большое, то входной ток будет равняться нулю.

Операционный усилитель

На самом же деле это допущение вполне справедливо для ОУ с полевыми транзисторами на входе, у которых входные токи могут быть меньше пикоампер. Но есть также ОУ с биполярными транзисторами на входе. Здесь уже входной ток может быть десятки микроампер.

3) Выходное сопротивление идеального ОУ равняется нулю.

Операционный усилитель

Это значит, что напряжение на выходе ОУ не будет изменяться при изменении тока нагрузки. В реальных ОУ общего применения выходное сопротивление составляет десятки Ом (обычно 50 Ом).
Кроме того, выходное сопротивление зависит от частоты сигнала.

4) Коэффициент усиления в идеальном ОУ бесконечно большой. В реальности он ограничен внутренней схемотехникой ОУ, а выходное напряжение ограничено напряжением питания.

5) Так как коэффициент усиления бесконечно большой, следовательно, разность напряжений между входами идеального ОУ равняется нулю. Иначе если даже потенциал одного входа будет больше или меньше хотя бы на заряд одного электрона, то на выходе будет бесконечно большой потенциал.

6) Коэффициент усиления в идеальном ОУ не зависит от частоты сигнала и постоянен на всех частотах. В реальных ОУ это условие выполняется только для низких частот до какой-либо частоты среза, которая у каждого ОУ индивидуальна. Обычно за частоту среза принимают падение усиления на 3 дБ или до уровня 0,7 от усиления на нулевой частоте (постоянный ток).

Схема простейшего ОУ на транзисторах выглядит примерно вот так:

операционный усилитель внутреннее строение

Принцип работы операционного усилителя

Давайте рассмотрим, как работает ОУ

Операционный усилитель

Принцип работы ОУ очень прост. Он сравнивает два напряжения и на выходе уже выдает отрицательный, либо положительный потенциал питания. Все зависит от того, на каком входе потенциал больше. Если потенциал на НЕинвертирующем входе U1 больше, чем на инвертирующем U2, то на выходе будет +Uпит, если же на инвертирующем входе U2 потенциал будет больше, чем на НЕинвертирующем U1, то на выходе будет -Uпит. Вот и весь принцип ;-).

Давайте рассмотрим этот принцип в симуляторе Proteus. Для этого выберем самый простой и распространенный операционный усилитель LM358 (аналоги 1040УД1, 1053УД2, 1401УД5) и соберем примитивную схему, показывающую принцип работы

Операционный усилитель

Подадим на НЕинвертирующий вход 2 Вольта, а на инвертирующий вход 1 Вольт. Так как на НЕинвертирующем входе потенциал больше, то следовательно, на выходе мы должны получить +Uпит. Мы получили 13,5 Вольт, что близко к этому значению

Операционный усилитель

Но почему не 15 Вольт? Виновата во всем сама внутренняя схемотехника ОУ. Максимальное значение ОУ не всегда может равняться положительному либо отрицательному напряжению питания. Оно может отклоняться от 0,5 и до 1,5 Вольт в зависимости от типа ОУ.

Давайте теперь на инвертирующий вход подадим потенциал больше, чем на НЕинвертирущий. На инвертирующий подаем 2 Вольта, а на НЕинвертирующий подаем 1 Вольт:

Чтобы не качать лишний раз программный комплекс Proteus, можно в онлайне с помощью программы Falstad сэмулировать работу идеального ОУ. Для этого выбираем вкладку Circuits—Op-Amps—>OpAmp. В результате на вашем экране появится вот такая схемка:

Операционный усилитель

На правой панели управления увидите бегунки для добавления напряжения на входы ОУ и уже можете визуально увидеть, что получится на выходе ОУ при изменении напряжения на входах.

Что будет на выходе ОУ, если на обоих входах будет ноль вольт?

Итак, мы рассмотрели случай, когда напряжение на входах может различаться. Но что будет, если они будут равны? Что нам покажет Proteus в этом случае? Хм, показал +Uпит.

операционный усилитель принцип работы

А что покажет Falstad? Ноль Вольт.

Операционный усилитель

Кому верить? Никому! В реале, такое сделать невозможно, чтобы на два входа загнать абсолютно равные напряжения. Поэтому такое состояние ОУ будет неустойчивым и значения на выходе могут принимать значения или -E Вольт, или +E Вольт.

Давайте подадим синусоидальный сигнал амплитудой в 1 Вольт и частотой в 1 килоГерц на НЕинвертирующий вход, а инвертирующий посадим на землю, то есть на ноль.

операционный усилитель схема Proteus

Смотрим, что имеем на виртуальном осциллографе:

Операционный усилитель

Что можно сказать в этом случае? Когда синусоидальный сигнал находится в отрицательной области, на выходе ОУ у нас -Uпит, а когда синусоидальный сигнал находится в положительной области, то и на выходе имеем +Uпит.

Скорость нарастания выходного напряжения

Также обратите внимание на то, что напряжение на выходе ОУ не может резко менять свое значение. Поэтому, в ОУ есть такой параметр, как скорость нарастания выходного напряжения VUвых .

Этот параметр показывает насколько быстро может измениться выходное напряжение ОУ при работе в импульсных схемах. Измеряется в Вольт/сек. Ну и как вы поняли, чем больше значение этого параметра, тем лучше ведет себя ОУ в импульсных схемах. Для LM358 этот параметр равен 0,6 В/мкс.

Передаточные характеристики ОУ. Передаточные (амплитудные) характеристики ОУ представляют собой две кривые, соответствующие инвертирующему и неинвертирующему входам.

Режимам насыщения выходного каскада ОУ соответствуют горизонтальные участки характеристики U+ВЫХ мах и U-ВЫХ мах, близкие к напряжению источников питания. Наклонный участок кривых соответствует зависимости UВЫХ= К (UВХ), угол наклона соответствует коэффициенту усиления по напряжению. Этот участок называется областью усиления. Обычно величина К лежит в пределах 104…106. К примеру, для ОУ типа К140УД7 не менее 45000.

В идеальном ОУ при нулевом входном сигнале на выходе сигнал отсутствует (баланс ОУ). В реальных усилителях наблюдается разбаланс ОУ. Значение напряжения UДИФ, при котором выполняется условие UВЫХ=0, называют напряжением смещения UСМ. Для операционного усилителя К140УД7 (аналог LM741) напряжение смещения лежит в диапазоне от ±4,5 мВ. Для усилителей с большим коэффициентом усиления это может быть серьезной проблемой: если результирующий коэффициент усиления равен 1000, то один милливольт входного смещения проявится как один вольт напряжения на выходе. Когда усилитель предназначен для работы только с переменными сигналами, на выходе используется разделительный конденсатор, который отсечет любое смещение по постоянному току, и все будет в порядке, пока смещение не уведет точку покоя так далеко, что выходные колебания будут ограничиваться. Для того, чтобы при нулевом усиливаемом сигнале напряжение на выходе было равным нулю, т.е. для того, чтобы передаточная характеристика проходила через начало координат, предусматривают меры по компенсации напряжения смещения. В некоторых ОУ для компенсации напряжения смещения предусмотрены специальные выводы. Типовая схема включения ОУ К140УД7, в котором предусмотрены такие выводы, показана на рис.9.5.

Частотные характеристики ОУ. Вследствие наличия паразитных емкостей и многокаскадной структуры ОУ по своим свойствам аналогичен фильтру нижних частот высокого порядка. Типичная частотная характеристика ОУ без частотной коррекции приведена на рис.9.6.

Выше частоты ƒ1 частотная характеристика определяется инерционным звеном с минимальной граничной частотой. Коэффициент усиления в этой области падает (наклон –20 дБ/декада), а фазовый сдвиг выходного напряжения относительно входного достигает φ=-90°. Это означает, что выходное напряжение отстает от входного на 90°. Выше частоты ƒ2 начинает действовать второй фильтр нижних частот, коэффициент усиления уменьшается сильнее (наклон –40 дБ/декада), а фазовый сдвиг достигает φ=–180°. Это означает, что инвертирующий и неинвертирующий выходы фактически поменялись ролями, и отрицательная обратная связь, которая обычно используется в усилителях в этой частотной области становится положительной. В этом случае могут возникнуть условия баланса амплитуд и баланса фаз (эти условия подробно будут рассмотрены при анализе схем автогенераторов), и в схеме возникнут автоколебания. Для устранения этого явления используется частотная коррекция. Она осуществляется подключением внешних цепей к входам FC или выполняется конструктивно встроенной в схему ОУ. АЧХ и ФЧХ ОУ, скорректированного по частоте, представлен на рис.9.7.

Очевидно, что для самого неблагоприятного случая не возникает условий возникновения автоколебаний. Схема подключения внешней коррекции для усилителя LM748 приведена рис.9.8.

Можно отметить, что из-за наличия частотной коррекции полоса пропускания разомкнутого ОУ сужается. Однако так как ОУ используются в усилительных схемах с отрицательной обратной связью (ООС), то введение ООС расширяет частотный диапазон (рис.9.9).

Рис.9.9. Частотные характеристики ОУ

К140УД7 при различных значениях коэффициента усиления с обратной связью Хотя в простых схемах с минимумом внешних компонентов и осуществляют внутреннюю коррекцию, это накладывает ненужное ограничение на ширину полосы пропускания усилителя с коэффициентом усиления напряжения больше единицы. Происходит это потому, что внутренняя коррекция должна быть достаточной для обеспечения устойчивости схемы, в режиме повторителя напряжения (с единичным коэффициентом усиления). Устойчивость могла бы быть достигнута и при больших коэффициентах усиления с меньшим ослаблением на высоких частотах, но фиксированная коррекция в ОУ, подобных К140УД7, означает, что жертвуют шириной полосы, в пределах которой коэффициент усиления больше единицы. Использование ОУ с ООС для различных коэффициентов усиления показано на рис.9.9. Например, при коэффициенте усиления, равном 100, частотная характеристика падает приблизительно на 3 дБ (ширина полосы измеряется на уровне –3дБ) на частоте 10кГц. Это значение не соответствует требованиям, которые в большинстве случаев предъявляются к аппаратуре звукового диапазона; следовательно, для получения приемлемого качества коэффициент усиления одиночной ИС К140УД7 с обратной связью в устройствах звукового диапазона должен быть ограничен значением порядка 20. Для расширения частотного диапазона необходимо использовать ОУ, имеющие более высокую частоту единичного усиления или применять ОУ с внешней коррекцией. Основные характеристики ОУ можно разделить на две группы: статические и динамические.

Читайте также: