Какие процессы приводят к изменению частоты встречаемости генов популяциях кратко

Обновлено: 05.07.2024

Популяция является формой существования любого вида. Популяция - это совокупность особей одного вида, достаточно длительное время существующая на одной территории, внутри которой осуществляется панмиксия и которая отделена от других таких же совокупностей той или иной степенью изоляции.

Совокупность генотипов всех особей, составляющих данную популяцию, носит название генофонд.

Существует ли закономерность в распределении генов и генотипов внутри генофонда? Да. Она была сформулирована в 1908 году одновременно двумя учеными: английским математиком Харди и немецким врачом Вайнбергом и получила название закона Харди-Вайнберга. Этот закон полностью справедлив только для идеальных популяций, т.е. популяций, отвечающих следующим требованиям:

1) бесконечно большая численность;

2) внутри популяции осуществляется панмиксия (свободное скрещивание);

3) отсутствуют мутации по данному гену;

4) отсутствует приток и отток генов;

5) отсутствует отбор по анализируемому признаку (признак нейтральный!).

Природные популяции в большинстве своем приближаются к идеальным, поэтому данный закон находит применение.

Закон Харди-Вайнберга имеет математическое и словесное выражения, причем в двух формулировках:

Частоты встречаемости генов одной аллельной пары в популяции остаются постоянными из поколения в поколение.

p + q = 1,где p – частота встречаемости доминантного аллеля (А), q – частота встречаемости рецессивного аллеля (a).

Частоты встречаемости генотипов в одной аллельной паре в популяции остаются постоянными из поколения в поколение, а их распределение соответствует коэффициентам разложения бинома Ньютона 2-й степени.

p 2 + 2pq +q 2 = 1

Эту формулу следует выводить с помощью генетических рассуждений.

Допустим, что в генофонде популяции доминантный аллель А встречается с частотой р, а рецессивный аллель а с частотой q. Тогда в этой же популяции женские и мужские гаметы будут нести аллель А с частотой р, а аллель а с частотой q. При свободном скрещивании (панмиксии) происходит случайное слияние гамет и образуются самые разные их сочетания:

qa
pA р 2 AA pqAa
qa pqAa q 2 aa

Запишем полученные генотипы в одну строку:

p 2 AA + 2pqAa + q 2 aa = 1.

Теперь докажем на конкретном примере, что частоты встречаемости генов одной аллельной пары из поколения в поколение не меняются. Допустим, что в некой популяции в данном поколении pA = 0,8, qa = 0,2. Тогда в следующем поколениибудет:

0,8А 0,2a
0,8A 0,64AA 0,16Aa
0,2a 0,16Aa 0,04aa

0,64 АА + 0,32 Аа + 0,04 аа = 1.

При этом частота встречаемости аллельных геновв гаметах остается без изменений:

А = 0,64+0,16 = 0,8; а = 0,04+0,16 = 0,2.

Закон Харди-Вайнберга применим и для множественных аллелей.

Так, для трех аллельных генов формулы будут следующие:

(I) p + q + r = 1,

(II) p 2 + 2pq + 2pr + 2 qr + q 2 + r 2 = 1.

Практическое значение закона Харди-Вайнберга состоит в том, что он позволяет рассчитать генетический состав популяции в данный момент и выявить тенденцию его изменения в будущем.

Применение этого закона на практике показало, что популяции отличаются друг от друга по частоте встречаемости генов. Так, по генам группы крови в системе АВ0 различия между русскими и англичанами были следующие:

I A I B I 0
Русские 0,25 0,19 0,56
Англичане 0,25 0,05 0,70

Дрейф генов

В малочисленных популяциях закон Харди-Вайнберга не действует. Там имеет место явление дрейфа генов. Под дрейфом генов понимают случайное изменение частоты встречаемости генов одной аллельной пары в популяции. Ввели данный термин зарубежные ученые. Российские ученые это явление назвали генетико-автоматическими процессами.

Дрейф генов может привести популяцию в гомозиготное состояние. Он играет очень важную роль в формировании генофонда малочисленных популяций. Именно дрейфом генов ученые объясняют отсутствие у североамериканских индейцев (коренных жителей) гена группы крови I B , и соответственно у них имеется только две группы крови (0 и А).

Доказательство дрейфа генов было получено в эксперименте на мухах-дрозофилах. Мух анализировали по одному признаку – строению щетинки

(адаптивного значения не имеет):

А – ген, определяющий нормальное строение щетинки;




а – ген, определяющий раздвоенность щетинки.

Взяли 96 ящиков, в каждый из них поместили по 4 самца и 4 самки. Из полученного потомства в каждом поколении методом случайной выборки оставляли в каждом ящике 4 самца и 4 самки. И так проделывали на протяжении 16 поколений. На 16-м поколении получили следующий результат: в 41 ящике все мухи имели генотип АА, в29 ящиках – генотип аа, в 26 – генотип Аа.

Методы изучения наследственности человека: генеалогический, близнецовый, биохимический, цитогенетический, генетики соматических клеток, популяционно-статистический, моделирования, методы изучения ДНК. Их сущность и возможности.

К методам, используемым в генетике человека, относятся следующие:

· генеалогический,

· близнецовый,

· цитогенетический,

· биохимический,

· генетики соматических клеток,

· популяционно-статистический,

· методы моделирования,

· молекулярно-генетические методы,

· дерматоглифики и пальмоскопии.

Для каждого метода необходимо знать его сущность (как проводится) и возможности.

Популяция является формой существования любого вида. Популяция - это совокупность особей одного вида, достаточно длительное время существующая на одной территории, внутри которой осуществляется панмиксия и которая отделена от других таких же совокупностей той или иной степенью изоляции.

Совокупность генотипов всех особей, составляющих данную популяцию, носит название генофонд.

Существует ли закономерность в распределении генов и генотипов внутри генофонда? Да. Она была сформулирована в 1908 году одновременно двумя учеными: английским математиком Харди и немецким врачом Вайнбергом и получила название закона Харди-Вайнберга. Этот закон полностью справедлив только для идеальных популяций, т.е. популяций, отвечающих следующим требованиям:

1) бесконечно большая численность;

2) внутри популяции осуществляется панмиксия (свободное скрещивание);

3) отсутствуют мутации по данному гену;

4) отсутствует приток и отток генов;

5) отсутствует отбор по анализируемому признаку (признак нейтральный!).

Природные популяции в большинстве своем приближаются к идеальным, поэтому данный закон находит применение.

Закон Харди-Вайнберга имеет математическое и словесное выражения, причем в двух формулировках:

Частоты встречаемости генов одной аллельной пары в популяции остаются постоянными из поколения в поколение.

p + q = 1,где p – частота встречаемости доминантного аллеля (А), q – частота встречаемости рецессивного аллеля (a).

Частоты встречаемости генотипов в одной аллельной паре в популяции остаются постоянными из поколения в поколение, а их распределение соответствует коэффициентам разложения бинома Ньютона 2-й степени.

p 2 + 2pq +q 2 = 1

Эту формулу следует выводить с помощью генетических рассуждений.

Допустим, что в генофонде популяции доминантный аллель А встречается с частотой р, а рецессивный аллель а с частотой q. Тогда в этой же популяции женские и мужские гаметы будут нести аллель А с частотой р, а аллель а с частотой q. При свободном скрещивании (панмиксии) происходит случайное слияние гамет и образуются самые разные их сочетания:

qa
pA р 2 AA pqAa
qa pqAa q 2 aa

Запишем полученные генотипы в одну строку:

p 2 AA + 2pqAa + q 2 aa = 1.

Теперь докажем на конкретном примере, что частоты встречаемости генов одной аллельной пары из поколения в поколение не меняются. Допустим, что в некой популяции в данном поколении pA = 0,8, qa = 0,2. Тогда в следующем поколениибудет:

0,8А 0,2a
0,8A 0,64AA 0,16Aa
0,2a 0,16Aa 0,04aa

0,64 АА + 0,32 Аа + 0,04 аа = 1.

При этом частота встречаемости аллельных геновв гаметах остается без изменений:

А = 0,64+0,16 = 0,8; а = 0,04+0,16 = 0,2.

Закон Харди-Вайнберга применим и для множественных аллелей.

Так, для трех аллельных генов формулы будут следующие:

(I) p + q + r = 1,

(II) p 2 + 2pq + 2pr + 2 qr + q 2 + r 2 = 1.

Практическое значение закона Харди-Вайнберга состоит в том, что он позволяет рассчитать генетический состав популяции в данный момент и выявить тенденцию его изменения в будущем.

Применение этого закона на практике показало, что популяции отличаются друг от друга по частоте встречаемости генов. Так, по генам группы крови в системе АВ0 различия между русскими и англичанами были следующие:

I A I B I 0
Русские 0,25 0,19 0,56
Англичане 0,25 0,05 0,70

Дрейф генов

В малочисленных популяциях закон Харди-Вайнберга не действует. Там имеет место явление дрейфа генов. Под дрейфом генов понимают случайное изменение частоты встречаемости генов одной аллельной пары в популяции. Ввели данный термин зарубежные ученые. Российские ученые это явление назвали генетико-автоматическими процессами.

Дрейф генов может привести популяцию в гомозиготное состояние. Он играет очень важную роль в формировании генофонда малочисленных популяций. Именно дрейфом генов ученые объясняют отсутствие у североамериканских индейцев (коренных жителей) гена группы крови I B , и соответственно у них имеется только две группы крови (0 и А).

Доказательство дрейфа генов было получено в эксперименте на мухах-дрозофилах. Мух анализировали по одному признаку – строению щетинки

(адаптивного значения не имеет):

А – ген, определяющий нормальное строение щетинки;

а – ген, определяющий раздвоенность щетинки.

Взяли 96 ящиков, в каждый из них поместили по 4 самца и 4 самки. Из полученного потомства в каждом поколении методом случайной выборки оставляли в каждом ящике 4 самца и 4 самки. И так проделывали на протяжении 16 поколений. На 16-м поколении получили следующий результат: в 41 ящике все мухи имели генотип АА, в29 ящиках – генотип аа, в 26 – генотип Аа.

Методы изучения наследственности человека: генеалогический, близнецовый, биохимический, цитогенетический, генетики соматических клеток, популяционно-статистический, моделирования, методы изучения ДНК. Их сущность и возможности.

К методам, используемым в генетике человека, относятся следующие:

· генеалогический,

· близнецовый,

· цитогенетический,

· биохимический,

· генетики соматических клеток,

· популяционно-статистический,

· методы моделирования,

· молекулярно-генетические методы,

· дерматоглифики и пальмоскопии.

Для каждого метода необходимо знать его сущность (как проводится) и возможности.

К элементарным эволюционным факторам относят: мутационный процесс, дрейф генов, популяционные волны и изоляция.

Вопрос 2. Какую роль играют мутации в процессе эволюции?

Источником наследственной изменчивости являются мутации. В ходе полового размножения мутации могут широко распространяться в популяциях. Большинство организмов гетерозиготно по многим генам, т. е. в его клетках парные хромосомы несут разные аллели одного и того же гена.

Мутационный процесс – источник резерва наследственной изменчивости популяций. Поддерживая высокую степень генетического разнообразия популяций, он создаёт основу для действия естественного отбора.

Вопрос 3. В чём проявляется относительность полезности и вредности мутаций? Приведите примеры.

Для понимания эволюционных преобразований важно помнить, что мутации, вредные в одних условиях, могут повышать жизнеспособность в других условиях среды. Мутация, обусловливающая недоразвитие или полное отсутствие крыльев у насекомых, безусловно, вредна в обычных условиях, и бескрылые особи быстро вытесняются нормальными. Но на океанических островах и горных перевалах, где дуют сильные ветры, такие насекомые имеют преимущество перед особями с нормально развитыми крыльями.

Вопрос 4. Какие процессы приводят к изменению частоты встречаемости генов в популяциях?

Природные катастрофы – лесные или степные пожары, наводнения и т. п. – вызывают массовую неизбирательную гибель организмов, особенно малоподвижных форм (растения, моллюски, рептилии, земноводные и др.). Особи, избежавшие гибели, остаются в живых благодаря чистой случайности. В популяции, пережившей катастрофическое снижение численности, частоты генов будут иными, чем в исходной популяции. Вслед за спадом численности в оставшейся немногочисленной группе начинается массовое размножение. Генетический состав этой группы определит структуру всей популяции в период её расцвета. При этом некоторые мутации могут совсем исчезнуть, а концентрация других – резко повыситься.

Вопрос 5. Почему разные популяции одного и того же вида отличаются по частоте встречаемости различных вариантов генов?

В разных популяциях одного вида частота мутантных генов неодинакова. Практически нет двух популяций с совершенно одинаковой частотой встречаемости мутантных признаков. Эти различия могут быть обусловлены тем, что популяции обитают в неодинаковых условиях внешней среды. Направленное изменение частоты генов в популяциях обусловлено действием естественного отбора. Но и близко расположенные, соседние популяции могут отличаться друг от друга столь же значительно, как и далеко расположенные. Это объясняется тем, что в популяциях ряд процессов приводит к так называемому дрейфу генов – ненаправленному, случайному изменению частоты генов, или, другими словами, их генетической структуры.

Вопрос 6. Приведите пример географической изоляции популяций в регионе, где вы проживаете.

Река, протекающая на территории района, разделяет популяцию хвоща приречного.

Вопрос 7. Что такое микроэволюция?

Изменения популяций в ходе естественного отбора, ведущие к видообразованию, называют микроэволюцией.

Вопрос 1. Сформулируйте закон Харди—Вайнберга.
Закон Харди—Вайнберга. Частота гомозиготных и гетерозиготных организмов в условиях свободного скрещивания при отсутствии давления отбора и других факторов (мутации, миграции, дрейфа генов и др.) остается постоянной, т. е. пребывает в состоянии равновесия.
Закон Харди-Вайнберга устанавливает математическую зависимость между частотами аллелей аутосомных генов и генотипов и выражается следующими формулами:
рА + qа = 1;
р 2 (АА) + 2рq(Аа) + q 2 (аа) = 1,
где р(А) – частота доминантного аллеля гена,
q(а) - частота рецессивного аллеля гена,
р 2 (АА) - частота особей, гомозиготных по доминантному аллелю,
2рq(Аа) – частота гетерозиготных особей,
q 2 (аа) - частота особей, гомозиготных по рецессивному аллелю, то есть частота особей с рецессивным признаком,
р 2 (АА)+ 2рq(Аа) - частота особей с доминантным признаком,
2рq(Аа) + q 2 (аа) – частота особей, в генотипе которых имеется рецессивный аллель.
Необходимо отметить, что закон Харди—Вайнберга, как и другие генетические закономерности, основывается на принципе случайного комбинирования Менделя и точно выполняется при бесконечно большой численности популяции. На практике это означает, что популяции с численностью ниже некоторой минимальной величины не удовлетворяют требованиям закона Харди—Вайнберга.
Теоретически закон Харди-Вайнберга справедлив только для идеальных, или равновесных, популяций. Равновесными популяциями называются такие популяции, в которых выполняются следующие условия:
• популяция бесконечно велика; к ней можно применять законы вероятности, то есть когда в высшей степени маловероятно, что одно случайное событие может изменить частоты аллелей;
• имеет место панмиксия, то есть случайное образование родительских пар, без тенденции вступления особей в брак с партнерами, подобными или противоположными по генотипу;
• все аллели равно влияют на жизнеспособность гамет и потомки от всех возможных скрещиваний имеют равную выживаемость;
• популяция полностью изолирована, то есть, нет миграции особей, дающей приток или отток аллелей;
• новые мутации в данной популяции не появляются;
• отсутствует отбор;
• поколения не перекрываются во времени и не образуются родительские пары из особей, относящихся к разным поколениям.
Несмотря на то, что ни в одной реальной популяции эти условия не соблюдаются, равновесие частот генотипов в них все равно выполняется. Очень часто рассчитанные по формулам закона Харди-Вайнберга величины настолько близки к реальным, что этот закон оказывается вполне пригодным для анализа генетической структуры реальных популяций. Из этого следует, что можно рассчитать ожидаемые частоты генотипов, зная только некоторые из них.
Более того, на основе формул закона Харди-Вайнберга были разработаны подходы для характеристики факторов, изменяющих частоты аллелей в популяциях. Такими факторами являются:
• генетический дрейф;
• мутационный процесс;
• миграция;
• отбор;
• неслучайные скрещивания.

Вопрос 2. Какие процессы приводят к изменению частоты встречаемости генов в популяциях?
Изменение частоты генов в популяциях может происходить как под давлением факторов внешней среды в ходе естественного отбора, так и в виде ненаправленного случайного изменения частоты генов. Например, при миграции животных на новом месте обитания поселяется незначительная часть исходной популяции. Генофонд вновь образованной популяции будет меньше генофонда исходной популяции. Гены, ранее редко встречавшиеся вследствие полового размножения, быстро распространятся среди членов новой популяции. Другим примером могут послужить явления природных катастроф. Так, при лесных пожарах происходит массовая гибель животных и растений. Особи, избежавшие гибели, остаются в живых благодаря случайности. Они и дают начало новой популяции. Генетический состав группы выживших особей определяет генетическую структуру будущей популяции. Изменить частоту генов в популяции могут также периодические колебания численности, связанные со взаимоотношениями хищник—жертва, изоляция популяций друг от друга, близкородственные скрещивания (инбридинг).

Вопрос 3. Почему разные популяции одного вида отличаются по частоте генов?
Популяции, изолированные друг от друга, постоянно находятся под давлением различных комплексов факторов внешней среды. В неодинаковых условиях среды естественный отбор действует в сторону сохранения особей, чей генофонд обеспечивает их набором признаков и свойств, оптимальных для данной ситуации. Поэтому в популяциях, обитающих в различных условиях окружающей среды, частота встречаемости того или иного гена различна.

Вопрос 4. Что такое микроэволюция?
Микроэволюция — это процесс перестройки внутри вида, приводящий к образованию новых популяций, подвидов и заканчивающийся образованием новых видов.
Таким образом, микроэволюция — это самый начальный этап эволюционного процесса, она может происходить в относительно короткие промежутки времени, и ее можно наблюдать и изучать непосредственно. В результате наследственной (мутационной) изменчивости происходят случайные изменения генотипа. Самопроизвольная частота мутаций довольно высока, и 1-2 % половых клеток имеют мутированные гены или измененные хромосомы. Мутации чаще всего рецессивны и, кроме того, редко бывают полезными для вида. Однако если в результате мутации возникают полезные для какой-либо особи изменения, то она получает некоторые преимущества перед другими особями популяции: получает больше пищи или делается устойчивее к влияниям болезнетворных бактерий и вирусов и т.п. Например, возникновение длинной шеи позволило предкам жирафа питаться листьями с высоких деревьев, что обеспечивало им больше корма, чем особям популяции с короткой шеей.

Первым и основным является естественный отбор, даже в тех популяциях, в которых он, казалось бы, не действует он есть. На равном первому месте находится генетический дрейф, он характерен для небольших полиморфных популяций. Конечным же критерием встречаемости гена будет его адаптогенный потенциал, если ген полезен для процесса адаптации в конкретных условиях, то и встречать мы его будем чаще. То же характерно для эволюционно нейтральных некодирующих последовательностей, они могут встречаться спорадически, а могут быть крайне распространены, как например бОльшая часть генома кукурузы.

Читайте также: