Какие функции выполняет обмотка статора в синхронном генераторе и в асинхронном двигателе кратко

Обновлено: 02.07.2024

Синхронные машины вне зависимости от режима работы состоят из двух основных частей: неподвижного статора, выполняющего функции якоря и ротора, вращающегося внутри статора и служащего индуктором (рис. 4.1).

Статор трехфазной синхронной машины аналогичен статору трехфазного асинхронного двигателя. Он состоит из корпуса /, цилиндрического сердечника 2, набранного из отдельных пластин электротехнической стали, и трехфазной обмотки 3, уложенной в пазы сердечника.

Ротор синхронной машины представляет собой электромагнит постоянного тока, который создает магнитное поле, вращающееся вместе с ротором. Ротор имеет обмотку возбуждения 4, которая через специальные контактные кольца 5 питается постоянным током от выпрямителя или от небольшого генератора постоянного тока, называемого возбудителем.

Роторы синхронных машин бывают двух типов: с явно выраженными и неявно выраженными полюсами.

Роторы с явно выраженными полюсами (рис. 4.1) применяются в сравнительно тихоходных машинах (80 – 1000 об/мин), например гидрогенераторах; они имеют значительноечисло полюсов. Конструктивно роторы этого типа (рис. 4.2) состоят из вала 6, ступицы 7, полюсов 8, укрепляемых в шлицах ступицы, полюсных катушек 4 возбуждения, размещенных на полюсах.

Поверхность полюсного наконечника полюсов имеет такой профиль, что магнитная индукция в воздушном зазоре машины распределяется примерно по синусоидальному закону. Для быстроходных машин (турбогенераторы, синхронные двигатели, турбокомпрессоры и т. п.) явнополюсная конструкция ротора неприменима из-за сравнительно большого диаметра ротора и возникающих в связи с этим недопустимо больших центробежных сил.

Большей механической прочностью обладает ротор с неявно выраженными полюсами. Он состоит (рис. 4.3) из сердечника 1 и обмотки возбуждения 2. Сердечник изготовляется из стальной поковки цилиндрической формы. На его внешней поверхности фрезеруются пазы, в которые закладывается обмотка возбуждения.

Обмотка возбуждения распределяется в пазах сердечника так, чтобы создаваемое ею магнитное поле было распределено в пространстве по закону, близкому к синусоидальному.

Принцип работы и ЭДС синхронного генератора.

Работа синхронного генератора основана на явлении электромагнитной индукции. При холостом ходе обмотка якоря (статора) разомкнута, и магнитное поле машины образуется только обмоткой возбуждения ротора (рис. 4.4).


При вращении ротора синхронного генератора от проводного двигателя ПД с постоянной частотой nо магнитное поле ротора, пересекая проводники фазных обмоток статора AX, BY, CZ (рис.4.4,а) наводит в них ЭДС , где B – магнитная индукция в воздушном зазоре между статором и ротором; l – активная длина проводника; – линейная скорость пересечения проводников магнитным полем.

Выше отмечалось, что индукция В в воздушном зазоре распределена по синусоидальному закону , где — угол, отсчитываемый от нейтральной линии, поэтому ЭДС в одном проводнике .

Обозначив , получим , т.е. ЭДС в проводниках обмоток статора изменяется по синусоидальному закону.

ЭДС отдельных проводников каждой обмотки статора сдвинуты по фазе относительно друг друга, поэтому они суммируются геометрически (аналогично ЭДС статора асинхронного двигателя – см. п. 3.8.1). Действующее значение ЭДС одной фазы определяется выражением:

где – обмоточный коэффициент; – частота синусоидальных ЭДС; — число витков одной фазы обмотки статора; — число пар полюсов; – максимальный магнитный поток полюса ротора; – синхронная частота вращения.

Катушки отдельных фаз статора сдвинуты в пространстве на электрический угол, равный 120 0 , и их ЭДС образуют симметричную трёхфазную систему.

Изменяя ток возбуждения , можно регулировать магнитный поток ротора и пропорциональную ему ЭДС генератора. На рис. 4.5 представлена зависимость , снятая при номинальной частоте вращения .

Эта зависимость называется характеристикой холостого хода. Форма характеристики напоминает форму кривой намагничивания ферромагнитного сердечника. Характерной особенностью её является отсутствие пропорциональности между магнитным потоком и током возбуждения , что обусловлено явлением насыщения магнитной системы машины.

Принцип действия и вращающий момент синхронного двигателя.


Принцип действия синхронного двигателя основан на явлении притяжения разноименных полюсов двух магнитных полей – статора и ротора. Вращающееся поле статора с полюсами N и S создается при питании обмоток статора от трёхфазной сети аналогично вращающемуся полю асинхронного двигателя (на рис. 4.6 полюсы статора N и S показаны штриховкой, вращаются они против часовой стрелки с частотой ). Поле ротора создается постоянным током, протекающим по обмотке ротора.

В режиме идеального холостого хода (момент сопротивления ) оси магнитных полей статора и ротора совпадают (рис. 4.6.а). При этом на полюсы ротора действуют радиальные силы и , которые не создают ни вращающего момента, ни момента сопротивления.


Если к валу машины приложить механическую нагрузку, которая создает момент сопротивления , ось ротора и его полюсов , сместится в сторону отставания на угол (рис. 4.6,б). Теперь вращающее поле статора как бы “ведёт” за собой поле ротора и сам ротор. Тангенциальные составляющие и создают вращающий момент , где — радиус ротора.

Машина работает в двигательном режиме, её вращающий момент преодолевает момент сопротивления механической нагрузки.

При увеличении момента механической нагрузки на валу ротора угол увеличивается (до некоторого предела), что приводит к увеличению вращающегося момента двигателя , причем частота вращения ротора остается неизменной и равной .

Противодействующий момент и противо-ЭДС.

При работе синхронной машины в режиме нагруженного генератора (на схеме рис. 4.4,б нагрузка Zн подключена к обмоткам статора через выключатель Q) по обмоткам статора протекает ток, который создает своё вращающееся магнитное поле. В генераторном режиме, в отличие от двигательного режима, полюсы ротора опережают на угол полюсы магнитного поля статора.

В результате взаимодействия разноименных полюсов статора и ротора на ротор действует момент, направленный против вращения, т.е. тормозной момент . В установившемся режиме момент уравновешивает вращающийся момент приводного двигателя: .


При работе синхронной машины в режиме двигателя поле ротора пересекает витки трехфазной обмотки статора и в ней индуцируется ЭДС, которая согласно правилу Ленца действует навстречу току статора. По этой причине её называют противо-ЭДС. В установившемся режиме противо-ЭДС почти полностью уравновешивает напряжение сети .

Таким образом, при работе синхронной машины на нагрузку (электрическую или механическую) в обмотке статора индуцируется ЭДС Е и возникает момент ротора .

Реакция якоря в синхронной машине.

Реакция якоря – это воздействие поля якоря (статора) на магнитное поле машины. При работе синхронной машины на нагрузку (электрическую в режиме генератора и механическую в режиме двигателя) по обмоткам статора (якоря) протекают синусоидальные токи, которые создают вращающееся магнитное поле статора. Ротор имеет частоту вращения , поэтому частота ЭДС и тока статора , где — число пар полюсов машины.

Частота вращения магнитного поля статора .

Следовательно, поля ротора и статора вращаются с одной и той же частотой ; они взаимодействуют между собой и образуют результирующее вращающееся магнитное поле машины. Взаимодействие полей зависит от характера нагрузки и режима работы машины.


Рассмотрим реакцию якоря на примере двухполюсного синхронного генератора с неявно выраженными полюсами ротора, работающего на различную по характеру нагрузку .

При активной нагрузке с сопротивлением R ЭДС фазы обмотки статора и её ток совпадают по фазе и достигают максимума в тот момент, когда ось mm1 магнитного потока ротора Ф0 перпендикулярна оси nn1 катушки обмотки статора (например, АX на рис. 4.7,а).

Магнитный поток статора Фя замыкается по сердечникам статора и ротора через воздушный зазор. Таким образом, в случае активной нагрузки ось потока ротора Ф0 опережает ось потока статора Фя на электрический угол, равный 90 0 (поперечная реакция якоря).

При этом результирующий магнитный поток машины (ось qq1) поворачивается относительно потока ротора Ф0 на угол в направлении, противоположном направлению вращению ротора.

При чисто индуктивной нагрузке XL ток в обмотке статора отстаёт от ЭДС на 90 0 и поэтому достигает максимума в тот момент времени, когда полюс ротора повернётся на 90 0 по направлению вращения (рис. 4.7,б). В этом случае магнитный поток статора оказывается направленным навстречу магнитному потоку ротора и размагничивает машину ( ).

При емкостной нагрузке XC ток в фазе статора опережает ЭДС на 90 0 и поэтому достигает максимума в тот момент, когда полюс ротора не доходит на 90 0 до оси mm1 (рис. 4.7,в). Магнитный поток статора в этом случае оказывается направленным согласно с магнитным потоком ротора и намагничивает машину ( ).

При работе синхронной машины в режиме двигателя ток в статоре при том же направлении вращения имеет противоположное направление. Ось результирующего потока двигателя оказывается повернута относительно потока ротора на угол , но не против направления вращения, как у генератора, а по направлению вращения.

Таким образом, реакция якоря в синхронной машине изменяет как поток машины, так и его направление (в отличие от асинхронной машины, у которой ). Изменение Фрез приводит к изменению ЭДС, что неблагоприятно сказывается на работе потребителей электроэнергии при работе машины в режиме генератора.

Уменьшение неблагоприятного влияния реакции якоря достигается уменьшением магнитного потока статора за счёт увеличения воздушного зазора между ротором и статором синхронной машины.

Генератор - устройство, преобразующее один вид энергии в другой.
В данном случае рассматриваем преобразование механической энергии вращения в электрическую.

Различают два типа таких генераторов. Синхронные и асинхронные.

Синхронный генератор. Принцип действия

Отличительным признаком синхронного генератора является жёсткая связь между частотой f переменной ЭДС, наведённой в обмотке статора, и частотой вращения ротора n , называемой синхронной частотой вращения:

n = f / p

где p – число пар полюсов обмотки статора и ротора.
Обычно частота вращения выражается в об/мин, а частота ЭДС в Герцах (1/сек), тогда для количества оборотов в минуту формула примет вид:

n = 60·f / p


На рис. 1.1 представлена функциональная схема синхронного генератора. На статоре 1 расположена трёхфазная обмотка, принципиально не отличающаяся от аналогичной обмотки асинхронной машины. На роторе расположен электромагнит с обмоткой возбуждения 2, получающей питание постоянным током, как правило, через скользящие контакты, осуществляемые посредством двух контактных колец, расположенных на роторе, и двух неподвижных щёток.
В некоторых случаях в конструкции ротора синхронного генератора вместо электромагнитов могут использоваться постоянные магниты, тогда необходимость в наличии контактов на валу отпадает, но существенно ограничиваются возможности стабилизации выходных напряжений.

Приводным двигателем (ПД), в качестве которого используется турбина, двигатель внутреннего сгорания либо другой источник механической энергии, ротор генератора приводится во вращение с синхронной скоростью. При этом магнитное поле электромагнита ротора также вращается с синхронной скоростью и индуцирует в трёхфазной обмотке статора переменные ЭДС EA , EB и EC , которые будучи одинаковыми по значению и сдвинутыми по фазе относительно друг друга на 1/3 периода (120°), образуют симметричную трёхфазную систему ЭДС.

C подключением нагрузки к зажимам обмотки статора С1, С2 и С3 в фазах обмотки статора появляются токи IA, IB, IC , которые создают вращающееся магнитное поле. Частота вращения этого поля равна частоте вращения ротора генератора. Таким образом, в синхронном генераторе магнитное поле статора и ротор вращаются синхронно. Мгновенное значение ЭДС обмотки статора в рассматриваемом синхронном генераторе

e = 2Blwv = 2πBlwDn

Здесь: B – магнитная индукция в воздушном зазоре между сердечником статора и полюсами ротора, Тл;
l – активная длина одной пазовой стороны обмотки статора, т.е. длина сердечника статора, м;
w – количество витков;
v = πDn – линейная скорость движения полюсов ротора относительно статора, м/с;
D – внутренний диаметр сердечника статора, м.

Формула ЭДС показывает, что при неизменной частоте вращения ротора n форма графика переменной ЭДС обмотки якоря (ста- тора) определяется исключительно законом распределения магнитной индукции B в зазоре между статором и полюсами ротора. Если график магнитной индукции в зазоре представляет собой синусоиду B = Bmax sinα , то ЭДС генератора также будет синусоидальной. В синхронных машинах всегда стремятся получить распределение индукции в зазоре как можно ближе к синусоидальному.

где p – число пар полюсов.
В рассматриваемом генераторе (см. рис.1.1) два полюса, т.е. p = 1.
Для получения ЭДС промышленной частоты (50 Гц) в таком генераторе ротор необходимо вращать с частотой n = 50 об/с (n = 3000 об/мин).

Способы возбуждения синхронных генераторов

Самым распространенным способом создания основного магнитного потока синхронных генераторов является электромагнитное возбуждение, состоящее в том, что на полюсах ротора располагают обмотку возбуждения, при прохождении по которой постоянного тока, возникает МДС, создающая в генераторе магнитное поле. До последнего времени для питания обмотки возбуждения применялись преимущественно специальные генераторы постоянного тока независимого возбуждения, называемые возбудителями В (рис. 1.3, а). Обмотка возбуждения (ОВ) получает питание от другого генератора (параллельного возбуждения), называемого подвозбудителем (ПВ). Ротор синхронного генератора, возбудителя и подвозбудителя располагаются на общем валу и вращаются одновременно. При этом ток в обмотку возбуждения синхронного генератора поступает через контактные кольца и щётки. Для регулирования тока возбуждения применяют регулировочные реостаты, включаемые в цепи возбуждения возбудителя r1 и подвозбудителя r2 . В синхронных генераторах средней и большой мощности процесс регулирования тока возбуждения автоматизируют.


В синхронных генераторах получила применение также бесконтактная система электромагнитного возбуждения, при которой синхронный генератор не имеет контактных колец на роторе. В качестве возбудителя в этом случае применяют обращенный синхронный генератор переменного тока В (рис. 1.3, б). Трехфазная обмотка 2 возбудителя, в которой наводится переменная ЭДС, расположена на роторе и вращается вместе с обмоткой возбуждения синхронного генератора и их электрическое соединение осуществляется через вращающийся выпрямитель 3 непосредственно, без контактных колец и щёток. Питание постоянным током обмотки возбуждения 1 возбудителя В осуществляется от подвозбудителя ПВ – генератора постоянного тока. Отсутствие скользящих контактов в цепи возбуждения синхронного генератора позволяет повысить её эксплуатационную надёжность и увеличить КПД.

В синхронных генераторах, в этом числе гидрогенераторах, получил распространение принцип самовозбуждения (рис. 1.4, а), когда энергия переменного тока, необходимая для возбуждения, отбирается от обмотки статора синхронного генератора и через понижающий трансформатор и выпрямительный полупроводниковый преобразователь ПП преобразуется в энергию постоянного тока. Принцип самовозбуждения основан на том, что первоначальное возбуждение генератора происходит за счёт остаточного магнетизма машины.


На рис. 1.4, б представлена структурная схема автоматической системы самовозбуждения синхронного генератора (СГ) с выпрямительным трансформатором (ВТ) и тиристорным преобразователем (ТП), через которые электроэнергия переменного тока из цепи статора СГ после преобразования в постоянный ток подаётся в обмотку возбуждения. Управление тиристорным преобразователем осуществляется посредством автоматического регулятора возбуждения АРВ, на вход которого поступают сигналы напряжения на входе СГ (через трансформатор напряжения ТН) и тока нагрузки СГ (от трансформатора тока ТТ). Схема содержит блок защиты (БЗ), обеспечивающий защиту обмотки возбуждения (ОВ) от перенапряжения и токовой перегрузки.

Мощность, затрачиваемая на возбуждение, обычно составляет от 0,2 до 5 % полезной мощности (меньшее значение относится к генераторам большой мощности).
В генераторах малой мощности находит применение принцип возбуждения постоянными магнитами, расположенными на роторе машины. Такой способ возбуждения даёт возможность избавить генератор от обмотки возбуждения. В результате конструкция генератора существенно упрощается, становится более экономичной и надёжной. Однако, из-за высокой стоимости материалов для изготовления постоянных магнитов с большим запасом магнитной энергии и сложности их обработки применение возбуждения постоянными магнитами ограничено машинами мощностью не более нескольких киловатт.

Синхронные генераторы составляют основу электроэнергетики, так как практически вся электроэнергия во всём мире вырабатывается посредством синхронных турбо- или гидрогенераторов.
Так же синхронные генераторы находят широкое применение в составе стационарных и передвижных электроустановок или станций в комплекте с дизельными и бензиновыми двигателями.

Асинхронный генератор. Отличия от синхронного

Асинхронные генераторы принципиально отличаются от синхронных отсутствием жесткой зависимости между частотой вращения ротора и вырабатываемой ЭДС. Разницу между этими частотами характеризует коэффициент s - скольжение.

здесь:
n - частота вращения магнитного поля (частота ЭДС).
n r - частота вращения ротора.

Более подробно с расчётом скольжения и частоты можно ознакомиться в статье: асинхронные генераторы. Частота.

В обычном режиме электромагнитное поле асинхронного генератора под нагрузкой оказывает тормозной момент на вращения ротора, следовательно, частота изменения магнитного поля меньше, поэтому скольжение будет отрицательным. К генераторам, работающим в области положительных скольжений, можно отнести асинхронные тахогенераторы и преобразователи частоты.

Асинхронные генераторы в зависимости от конкретных условий применения выполняются с короткозамкнутым, фазным или полым ротором. Источниками формирования необходимой энергии возбуждения ротора могут являться статические конденсаторы или вентильные преобразователи с искусственной коммутацией вентилей.

Асинхронные генераторы можно классифицировать по способу возбуждения, характеру выходной частоты (изменяющаяся, постоянная), способу стабилизации напряжения, рабочим областям скольжения, конструктивному выполнению и числу фаз.
Последние два признака характеризуют конструктивные особенности генераторов.
Характер выходной частоты и методы стабилизации напряжения в значительной степени обусловлены способом образования магнитного потока.
Классификация по способу возбуждения является основной.

Можно рассмотреть генераторы с самовозбуждением и с независимым возбуждением.

Самовозбуждение в асинхронных генераторах может быть организовано:
а) с помощью конденсаторов, включенных в цепь статора или ротора или одновременно в первичную и вторичную цепи;
б) посредством вентильных преобразователей с естественной и искусственной коммутацией вентилей.

Независимое возбуждение может осуществляться от внешнего источника переменного напряжения.

По характеру частоты самовозбуждающиеся генераторы разделяются на две группы. К первой из них относятся источники практически постоянной (или постоянной) частоты, ко второй переменной (регулируемой) частоты. Последние применяются для питания асинхронных двигателей с плавным изменением частоты вращения.

Более подробно рассмотреть принцип работы и конструктивные особенности асинхронных генераторов планируется рассмотреть в отдельных публикациях.

Асинхронные генераторы не требуют в конструкции сложных узлов для организации возбуждения постоянным током или применения дорогостоящих материалов с большим запасом магнитной энергии, поэтому находят широкое применение у пользователей передвижных электроустановок по причине своей простоты и неприхотливости в обслуживании. Используются для питания устройств, не требующих жёсткой привязки к частоте тока.
Техническим достоинством асинхронных генераторов можно признать их устойчивость к перегрузкам и коротким замыканиям.
С некоторой информацией по мобильным генераторным установкам можно ознакомиться на странице:
Дизель-генераторы.
Асинхронный генератор. Характеристики.
Асинхронный генератор. Стабилизация.

Синхронным генератором (СГ) называют устройство, выполняющее функцию трансформации механической энергии в электрическую. Принцип работы и устройство синхронного генератора достаточно просты и надежны. Такое энергетическое оборудование востребовано для использования в мобильных авторемонтных мастерских, для ремонта и обслуживания станков-качалок, спецмашин нефтегазовой отрасли, на ГЭС, ТЭС, АЭС, в транспортных системах.

Основные конструктивные элементы

В конструкцию статора входит корпус, внутри которого расположен сердечник, или пакет, собираемый из листов электротехнической стали особой формы. На качество электрического тока влияют такие факторы как: цельность листов в пакете (бывают цельными или составными), качество и материал обмотки. Для обмотки применяется медный эмаль-провод, а в дешевых устройствах возможна замена меди на алюминий.

Роторы изготавливаются явнополюсными или неявнополюсными.

Определение скорости вращения

  • n — скорость вращения, об/мин;
  • f — частота, в бытовой электрической сети она равна 50 Гц;
  • p — количество пар полюсов.

Принцип работы СГ

Принцип работы синхронного генераторы: возбуждение ЭДС
Работа синхронной машины в режиме электродвигателя

Принцип действия машины в режиме синхронного генератора:

  1. При пропускании через обмотку возбуждения постоянного тока образуется стабильное во времени магнитное поле с чередующейся полярностью.
  2. При вращении магнитного поля относительно проводников обмотки якоря возбуждаются переменные ЭДС.
  3. Переменные ЭДС суммируются, образуя ЭДС фаз. Трехфазная система образуется тремя одинаковыми обмотками, размещаемыми на якоре под электрическим углом друг к другу, равным 120°.

В случаях, если централизованное электроснабжение имеет недостаточную мощность или отсутствует, как, например, на удаленных стройплощадках, нефтегазодобывающих объектах, морских и воздушных судах, СГ в составе с двигателем внутреннего сгорания функционируют в автономном режиме. При необходимости создания мощных источников питания синхронные двигатели включают на параллельную работу. Такой способ включения позволяет более полно использовать мощность каждой машины и при необходимости выводить отдельные СГ в ремонт без прекращения эффективного электроснабжения потребителей.

Второй режим работы синхронной машины — выполнение функций электродвигателя. Обычно СГ востребован в качестве двигателя в высокомощных установках более 50 кВт. Для работы в режиме электродвигателя обмотку статора подключают к электросети, а обмотку ротора — к источнику постоянного тока. Вращающий момент возникает при взаимодействии вращающегося магнитного поля СГ с постоянным током обмотки возбуждения.

Благодаря техническому прогрессу на современных производствах внедряются новые виды электропривода. Например, асинхронные двигатели с КЗ ротором с частотным преобразователем постепенно заменяют АДФР и ДПТ. Но есть машины, которые благодаря своим характеристикам продолжают эксплуатироваться — это синхронные двигатели, о них и пойдёт речь в этой статье.

Что такое синхронные машины и где их используют

В общем смысле синхронная электрическая машина — это машина, ротор которой вращается с такой же частотой, как и магнитное поле статора.

Если говорить о двигателе, то частота вращения его ротора совпадает с частотой вращения поля статора, порождаемого током питающей сети. То есть ротор вращается синхронно с этим полем отсюда и название - синхронный двигатель.

Синхронные машины обратимы — то есть могут работать и в режиме генератора, и в режиме двигателя. Поэтому в ходе статьи иногда могут проскакивать фазы не только о двигателях, но и о генераторах, их устройство почти одинаковое, а главное, отличие — в режиме работы.

Стоит отметить, что на электростанциях всех типов используются в основном синхронные генераторы. Они и вырабатывают практически всю электроэнергию в мире, а мощность таких генераторов может доходить до тысячи мегаватт, а в некоторых случаях и более.

Синхронные двигатели (СД) используются зачастую там, где нужна большая мощность (сотни и тысячи киловатт) для привода в движение различных механизмов и устройств, например, компрессоров, насосов, мельниц и другого оборудования, не требующего регулировки частоты вращения и частых пусков/остановок.

У синхронного двигателя три отличительных особенности:

1. Постоянная скорость на валу при любых нагрузках (в пределах номинальной). При этом скорость вращения ротора СД равна скорости вращения магнитного поля статора.

2. Изменяя ток возбуждения, возможно регулировать коэффициент мощности. Так в режиме перевозбуждения синхронный двигатель работает как компенсатор (генератор) реактивной мощности, улучшая общий cos Ф сети.

Из последнего ясно, почему его применяют для привода в движение устройств большой мощности, ведь использование асинхронных двигателей приведёт к ухудшению cos Ф, следовательно, и к увеличению нагрузки на сеть и счётов за электроэнергию.

Устройство

Как любой другой двигатель, синхронный состоит из статора и ротора.

Статор – это неподвижная часть машины, состоящая из корпуса и шихтованного сердечника. Шихтованный — значит, собран из тонких листов , изолированных друг от друга лаком или окалиной. В сердечнике есть пазы, в которые укладывается трёхфазная обмотка. То есть устройство статора синхронной машины такое же, как и у асинхронной.

В зависимости от габаритов машины статоры бывают разных конструкций — в виде цельного цилиндра, или набранным из сегментов, которые при сборке образуют цилиндр. Корпуса статоров мощных машин большого диаметра выполняют разъёмными из двух частей (разделяются пополам вдоль оси ротора), что облегчает транспортировку, монтаж и ремонт таких машин. У небольших машин корпуса выполняют цельными и в них запрессовывают статор.

Ротор – это вращающаяся часть электрической машины. Так как для работы любой синхронной машине нужно возбуждение, то на роторе располагается сердечник с обмоткой возбуждения или магниты. Сердечник и ротор могут быть выполнены в виде одной цельной детали или сборными.

У синхронных машин бывают роторы двух видов: неявнополюсным и явнополюсным.

Конструкция ротора: а) явнополюсный с одной парой полюсов; б) неявнополюсная; 1 — магнитопровод, 2 — полюса, 3 — обмотка возбуждения, 4 — контактные кольца, 5 — электрические;

Конструкция ротора: а) явнополюсный с одной парой полюсов; б) неявнополюсная; 1 — магнитопровод, 2 — полюса, 3 — обмотка возбуждения, 4 — контактные кольца, 5 — электрические;

Неявнополюсный ротор выполняется в виде стального цилиндра с продольно профезерованными пазами, в которые укладывается обмотка возбуждения. Может быть изготовлен в виде одной кованной детали с валом или сборным — в виде отдельной детали, напрессованной на вал. Чтобы во время работы обмотка не повредилась под действием центробежной силы, концы ротора прикрывают стальными бандажными кольцами из немагнитной стали.

У явнополюсного ротора обмотки расположены на полюсах сердечника, как бы выступающих над поверхностью ротора. В этом случае каждый полюс выполняется в виде отдельного элемента, который состоит из сердечника, катушки и полюсного наконечника. Сами полюсы крепятся, например, с помощью ласточкиного хвоста, на ободе, установленном на валу.

В зависимости от мощности машины и частоты вращения, используют один или другой тип ротора. В тихоходных машинах (до 1000 об/мин) используют явнополюсную конструкцию ротора. Поэтому у явнополюсных роторов зачастую много полюсов, подобно тому, что вы видите на рисунке выше.

При работе машин с большим числом оборотов (1500-3000 об/мин) на ротор действуют значительные центробежные силы, поэтому применяют неявнополюсный ротор. При этом неявнополюсный ротор может быть двухполюсным (при n 1=3000 об/мин) или четырёхполюсным (n 1=1500 об/мин)

Концы обмотки возбуждения выводятся на два токосъёмных кольца, а ток на них подаётся через щётки.

Возбуждение синхронных машин

Для работы синхронной машины на роторе должен быть расположен источник магнитодвижущей силы (МДС). Если это генератор, то магнитное поле ротора сцепляется с обмотками статора и наводит в них ЭДС, а у двигателя магнитные поля ротора и статора взаимодействуют друг с другом и ротор увлекается вслед за полем статора.

По способу возбуждения различают синхронные машины с обмоткой возбуждения и с постоянными магнитами.

При этом чаще встречаются машины с обмоткой возбуждением, или как его ещё называют — с электромагнитным возбуждением. Здесь при прохождении постоянного тока через обмотку и возникает МДС возбуждения, которое наводит магнитное поле в магнитной системе машины. А устройство, которое питает обмотку возбуждения, называют возбудителем (В).

Раньше для возбуждения синхронных машин использовались генераторы постоянного тока с самовозбуждением или с независимым возбуждением. Во втором случае для работы возбудителя нужно было подать ток и в его обмотку возбуждения. Для этого использовался ещё один генератор постоянного тока, но параллельного возбуждения — подвозбудитель (ПВ).

То есть ротор синхронной машины, якорь возбудителя и подвозбудитель располагаются на общем валу (или их валы соединяются непосредственно друг с другом) и вращаются одновременно, а подвозбудитель питает обмотку возбуждения возбудителя, чтобы тот мог выдавать ток в обмотку возбуждения синхронной машины. Для регулировки тока возбуждения используют регулировочные реостаты в цепи возбудителя r1 и подвозбудителя r2. Схема изображена на рисунке ниже под буквой а.

Чтобы снизить частоту обслуживания, повысить КПД и надёжность от такой системы отказались и перешли на тиристорные преобразователи, в нашей стране распространены преобразователи типа ТЕ320/45, ТЕ320/75 способные выдавать ток возбуждения до 320 ампер с напряжением 45 и 75 вольт соответственно, а также различные ВТЕ. Они подключаются к питающей сети, выпрямляют и регулируют ток, подаваемый на обмотку возбуждения, при этом возможна автоматическая или ручная регулировка тока. Способ регулировки в большей мере определяется мощностью машины и режимом её работы. КПД повышается за счёт снижения потерь при работе генераторов, отсутствии регулировочных реостатов.

Так как якорь возбудителя располагается на валу синхронной машины и вращается вместе с её обмоткой возбуждения, то возможно соединить их между собой непосредственно друг с другом без щёток.

Но возбудитель – это генератор переменного тока, а для возбуждения синхронных машин нужен постоянный. Для преобразования переменного тока в постоянный на валу располагается полупроводниковый выпрямитель (3), на вход которого подаётся ток обмотки якоря возбудителя, а его выход подключается к обмотке возбуждения синхронной машины.

На обмотку статора возбудителя подаётся постоянный ток от подвозбудителя (генератора) или от электронного преобразователя. В этом случае чтобы регулировать силу тока возбуждения синхронной машины изменяют ток статора возбудителя.

Преимущество такой системы в том, что она надёжна и её почти не нужно обслуживать, ведь при питании возбудителя от электронного преобразователя в системе полностью отсутствуют щётки. Перечисленные системы возбуждения используются как в генераторах, так и в двигателях.

Интересно, что на возбуждение затрачивается мощность в пределах 0,2…5% от полезной мощности машины, при этом у более мощных машин на возбуждение в процентном соотношении затрачивается меньшая мощность. А в машинах с постоянными магнитами мощность на возбуждение не затрачивается.

Кстати, насчёт постоянных магнитов — они используются в машинах малой мощности (до единиц киловатт), конструкция машины в этом случае упрощается и становится дешевле. Но не нашла широкого распространения в синхронных двигателях большой мощности из-за того, что мощные магниты стоят дорога, а материалы для них были в дефиците, и сложны в обработке материалов для постоянных магнитов.

Однако сейчас практически повсеместно используют мощные неодимовые магниты, они нашли применения в различных бесщёточных двигателях (BLDC ), которые используются в качестве привода в электротранспорте. Кстати, эти двигатели в целом похожи на синхронные, а одна из их разновидностей так и называется permanent magnet synchronous motor (PMSM) — синхронный двигатель с постоянными магнитами.

Особенности и принцип действия

Обмотки статора синхронного двигателя подключают к трёхфазной электросети, а на обмотку ротора подают постоянный ток от возбудителя. Но из-за большой инерционности ротор синхронного двигателя не может мгновенно развить своей скорости, он в принципе не может развернуться самостоятельно, так как пусковой момент у него отсутствует.

Поэтому для запуска двигателя используют такие способы его разгона до синхронной скорости:

1. Разгон с помощью вспомогательного двигателя.

2. Асинхронный пуск.

Один из самых распространённых способов – это асинхронный пуск. В этом случае на роторе синхронного двигателя, кроме обмотки возбуждения, должна быть расположена ещё и короткозамкнутая обмотка, как на АДКР.

Читайте также: