Какие бывают измерения в физике кратко

Обновлено: 05.07.2024

С давних пор человеку приходилось что-нибудь измерять и вычислять. Сначала люди ограничивались тем, что определяли: больше или меньше одно тело другого или они примерно равны. А как рассказать о размерах тела, если его нет перед глазами?

План урока:

Измерить – значит, сравнить

Нужно найти тело, принимаемое за единицу измерения, с которой сравниваются другие тела.

Выход был найден, когда ввели систему единиц СИ. Чтобы измерить любую величину, нужно сравнить ее с однородной величиной, принятой за единицу. Как же выбирают эти единицы?

Наиболее распространено измерение длины, размеров пройденного пути, расстояния. Все эти величины измеряются в метрах. Один метр получили следующим образом. Взяли одну сорока миллионную часть меридиана, который проходит через столицу Франции – Париж. Длину этой части и приняли за 1 метр. На стержне, изготовленном из иридия и платины, нанесли два деления, расстояние между которыми равно одному метру. Такой сплав меньше всего подвержен температурному влиянию, которое может изменить длину тела. Это стержень и есть эталон длины, с которым сравнивают единицу длины во многих странах мира. Метровые линейки – это многочисленные копии эталона, которыми как раз и можно пользоваться.

Эталон длины

Первый эталон метра был изготовлен из латуни в 1795 г. С 1960 г. используется изготовленный с помощью электронных технологий эталон из сплава иридия и платины.

Существует и эталон массы, равный одному килограмму. Он также изготовлен из сплава иридия и платины.

Со светом связана и единица времени – 1 секунда. А до 1960 года (год введения СИ) за основу подсчета времени брали время оборота Земли вокруг Солнца – 1 год, который по календарю состоит из 12 месяцев. Месяцы делятся на сутки – время полного оборота Земли вокруг своей оси, сутки - 24 часа, в каждом из которых 60 минут. А одна шестидесятая часть минуты и есть одна секунда.

При изучении быстро протекающих процессов требуется измерять миллиардные и еще более мелкие доли секунды. Для этого служат атомные часы.

Ученик седьмого класса, конечно же, умеет измерять длину и время, массу продуктов определяют продавцы с помощью весов.

По мере изучения физики будет идти знакомство с различными физическими величинами, способами и приборами их измерения. А сейчас надо знать:

  • чтобы измерить физическую величину, ее надо сравнить с однородной величиной, принятой за единицу;
  • за основу физических величин берутся эталонные значения, то есть образец сравнения.
  • для всех величин существуют свои способы, устройства и единицы измерения.

Солнечная система. Лапка мухи под микроскопом.

Чтобы достать до Альфа Центавры, звезды, ближайшей к Солнечной системе, надо со скоростью света (300 000 км/с) лететь четыре года. Расстояния до небесных тел огромны.

Существует способ краткой записи больших чисел в виде степени. Например, 1 000 000 = 10 6 . 10 – основание, а 6 – показатель степени.

Используя этот способ, расстояние от нашей планеты до Солнца запишется так:

150 000 000 000 = 15 ∙ 10 10 м – это промежуток называется астрономической единицей (1 а.е.) и служит единицей сравнения в Солнечной системе.

До Альфа-Центавры расстояние в 270 000 а.е., или 4 световых года. Световой год – это тоже астрономическая единица измерения расстояния. Астрономия – наука о космосе и космических телах. (1 св. год = 9,46 ∙ 10 15 м = 68 000а.е.).

Фото двойной звезды Альфа созвездия Центавра. (Источник)

Используя эти приставки можно записывать очень большие числа.

1 а.е. = 150 000 000 000 м = 150 ∙ 10 9 м = 150Гм;

1 св. год = 9 460 000 000 000 м = 9,46 ∙ 10 12 м = 9,46 Тм;

  • отобрать в книге некоторое число страниц N (N = 100, например);
  • измерить толщину L этих страниц (пусть L = 11 мм);
  • найти толщину одной страницы d по формуле d = L/N.

Получится d = 0,11 мм = 0, 00011 м. Это число очень маленькое.

Такой способ измерения малых величин называется методом рядов. Он достаточно прост.

Размеры пшена. Толщина проволоки.

Число меньше единицы, поэтому показатель степени – отрицательное число. Оно показывает количество цифр после запятой. Например, 0, 00011 м = 11 ∙ 10 -5 м.

Число 0,00000625 можно записать по-разному, применяя степень:

625 ∙ 10 -8 , 62,5 ∙ 10 -7 , 6,25 ∙ 10 -6 и т. д.

Очень маленькие числа по-другому можно записывать, используя таблицу дольных приставок.

Например, при изготовлении сверхточных приборов (телескопов, микроскопов и др.), детали ошлифовываются до очень гладкой поверхности. Неровности должны быть меньше 2,5 ∙ 10 -6 м или 2,5 мкм.

Большие и маленькие числа помогают человеку в различных отраслях деятельности: в науке, промышленности, медицине и т.д.

Как измерить длину. Погрешности измерений

На практике измерить длину отрезка достаточно просто:

  • Приложить линейку к отрезку.
  • Совместить ноль с началом отрезка.
  • Определить число, соответствующее концу отрезка.
  • Записать результат измерения.

Численное значение самого маленького деления шкалы прибора называется ценой деления.

Чтобы определить цену деления прибора (например, линейки), нужно взять любые два рядом стоящие числа и их разность поделить на число делений между ними (т.е. промежутков между штрихами).

Цена деления линейки = (7 см – 6 см)/10 = 0,1 см = 1 мм.

И чтобы начать измерение, прежде всего надо найти цену деления прибора, который используется в данном случае. Любое измерение дает некоторую погрешность, зависящую от качества прибора. Поэтому ее называют погрешностью прибора.

Шкалы различных приборов. (Источник)

Известно, что измерить какую-то величину – это значит сравнить ее с эталоном. На практике пользуются не эталонами, а специальными приборами (линейка, часы и др.), которые являются копиями с эталонов, изготовленными с определенной точностью. Абсолютно точных измерений не бывает. При использовании линейки допускается погрешность отсчета, которая равна половине цены деления прибора (0,5 мм). Сумма погрешностей прибора и отсчета называется абсолютной погрешностью. Она равна цене деления прибора.

Абсолютная погрешность обозначается значком Δ (дельта). Для школьной линейки Δ = 1 мм. Δ показывает, на сколько совершается ошибка при использовании того или иного прибора. Для более точных измерений используется штангенциркуль. В устройстве штангенциркуля заложено две шкалы, неподвижная (Δ = 1 мм) и подвижная (Δ = 0,1 мм).

А вот при помощи микрометра, где используется не перемещение шкалы, а ее вращение измерить длину можно с точностью до 0,01 мм. Но это еще не предел. В очень точных технологиях определяются размеры с точностью до 10 -7 м, в научных разработках точность возрастает во много раз. Но для этого нужны сверхточные приборы.

На практике, используя приборы, необходимо учитывать качество измерения. Величина, которая помогает это учесть, называется относительной погрешностью σ (сигма) и выражается в процентах.

σ = Δ / L ( L – измеренная величина)

Пример: Требуется замерить длину L отрезка различными приборами: 1) линейкой, 2) штангенциркулем и 3) микрометром. Длина отрезка получилась 55 мм. Какова относительная погрешность этих трех измерений?

1) Δ1 = 1 мм, L = 55 ± 1 мм, σ1 = 1 мм / 55 мм ≈ 0,018 (1,8%);

2) Δ2 = 0,1 мм, L = 55 ± 0,1 мм, σ2 = 0,1 мм / 55мм ≈ 0,0018 (0,18);

3) Δ3 = 0,01 мм, L = 55 ± 0,01 мм, σ3 = 0,01 мм / 55мм ≈ 0,00018 (0,018%).

Как видно, более точный прибор (микрометр) дает меньший процент ошибки.

Для каждого конкретного измерения в технике, практической деятельности человека и в науке существует своя точность измерения, в соответствии с которой применяются измерительные приборы.

Площадь и ее измерение

С измерением длин очень тесно связано измерение площадей. Из математики известны формулы площадей квадрата и прямоугольника. У квадрата все стороны равны, поэтому достаточно измерить одну сторону, а у прямоугольника противоположные стороны равны, поэтому надо знать длину и ширину. Площадь обозначается буквой S, и формулы для расчета площадей следующие:

Sкв = a 2 , Sпр = а ∙ в. Единицей измерения площади является квадратный метр (м 2 ).

Очень часто на практике имеют дело с различными кругами. Это может быть цирковая арена, крышка стола, разрез ствола дерева. Формула нахождения площади круга: S = πR 2 . (π (пи) – это бесконечная дробь ≈ 3,14 подробно изучается в курсе алгебры).

Арена цирка. Круглый стол. Спил дерева.

А как определить площадь, ограниченную произвольной кривой линией? Такая площадь может быть у озера, полянки в лесу, листочка с дерева.

Существует правило нахождения площади тел произвольной формы:

  • Разбить всю поверхность на равные квадраты с известной площадью.
  • Подсчитать количество целых квадратов.
  • Подсчитать число нецелых квадратов и поделить это число на два. (Это будет примерное количество целых квадратов).
  • Сложить результаты пунктов 2 и 3.
  • Умножить площадь одного квадрата на общее число целых квадратов.

Площадь больших территорий изображают в условном масштабе или фотографируют, применяют прием разбиения на квадраты и находят площадь фотографии. Используя масштаб вычисляют реальную площадь поверхности.

Довольно часто площадь приходится находить в географии. Каждое государство, область, город имеют свои площади. В строительстве – любое здание имеет площадь, которую необходимо знать строителям. В сельском хозяйстве ведется постоянный учет площадей для посевных культур.

Измерение объема. Мензурка

При измерении пространства нужно перейти к трем измерениям, так как представление о пространстве дает объем. Известны формулы объемов параллелепипеда, куба, шара, цилиндра.

Объем любого тела измеряется в кубических метрах (есть кратные и дольные единицы). Из математики известны формулы объемов:

Vпар = а ∙ в ∙ с (произведение длины, ширины и высоты),

Vк = а 3 (а - ребро куба),

Vцил = π ∙ r 2 ∙ h (r - радиус основания, h – высота цилиндра),

Vш = 4/3 π ∙ R 3 (R – радиус шара).

О вычислении объемов более сложной, но правильной, формы рассказывается в старших классах. А как определить объем, например, камня, форма которого может быть самой различной? Для измерения объемов таких тел используется специальный и очень простой прибор, который называется мензурка (или измерительный цилиндр). Это стеклянный сосуд с делениями. При помощи этого цилиндра легко найти объемы сыпучих тел и жидкостей. Для этого достаточно их засыпать вещество или налить в мензурку жидкость и, зная цену деления, определить объем.

На мензурке обычно ставится единица измерения в миллилитрах. Литр – это широко применяемая единица объема, равная одной тысячной кубического метра. 1 мл = 1 см 3 = 10 -6 м 3 .

Определить объем камня или любого другого тела неправильной формы с помощью мензурки можно при условии, что тело имеет размеры, позволяющие опустить его в мензурку.

Налить в мензурку воду и зафиксировать ее объем. Прикрепить тело неправильной формы к нити. Осторожно опустить полностью в воду. Уровень воды поднимется ровно на столько, чему равен объем тела.

Пользуясь измерительным цилиндром, нельзя забывать, что это прибор, имеющий шкалу, а значит, результат получится с погрешностью.

Физика является экспериментальной наукой. Ее законы базируются на фактах, установленных опытным путем. Однако, только экспериментальных методов физических исследований недостаточно, чтобы получить полное представление об изучаемых физикой явлениях.

Современная физика широко использует теоретические методы физических исследований, которые предусматривают анализ данных, полученных в результате экспериментов, формулировку законов природы, объяснение конкретных явлений на основе этих законов, а главное - предсказания и теоретическое обоснование (с широким использованием математических методов) новых явлений.

Теоретические исследования проводятся не с конкретным физическим телом, а с его идеализированным аналогом - физической моделью, которая имеет небольшое количество основных свойств исследуемого тела. Например, в ходе изучения некоторых видов механического движения используют модель физического тела - материальную точку.

Как измерить физическую величину

Физическая величина - это характеристика, которая является общей для многих материальных объектов или явлений в качественном отношении, но может приобретать индивидуальное значение для каждого из них.

Измерение физических величин называют последовательность экспериментальных операций для нахождения физической величины, характеризующей объект или явление. Измерить - значит сравнить измеряемую величину с другой, однородной с ней величиной, принятой за эталон.

Завершается измерения определением степени приближения найденного значение к истинному или к истинно среднему. Истинным средним характеризуются величины, которые носят статистический характер, например, средний рост человека, средняя энергия молекул газа и тому подобное. Такие параметры, как масса тела или его объем, характеризуются истинным значением. В этом случае можно говорить о степени приближения найденного среднего значения физической величины к ее истинному значению.

Готовые работы на аналогичную тему

Измерения могут быть как прямыми, когда искомую величину находят непосредственно по опытным данным, так и косвенным, когда окончательный ответ на вопрос находят через известные зависимости между физической величиной. Нас интересует и величины, которые можно получить экспериментально с помощью прямых измерений.

Путь, масса, время, сила, напряжение, плотность, давление, температура, освещенность - это далеко не все примеры физических величин, с которыми многие познакомились в ходе изучения физики. Измерить физическую величину - это значит сравнить ее с однородной величиной, взятой за единицу.

Измерение бывают прямые и косвенные. В случае прямых измерений величину сравнивают с ее единицей (метр, секунда, килограмм, ампер и т.д.) с помощью измерительного прибора, проградуированный в соответствующих единицах.

Основными экспериментально измеряемыми величинами являются расстояние, время и масса. Их измеряют, например, с помощью рулетки, часов и весов (или весов) соответственно. Существуют также приборы для измерения сложных величин: для измерения скорости движения тел используют спидометры, для определение силы электрического тока - амперметры и т. д.

Основные типы погрешностей измерений

Несовершенство измерительных приборов и органов чувств человека, а часто - и природа самой измеряемой величины приводят к тому, что результат при любом измерении получают с определенной точностью, то есть эксперимент дает не истинное значение измеряемой величины, а довольно близкое.

Точность измерения определяется близостью этого результата к истинному значение измеряемой величины или к истинному среднего, количественной мерой точности измерения является погрешность. В общем указывают абсолютную погрешность измерения.

Основные типы погрешностей измерений включают в себя:

  1. Грубые ошибки (промахи), которые возникают в результате небрежности или невнимательности экспериментатора. Например, отсчет измеряемой величины случайно проведенный без необходимых приборов, неверно прочитана цифра на шкале и тому подобное. Этих погрешностей легко избежать.
  2. Случайные ошибки возникают по разным причинам, действие которых различны в каждом из опытов, они не могут быть предусмотрены заранее. Эти погрешности подчиняются статистическим закономерностям и высчитываются с помощью методов математической статистики.
  3. Систематические ошибки возникают в результате неправильного метода измерения, неисправности приборов и т.д. Один из видов систематических погрешностей – погрешности приборов, определяющих точность измерения приборов. При считывании результат измерений неизбежно округляется, учитывая цену деления и, соответственно, точность прибора. Этих видов ошибок невозможно избежать и они должны быть учтены наряду со случайными ошибками.

В предложенных методических указаниях приведены конечные формулы теории погрешностей, необходимые для математической обработки результатов измерений.

Площадь в системе СИ

Площадь, объем и скорость являются производными единицами, их размерности происходят от основных единиц измерения.

В расчетах используют также кратные единицы, в целую степень десятки превышают основную единицу измерения. К примеру: 1 км = 1000 м, 1 дм = 10 см (сантиметров), 1 м = 100 см, 1 кг = 1000 г. Или частные единицы, в целый степень десятки меньше установленной единицы измерения: 1 см = 0,01 м, 1 мм = 0,1 см.

С единицами времени несколько иначе: 1 мин. = 60 с, 1 ч. = 3600 с. Частных является лишь 1 мс (миллисекунда) = 0,001 с и 1 мкс (микросекунда) = 10-6с.

Рисунок 1. Список физических величин. Автор24 — интернет-биржа студенческих работ

Измерение — совокупность операций по применению системы измерений для получения значения измеряемой физической величины.

Измерения могут быть классифицированы по метрологическому назначению на три категории:

Ненормированные – измерения при ненормированных метрологических характеристиках.

Технические – измерения при помощи рабочих средств измерений.

Метрологические – измерения при помощи эталонов и образцовых средств измерений.

Ненормированные измерения наиболее простые. В них не нормируются точность и достоверность результата. Поэтому область их применения ограничена. Они не могут быть применены в области, на которую распространяется требование единства измерений. Каждый из нас выполнял ненормированные измерения длины, массы, времени, температуры не задумываясь о точности и достоверности результата. Как правило, результаты ненормированных измерений применяются индивидуально, т.е. используются субъектом в собственных целях.

Технические измерения удовлетворяют требованиям единства измерений, т.е. результат бывает получен с известной погрешностью и вероятностью, записывается в установленных единицах физических величин, с определённым количеством значащих цифр. Выполняются при помощи средств измерений с назначенным классом точности, прошедших поверку или калибровку в метрологической службе. В зависимости от того, предназначены измерения для внутрипроизводственных целей или их результаты будут доступны для всеобщего применения, необходимо выполнение калибровки или поверки средств измерений. Средство измерений, прошедшее калибровку или поверку, называют рабочим средством измерений. Примером технических измерений является большинство производственных измерений, измерение квартирными счётчиками потреблённой электроэнергии, измерения при взвешивании в торговых центрах, финансовые измерения в банковских терминалах. Средство измерений, применяемое для калибровки других средств измерений, называют образцовым средством измерений. Образцовое средство измерений имеет повышенный класс точности и хранится отдельно, для технических измерений не применяется.

Метрологические измерения не просто удовлетворяют требованиям единства измерений, а являются одним из средств обеспечения единства измерений. Выполняются с целью воспроизведения единиц физических величин для передачи их размера образцовым и рабочим средствам измерений. Метрологические измерения выполняет метрологическая служба в стандартных условиях, сертифицированным персоналом.

Можно выделить следующие виды измерений.

1) По характеру зависимости измеряемой величины от времени методы измерений подразделяются на:

  • статические, при которых измеряемая величина остается постоянной во времени;
  • динамические, в процессе которых измеряемая величина изменяется и является непостоянной во времени.

2) По способу получения результатов измерений (виду уравнений измерений) методы измерений разделяют на прямые, косвенные, совокупные и совместные.

При прямом измерении искомое значение величины находят непо­средственно из опытных данных (например, измерение диаметра штан­генциркулем).

При косвенном измерении искомое значение величины определяют на основании известной зависимости между этой величиной и величинами, подвергаемыми прямым измерениям.

Совместными называют измерения двух или нескольких не одноимённых величин, производимые одновременно с целью нахождения функциональной зависимости между величинами (например, зависимости длины тела от температуры).

Совокупные – это такие измерения, в которых значения измеряемых величин находят по данным повторных измерений одной или нескольких одноименных величин (при различных сочетаниях мер или этих величин) путем решения системы уравнений.

3) По условиям, определяющим точность результата измерения, мето­ды делятся на три класса.

Измерении максимально возможной точности (например, эталонные измерения), достижимой при существующем уровне техники.

Контрольно-поверочные измерения, погрешность которых с определенной вероятностью не должна превышать некоторое заданное значение.

Технические измерения, в которых погрешность результата определяется характеристиками средств измерения.

4) По способу выражения результатов измерений различают абсолютные и относительные измерения.

Абсолютное измерение основано на прямых измерениях величины и (или) использования значений физических констант.

При относительных измерениях величину сравнивают с одноименной, играющей роль единицы или принятой за исходную (например, измерение диаметра вращающейся детали по числу оборотов соприкасающегося с ней аттестованного ролика).

5) В зависимости от совокупности измеряемых параметров изделия различают поэлементный и комплексный методы измерения.

Поэлементный метод характеризуется измерением каждого параметра изделия в отдельности (например, эксцентриситета, овальности, огранки цилиндрического вала).

Комплексный метод характеризуется измерением суммарного пока­зателя качества (а не физической величины), на который оказывают влияние отдельные его составляющие (например, измерение радиального биения цилиндрической детали, на которое влияют эксцентриситет, овальность и др.).

2. Методы измерений

Метод измерений – прием или совокупность приемов сравнения измеряемой физической величины с ее единицей в соответствии с реализо­ванным принципом измерений. Можно выделить следующие методы из­мерений.

По способу получения значения измеряемых величин различают два основных метода измерений.

Метод непосредственной оценки – метод измерения, при котором значение величины определяют непосредственно по отсчетному устройству измерительного прибора прямого действия.

Метод сравнения с мерой – метод измерения, при котором измеряемую величину сравнивают с величиной, воспроизводимой мерой.

Разновидности метода сравнения:

  • метод противопоставления, при котором измеряемая величина и величина, воспроизводимая мерой, одновременно воздействуют на прибор сравнения;
  • дифференциальный метод, при котором измеряемую величину срав­нивают с известной величиной, воспроизводимой мерой;
  • нулевой метод, при котором результирующий эффект воздействия величин на прибор сравнения доводят до нуля (например, измерение электрического сопротивления по схеме моста с полным его уравнове­шиванием);
  • метод совпадений, при котором разность между измеряемой величи­ной и величиной, воспроизводимой мерой, определяют, используя совпа­дения отметок шкал или периодических сигналов (например, считывание размера по основной и нониусной шкалам штангенциркуля).

При измерении линейных величин независимо от рассмотренных методов различают контактный и бесконтактный методы измерений.

В зависимости от измерительных средств, используемых в процессе измерения, различают:

  • инструментальный метод;
  • экспертный метод, который основан на использовании данных не­скольких специалистов (например, в квалиметрии, спорте, искусстве, медицине);
  • эвристические методы, которые основаны на интуиции. Широко ис­пользуется способ попарного сопоставления, когда измеряемые величины сравниваются между собой попарно, а затем производится ранжирование на основании результатов этого сравнения;
  • органолептические методы оценки, которые основаны на использо­вании органов чувств человека (осязания, обоняния, зрения, слуха, вкуса). Например, оценка шероховатости поверхности по образцу зрительно или на ощупь.

3. Понятие о точности измерений

Точность результата измерения – характеристика качества измерения, отражающая близость к нулю погрешности его результата.

Эти погрешности являются следствием многих причин: несовершенства средств измерений, метода измерений, опыта оператора; недостаточной тщательности проведения измерения; воздействия внешних условий и т.д. Для оценки степени приближения результатов измерения к истинному значению измеряемой величины используются методы теории вероятности и математической статистики, что позволяет с определенной достоверностью оценить границы погрешностей, за пределы которых они не выходят. Это дает возможность для каждого конкретного случая выбрать средства и методы измерения, обеспечивающие измерение результата, погрешности которого не превышают заданных границ с требуемой степенью доверия к результатам измерений (достоверностью).

Класс точности – обобщённая метрологическая характеристика средства измерения.

Класс точности определяется и обозначается по-разному. Наибольшее распространение получили три варианта, каждый представляет собой выраженное в процентах значение относительной погрешности:

– относительно измеренного значения (относительная погрешность),

– относительно максимального значения шкалы (приведённая погрешность),

– относительно участка шкалы (приведённая к участку шкалы погрешность).

Рассмотрим эти три варианта.

Вариант 1. Относительная погрешность.

Чтобы по классу точности определить значение абсолютной погрешности, результат измерения умножают на класс точности и делят на сто, чтобы избавиться от процентов. Например, вольтметром класса точности 0,1 получено значение 10,000 В.

Абсолютная погрешность составит: (10,000 В ∙ 0,1 %) / 100 % = 0,010 В. Запись результата: (10,000 ± 0,010) В, с вероятностью 95 % (эта вероятность по умолчанию назначается для технических измерений, исходя из этой вероятности определяется и класс точности). При нормировании по относительной погрешности, значение класса точности заключают в кружок. Как правило, обозначение класса точности размещают в правом нижнем углу на шкале средства измерений.

Вариант 2. Приведённая погрешность.

Чтобы по классу точности определить значение абсолютной погрешности, максимальное значение шкалы умножают на класс точности и делят на сто, чтобы избавиться от процентов. Например, вольтметром класса точности 0,1 получено значение 10,000 В. Максимальное значение шкалы составляет 20,000 В.

Абсолютная погрешность составит: (20,000 В ∙ 0,1 %) / 100 % = 0,020 В. Запись результата: (10,000 ± 0,020) В, с вероятностью 95 %. При нормировании по приведённой погрешности, значение класса точности не сопровождают никакими знаками.

Вариант 3. Приведённая к участку шкалы погрешность.

Чтобы по классу точности определить значение абсолютной погрешности, размер участка шкалы умножают на класс точности и делят на сто, чтобы избавиться от процентов. Рассмотрим два примера, для случая, когда вся шкала поделена на два участка.

Пример 1. Участок шкалы от 0,000 В до 12,000 В, отмечен галочкой. Вольтметром класса точности 0,1 получено значение 10,000 В.

Абсолютная погрешность составит: (12,000 В ∙ 0,1 %) / 100 % = 0,012 В. Запись результата: (10,000 ± 0,012) В, с вероятностью 95 %.

Пример 2. Участок шкалы от 12,000 В до 20,000 В, также отмечен галочкой. Вольтметром класса точности 0,1 получено значение 15,000 В.

Абсолютная погрешность составит: (8,000 В ∙ 0,1 %) / 100 % = 0,008 В. Запись результата: (15,000 ± 0,008) В, с вероятностью 95 %. При нормировании по приведённой к участку шкалы погрешности, значение класса точности помещают над галочкой. Участки шкалы, относительно которых нормируется погрешность, обозначают галочками.

Варианты классов точности обусловлены отличием конструктивных, системных и схемотехнических решений средств измерений.

Корректная запись результатов

Запись результатов измерений производится по следующим правилам.

1) Погрешность указывается двумя значащими цифрами, если первая равна 1 или 2. Погрешность указывается одной значащей цифрой, если первая равна 3 или более. Все остальные цифры должны быть не значащими.

Значащей цифрой называется любая цифра числа, записанного в виде десятичной дроби, начиная слева с первой отличной от нуля цифры, независимо от того, где она находится – до запятой или после запятой.

2) Результат измерения округляется в соответствии с его погрешностью, т.е. записывается с той же точностью, что и погрешность.

Рассмотрим пример. Результат измерения: 10,645701, погрешность 0,012908.

1) Рассматриваем погрешность. Первая значащая цифра 1, поэтому оставляем две значащие цифры, округляя, записываем: 0,013.

2) Рассматриваем результат измерения. Погрешность записана с точностью до третьего знака после запятой, поэтому в результате также оставим три знака. Округляя, записываем: 10,646.

Корректная запись: 10,646 ± 0,013.

Корректная запись обеспечивает адекватность и сопоставимость результатов различных измерений и является одним из элементов единства измерений. Как правило, отбрасывание избыточных цифр не приводит к дополнительной погрешности, поскольку избыточные цифры обусловлены точностью вычислений, а не точностью измерений.

4. Основы обеспечения единства измерений

Специализация и кооперирование производства в масштабах страны, основанные на принципах взаимозаменяемости, требуют обеспечения и сохранения единства измерений.

Обеспечение единства измерений – деятельность метрологических служб, направленная на достижение и поддержание единства измерений в соответствии с правилами, требованиями и нормами, установленными государственными стандартами и другими нормативно-техническими документами в области метрологии.

Обеспечение единства измерений является задачей метрологических служб.

Метрологическая служба – совокупность субъектов, деятельности и видов работ, направленных на обеспечение единства измерений.

Закон определяет, что Государственная метрологическая служба находится в ведении Госстандарта России и включает: государственные научные метрологические центры; органы Государственной метрологической службы регионов страны, а также городов Москва и Санкт-Петербург.

Физическое измерение является актом определения значения или значений некоторого количества ( длинами , мощность, и т.д. ) , по сравнению с постоянным количеством того же вида , взятым в качестве точки отсчета ( стандартного или единиц ). Согласно каноническому определению:

Чтобы измерить количество, нужно сравнить его с другим количеством того же вида, взятым за единицу.

Физические измерения направлены на объективность и воспроизводимость . Сравнение цифровое ; мы выражаем четко определенную характеристику объекта рациональным числом, умноженным на единицу. Полный результат физического измерения включает числовую оценку величины, обозначение единицы измерения , выражение неопределенности измерения и основные условия испытания. Неопределенность является неотъемлемой частью измерения и даже может быть его основным результатом.

В физике физическое измерение определяется как определение числового значения величины путем интерпретации результата эксперимента или наблюдения. Условия и методы этого эксперимента или наблюдения определяют неопределенность.

Международное бюро мер и весов была создана Международная система единиц и стандартов для публикации результатов измерений , позволяющих их прямое сравнение.

Резюме

Общий

«В физических науках важный первый шаг в изучении предмета - это найти, как воспринимать его в числах, и методы измерения качества, которое с ним связано. Я часто говорю, что если вы можете измерить то, о чем вы говорите, и выразить это числами, вы кое-что об этом узнаете; но если вы не можете измерить это, дать количественную оценку, ваши знания очень плохи и неудовлетворительны: это может быть начало знания, но вы еще не продвинулись в своих мыслях до стадии науки , какой бы предмет ни был. "

Физические измерения являются фундаментальными в большинстве научных областей (химия, физика, биология и т . Д. ). Это важно для большого количества промышленных и коммерческих приложений.

В естественных науках измерение - это метод объективного и воспроизводимого сравнения характеристик объектов. Вместо того, чтобы сравнивать объекты два на два, мы указываем отношение каждого из них к объекту, определенному соглашением, называемым единицей измерения .

В простейших методах, используемых с древних времен, используется подсчет единиц и вычисление дробей, как в цепочке геодезистов . Измерительный прибор представляет собой материал , воспроизведение блока, заверенный органом. Измерительные устройства были усовершенствованы одновременно с созданием физики как науки о математических моделях отношений между величинами. Они изобрели после XVII - го века часто заканчивается с суффиксом -метровыми предшествует термин для переменного процесса, как и в термометре , где тепло напоминает имя тепла в древнегреческих , или единствах, как и в вольтметре , измерение электрического напряжения между его клеммами в вольт .

Доступ к физической величине часто осуществляется через одно или несколько преобразований в другую величину. Все элементы устройства составляют цепочку измерения от явления до цифрового результата .

Степень уверенности в физических измерениях зависит от инструмента и процедуры. Хотя результат измерения обычно дается числом, за которым следует единица измерения, он имеет как минимум три компонента: оценку, неопределенность и вероятность того, что измерение находится в заданном интервале. Например, измерение длины доски может дать 9 метров плюс-минус 0,01 метра с вероятностью 0,95. Другими словами, если мы измерим эту длину 100 раз, примерно 95 раз, мы найдем значение от 8,99 до 9,01 метра (мы говорим о 95% доверительном интервале ).

Метрология является вспомогательной наукой физики , посвященных изучению измерения физических величин, определение их подразделений, а также практическая реализация манипуляций , чтобы прийти к численному результату.

Характеристика меры

Расчет неопределенности

Одной из основных характеристик физических измерений является неопределенность, которой они обладают.

Определение определенных величин, таких как частота , подразумевает неопределенность измерения, поскольку она не определяется интегралом от минус бесконечности до плюс бесконечности, и, следовательно, при условии, что рассматриваемое периодическое явление известно без каких-либо ограничений., Что не так. в некоторой степени.

Процесс измерения часто включает вычисления, которые могут включать несколько величин или передаточные функции, которые не обязательно являются линейными . Таким образом, необходимо выполнить расчеты распространения неопределенностей, чтобы определить неопределенность результата.

Проблема измерения в квантовой механике

В квантовой механике , то есть в атомном масштабе, два явления стоят на пути измерения:

  • принцип неопределенности заявлено Вернера Гейзенберга , в частности , в отношении связи между импульсом и положением;
  • хрупкость квантовой информации в условиях измерений , что означает , что измерение влияет на объект измерения.

Эти особенности делают измерения в масштабе частиц полем, строго отдельным от физических измерений в макроскопическом масштабе, которые касаются объектов, минимальный размер которых соответствует размеру материальной точки , материальной частицы или жидкой частицы .

Эпистемология измерения

В эпистемологии осматривает на какие отведения знаний измерения.

Системы измерения

До того, как единицы Международной системы были приняты во всем мире, существовало (одновременно или нет) множество систем, более или менее практичных и более или менее обобщенных с точки зрения областей распространения, профессионального использования или других.

Неметрические измерительные системы

Имперская система (Великобритания, Содружество и США)

Метрическая система


Метрическая система является десятичной системой единиц , основанных на метре и граммах . Он поставляется во многих вариантах с различным выбором базовых блоков, хотя это никак не влияет на его повседневное применение. С 1960-х годов Международная система единиц (СИ), подробно описанная ниже, является международно признанной стандартной метрической системой. Метрические единицы массы, длины и электричества широко используются как в быту, так и в научных целях. Основное преимущество метрической системы состоит в том, что она имеет одну базовую единицу для каждой физической величины. Все остальные единицы являются степенями 10 базового блока. Таким образом, преобразование единиц измерения осуществляется просто, поскольку достаточно умножить (соответственно разделить) на 10, 100, 1000 и т. Д. переключаться с одного устройства на другое. Все длины и расстояния, например, измеряются в метрах, или тысячных долях метра (миллиметрах), или тысячах метров (километрах) и так далее. Следовательно, нет такого изобилия различных единиц с разными коэффициентами для преобразования, как в имперской системе. Использование дроби (например, 2/5 метра) не запрещено, но является необычным.

Международная система

Общий

Международная система единиц (сокращенно СИ ) - это современная и переработанная форма метрической системы. Это самая распространенная система единиц в мире, как в повседневной жизни, так и в научных областях. СИ был разработан в 1960-х годах на основе системы MKS ( метр - килограмм - секунда ), а не системы CGS ( сантиметр - грамм - секунда ), которая имеет несколько вариантов. СИ с самого начала ввела множество новых единиц, которые изначально не были частью метрической системы.

Есть два типа единиц СИ: базовые и второстепенные. Базовые единицы - это измерения, соответствующие времени, длине, массе, температуре, количеству (объектов), электрическому току и интенсивности света. Вторичные блоки построены на базовых блоках; например, плотность выражается в кг / м 3 .

Префиксы преобразования

Основные размеры

В физических межсоединений по математических зависимостей измеряемых величин, поэтому мы всегда можем вернуть их обратно, путем анализа размерностей , небольшое количество базовых величин.

Базовые количества и размеры СИ
Базовый размер Символ
размера
Длина L >>
Масса M >>
Время или продолжительность Т >>
Электрическая интенсивность я >>
Термодинамическая температура Θ >>
Количество материи НЕТ >>
Интенсивность света J >>

Длина

Измеренные длины выражаются в международной системе в метрах (обозначение: м). В повседневной жизни и в зависимости от случая мы регулярно используем несколько токов: километр, сантиметр и миллиметр:

Масса

Время

В международной системе измерения времени производятся в секундах . Вторая единица является единственной единицей международной системы, использование которой сохраняет ссылку на шестидесятеричную систему счета, имея производные единицы более высокого порядка, которые не кратны 10 базовой единице, а кратны 60 ( минута , час ), затем 24. ( день ) и т. д.

Читайте также: