Как регулируется коэффициент мощности синхронного двигателя кратко

Обновлено: 05.07.2024

Характеристиками синхронного генератора, работающего параллельно с сетью, при регулировании активной мощности называют зависимости тока якоря генератора Iя, коэффициента мощности генератора cosφ и тока приводного двигателя Iдв от активной мощности P2, отдаваемой генератором в сеть при неизменном токе возбуждения генератора Iв, неизменном напряжении Uc и неизменной частоте сети fc, т.е. Iя, cosφ, Iдв = f(P2) при Iв = const, Uc = const, fc = const.

Регулирование активной мощности, отдаваемой синхронным генератором в сеть, осуществляют путем изменения момента приводного двигателя. Опыт проводится при неизменном токе возбуждения генератора. Момент приводного двигателя изменяют при помощи регулировочного реостата R2. Скорость вращения двигателя и генератора остается при этом неизменной, т.к. генератор синхронизирован с сетью. Мощность изменяют от нуля до величины, соответствующей номинальному току якоря генератора, делая при этом 6 — 7 отсчетов тока якоря генератора Iя (амперметр А1), тока якоря приводного двигателя Iдв (амперметр A3) и активной мощности P2 (ваттметр W). Результаты отсчетов заносят в таблицу 1. Примерный вид зависимостей Iя, cosφ, Iдв = f(P2)показан на рисунке 6.

Рисунок 6 – Характеристики СГ, работающего параллельно с сетью, при
регулировании активной мощности

Результаты опыта и расчета заносят в таблицу 1.

№ п/п Опытные данные Расчетные данные
Uг, В Р2, Вт Iя, А Iдв, А S, В∙А cosφ

Регулирование реактивной мощности синхронного генератора

Характеристиками синхронного генератора, работающего парал­лельно с сетью, при регулировании реактивной мощности называют зави­симости реактивной мощности Q, тока якоря Iя и коэффициента мощности cosφ от тока возбуждения генератора Iв при неизменном напряжении сети Uc, неизменном значении частоты сети fc и постоянной величине активной мощности P2, т.е. Q, Iя, cosφ = f(Iв), при Uc = const, fc = const, P2 = const.

Регулирование реактивной мощности синхронного генератора осуществляют путем изменения тока в обмотке возбуждения. Опыт регулирования реактивной мощности проводят при поддержании постоянной величины отдаваемой в сеть активной мощности P2. Вначале следует увеличить ток возбуждения до значения, при котором ток якоря повысится примерно до номинального. Эту точку принять за исходную, а затем снижать ток возбуждения до величины, пока ток якоря, пройдя минимум, не достигнет опять примерно номинальной величины. В указанном интервале изменения тока возбуждения произвести 10 — 12 отсчетов тока возбуждения, тока якоря и активной мощности. Постоянство активной мощности контролируют по ваттметру W и поддерживают ее неизменной с помощью реостата R2. Значения Q и cosφ вычисляют по данным опыта. Результаты регулирования реактивной мощности заносят в таблицу 2. Примерный вид зависимостей Q, Iя, cosφ = f(Iв) показан на рисунке 7.

Существенной особенностью синхронных двигателей является то, что они, работая с механической нагрузкой, позволяют в широких пределах изменять потребляемый из сети реактивный ток и реактивную мощность. Осуществляется это путем изменения тока возбужденияIв с помощью реостата rр (см. рис. 11.8).

Предположим, что двигатель работает при постоянном моменте статического сопротивления (Мс = const) и что некоторому току возбуждения Iв1 соответствуют ЭДС Е01, ток I1, углы φ1 и θ1(рис. 11.12, а).

Прямым следствием изменения тока Iв является изменение магнитного потока Ф0, а значит, и ЭДС E0; последнее приводит к изменению тока якоря I. Так как М = const, то при различных Iвмомент двигателя М и мощность Рэм будут оставаться также неизменными, поскольку при установившихся режимах работы с различными токами M = Mc = const, а Рэм = Mω. Если не учитывать потерь мощности I 2 r, то можно считать неизменной и мощность Рφ.

Из выражения Рэм = Мω и (11.14) следует, что Рэм = 3U E0 sin θ.
xc

Очевидно, мощность Рэм будет постоянной при изменении тока возбуждения, если Е0 sin θ = const. Последнее означает, что геометрическим местом концов векторов ЭДС при изменении токаIв является линия АБ, параллельная вектору напряжения U.

На основании выражения Рφ = 3 UIcos φ можно сделать вывод о том, что мощность Рφ будет постоянной, если Icos φ = const, т. е. если остается постоянной активная составляющая тока. Геометрическим местом концов вектора тока I при изменении тока Iв является, очевидно, линияВГ, перпендикулярная вектору напряжения U.

Чтобы составить представление о влиянии тока Iв на реактивный ток и реактивную мощность двигателя, на рис. 11.12, а совмещено несколько векторных диаграмм для различных токов возбуждения.

Рис. 11.12. Векторные диаграммы синхронного двигателя при различных токах возбуждения (а) и U-образные характеристики при различных мощностях (б)
Рис. 11.13 Векторная диаграмма синхронного компенсатора

При некотором токе возбуждения Iв2 > Iв1 двигатель имеет ЭДС Е02 и токI2, совпадающий по фазе с напряжением (φ2 = 0). Реактивные составляющие тока якоря и потребляемой двигателем мощности в этом случае равны нулю. При недовозбуждении (Iв1 0) и потребляемой мощности, а при перевозбуждении (Iв3 > Iв2 и Е03 > Е02) — емкостные составляющие тока (φ3

Зависимость I (Iв), показывающая, как изменяется ток якоря I при изменении тока возбуждения Iв в случае постоянной мощности, называется U-образной характеристикой синхронного двигателя. Несколько таких характеристик для различных значений мощностей приведены на рис. 11.12, б. Минимальные значения токов I получаются при cos φ = l. Область, расположенная слева от пунктирной линии, соответствует работе с токами, отстающими по фазе от напряжения, справа — с токами, опережающими напряжение.

Свойство перевозбужденного синхронного двигателя потреблять кроме активной составляющей тока и активной мощности емкостную составляющую тока и емкостную мощность, используют для повышения (компенсации) коэффициента мощности других потребителей, создающих активно-индуктивную нагрузку системы. Используя указанное свойство синхронных двигателей, оказалось возможным создавать синхронные машины, называемые синхронными компенсаторами. Синхронный компенсатор представляет собой по существу синхронный двигатель, рассчитанный на работу с перевозбуждением без механической нагрузки и предназначенный специально для улучшения коэффициента мощности. Если не учитывать относительно небольших потерь мощности в синхронном компенсаторе, можно считать, что им потребляются из сети трехфазного тока чисто емкостный ток и емкостная мощность. Векторная диаграмма синхронного компенсатора при таком допущении приведена на рис. 11.13.




Существенной особенностью синхронных двигателей является то, что они, работая с механической нагрузкой, позволяют в широких пределах изменять потребляемый из сети реактивный ток и реактивную мощность. Осуществляется это путем изменения тока возбужденияIв с помощью реостата rр (см. рис. 11.8).

Предположим, что двигатель работает при постоянном моменте статического сопротивления (Мс = const) и что некоторому току возбуждения Iв1 соответствуют ЭДС Е01, ток I1, углы φ1 и θ1(рис. 11.12, а).

Прямым следствием изменения тока Iв является изменение магнитного потока Ф0, а значит, и ЭДС E0; последнее приводит к изменению тока якоря I. Так как М = const, то при различных Iвмомент двигателя М и мощность Рэм будут оставаться также неизменными, поскольку при установившихся режимах работы с различными токами M = Mc = const, а Рэм = Mω. Если не учитывать потерь мощности I 2 r, то можно считать неизменной и мощность Рφ.

Из выражения Рэм = Мω и (11.14) следует, что Рэм = 3U E0 sin θ.
xc

Очевидно, мощность Рэм будет постоянной при изменении тока возбуждения, если Е0 sin θ = const. Последнее означает, что геометрическим местом концов векторов ЭДС при изменении токаIв является линия АБ, параллельная вектору напряжения U.

На основании выражения Рφ = 3 UIcos φ можно сделать вывод о том, что мощность Рφ будет постоянной, если Icos φ = const, т. е. если остается постоянной активная составляющая тока. Геометрическим местом концов вектора тока I при изменении тока Iв является, очевидно, линияВГ, перпендикулярная вектору напряжения U.

Чтобы составить представление о влиянии тока Iв на реактивный ток и реактивную мощность двигателя, на рис. 11.12, а совмещено несколько векторных диаграмм для различных токов возбуждения.

Рис. 11.12. Векторные диаграммы синхронного двигателя при различных токах возбуждения (а) и U-образные характеристики при различных мощностях (б)
Рис. 11.13 Векторная диаграмма синхронного компенсатора

При некотором токе возбуждения Iв2 > Iв1 двигатель имеет ЭДС Е02 и токI2, совпадающий по фазе с напряжением (φ2 = 0). Реактивные составляющие тока якоря и потребляемой двигателем мощности в этом случае равны нулю. При недовозбуждении (Iв1 0) и потребляемой мощности, а при перевозбуждении (Iв3 > Iв2 и Е03 > Е02) — емкостные составляющие тока (φ3

Так как синхронная машина обладает свойством обратимости, конструкция двигателя практически не отличается от конструкции синхронного генератора. Однако взаимодействие элементов теперь отвечает принципу действия двигателя.

Электрическая активная мощность Р потребляется из сети, в результате чего по обмоткам статора протекает ток . Ток , как и в генераторе, создаёт МДС Fст, а она – потоки Фd и Фр,я, наводящие в обмотке статора ЭДС и .

По обмотке ротора протекает ток возбуждения Iв, её МДС Fв создаёт магнитный поток ротора Ф0. Вращаясь вместе с ротором, поток Ф0 в соответствии с законом электромагнитной индукции (ЭМИ) индуцирует в обмотке статора ЭДС , которая направлена против напряжения сети . Сумма ЭДС с учётом падения напряжения на активном сопротивлении обмотки статора уравновешивает напряжение сети . Магнитные потоки Ф0, Фd и Фр,я образуют результирующий магнитный поток двигателя Фрез.

Вал двигателя сцеплён с валом рабочей машины РМ (например, со шпинделем металлорежущего станка), потребляющей механическую энергию и создающей момент сопротивления Мс. В результате действия тормозящего момента Мс полюсы ротора отстают от полюсов результирующего поля статора (см. рис. 4.6).

В двигательном режиме результирующий магнитный поток двигателя Фрез является ведущим; вращаясь, он увлекает за собой ротор, создавая вращающий момент М двигателя, преодолевающий тормозной момент Мс механической нагрузки.

Уравнение второго закона Кирхгофа для обмотки статора.

В двигательном режиме синхронная машина потребляет из сети ток , который направлен навстречу ЭДС (рис.4.14,а).

Уравнение, записанное по второму закону Кирхгофа для фазы обмотки статора

показывает, что противо-ЭДС и индуктивное падение напряжения jXсин уравновешивают напряжение сети (предполагается, что
=0).

Векторная диаграмма синхронного двигателя.

Векторная диаграмма построена по уравнению (4.4) на рис. 4.14, б. В результате действия механической нагрузки Мс ось магнитного потока ротора Ф0 отстает на угол от оси результирующего магнитного потока Фрез. Поэтому в двигательном режиме вектор ЭДС отстает по фазе на угол от вектора напряжения сети . Сопоставление векторных диаграмм синхронного двигателя (рис. 4.14,б) и синхронного генератора (см. рис. 4.13) показывает, что угол меняет свой знак. При построении векторной диаграммы двигателя вектор принимается за исходный.

Вектор тока отстает по фазе на 90° от вектора jXсин .

Мощность и вращающий момент синхронного двигателя.


Активная мощность, потребляемая трехфазным синхронным двигателем из сети, равна утроенной фазной мощности .

Если пренебречь потерями, которые относительно малы, то активная потребляемая мощность равна электромагнитной мощности, т. е. мощности, передаваемой магнитным полем из статора в ротор , где — угол сдвига фаз между током и ЭДС.

Из треугольников Оса и асb векторной диаграммы на рис. 14.14, б следует, что отрезок , где —масштабный коэффициент. Подставляя значение IcosΨ в выражение для Рэм, получаем для механической мощности на валу двигателя
.

Механический момент на валу двигателя
,

где — угловая скорость ротора; Мтах = — максимальный момент, развиваемый двигателем. При постоянном напряжении сети Uc максимальный момент двигателя зависит только от ЭДС Е0, т.е. от тока возбуждения ротора Iв.

Угловая и механическая характеристики.


Зависимость момента синхронной машины от угла нагрузки при Uc = const называется угловой характеристикой машины. Угловая характеристика (рис. 4.15) в соответствии с (4.5) имеет вид синусоиды.

В двигательном режиме угол положительный, поэтому на графике двигательному режиму соответствует положительная полуволна синусоиды. В генераторном режиме угол отрицательный, ему соответствует отрицательная полуволна синусоиды. В диапазоне угла нагрузки -90° Мmax , то угол нагрузки станет больше 90°, рабочая точка перейдёт на неустойчивый участок угловой характеристики. Вращающий момент двигателя М начнёт уменьшаться, ротор тормозиться, двигатель выйдет из синхронизма и может остановиться.

Механической характеристикой синхронного двигателя называется зависимость частоты вращения от момента двигателя. В синхронном двигателе частота вращения ротора постоянна и от нагрузки не зависит. Поэтому механическая характеристика n(M) (рис. 4.18) – прямая, параллельная оси абсцисс.

Регулирование коэффициента мощности синхронного двигателя.


Синхронный двигатель в отличие от асинхронного обладает ценным для электроэнергетики свойством – он позволяет регулировать реактивную мощность, потребляемую из сети. Когда двигатель работает при неизменной механической нагрузке на валу, т.е. Мс= const при Uc = const, то активная мощность Р, потребляемая двигателем из сети, постоянна:

Если в этих условиях изменять ток возбуждения, ЭДС обмоток статора и изменяются так, что активная составляющая тока Icosφ и составляющая ЭДС остаются неизменными (рис. 14.17).

При изменении тока возбуждения вектор скользит вдоль прямой ab, изменяются положение вектора jXсин и угол φ сдвига фаз между током и напряжением сети , а, вследствие того, что , конец вектора тока скользит по прямой cd.

Когда ток возбуждения двигателя мал (недовозбуждение), = , ток отстаёт по фазе от и двигатель потребляет реактивную мощность. При некотором, относительно большом токе возбуждения = и ток является чисто активным.

Наоборот, при перевозбуждении и вектор тока опережает по фазе вектор напряжения , , ток, потребляемый двигателем из сети, имеет ёмкостную составляющую. Последнее весьма ценно, поскольку ёмкостный ток компенсирует индуктивные токи, потребляемые из сети другими потребителями (асинхронными двигателями, различного рода катушками и т.п.), и тем самым улучшается cosφ всей сети. Обычно синхронные двигатели работают с перевозбуждением при .

U – образные характеристики.


Зависимости I(Iв) при Uc = const и Р= const называются U – образными характеристиками. На рис. 4.18 изображены три такие характеристики для случаев Р=0 (режим холостого хода), некоторой мощности P1>0 P2> P1. Минимум тока на характеристиках соответствует активному току, потребляемому двигателем , левые ветви – перевозбуждённому двигателю и ёмкостному току.

При уменьшении тока возбуждения Iв уменьшается ЭДС Е0 и угол увеличивается (рис.4.17).

Штриховая кривая АВ на рис. 4.18 представляет собой границу устойчивости, на которой =90°.

Наиболее экономичным для самого синхронного двигателя является режим работы с , так как двигатель развивает заданную механическую мощность при наименьшем, чисто активном токе статора.

Рис. 4.17 и 4.18

Обычно в эксплуатации синхронный двигатель перевозбуждают с целью улучшения cosφ сети. Режим перевозбуждения выгоден и тем, что уменьшается угол и возрастает перегрузочная способность двигателя. Вместе с этим следует учитывать, что обмотки статора двигателя рассчитаны на определённый ток с точки зрения нагрева. Поэтому, чем больше загрузка двигателя активным током Ia (определяющим механическую мощность и момент на валу), тем меньше возможности использования двигателя в качестве генератора реактивной (ёмкостной) мощности за счёт реактивной составляющей тока Ip.

Синхронные компенсаторы.


Синхронные компенсаторы – это синхронные машины, специально предназначенные для улучшения коэффициента мощности (cosφ) электрической сети. Они работают без механической нагрузки на валу (ток Ia мал) в перевозбуждённом режиме (правая ветвь U – образной характеристики Р=0 на рис. 4.20). Поскольку синхронные компенсаторы работают вхолостую и загружены только реактивным током Ip, они имеют облегчённую механическую конструкцию и, следовательно, меньшие размеры и массу.

Пуск синхронного двигателя.

Пуск синхронного двигателя сопряжён с трудностями. Если статорную обмотку включить в трёхфазную сеть, а обмотку возбуждения питать от источника постоянного напряжения Uв (рис. 4.19), то ротор не сдвинется с места – из-за инерционности ротора вращающееся поле статора не успевает сцепиться с неподвижным полем ротора.

Распространение получил так называемый асинхронный пуск синхронного двигателя. Для осуществления асинхронного пуска ротор синхронного двигателя снабжается специальной пусковой короткозамкнутой обмоткой из медных или алюминиевых стержней типа беличьей клетки асинхронного короткозамкнутого двигателя. Пуск двигателя осуществляют следующим образом (рис. 4.19).

Вначале обмотка возбуждения синхронного двигателя замыкается на пусковой реостат Rп, сопротивление которого в 8 – 10 раз больше, чем сопротивление обмотки возбуждения (если оставить обмотку возбуждения разомкнутой, то в ней при пуске вращающимся полем статора будет наводиться значительная ЭДС, опасная для изоляции).

При включении обмотки статора на трёхфазное напряжение двигатель за счёт короткозамкнутой обмотки начинает работать как асинхронный. Когда частота вращения ротора двигателя достигает примерно 95% синхронной частоты вращения поля статора n0, пусковой реостат Rп отключают, а обмотку возбуждения ротора включают на постоянное напряжение Uв.

Так как теперь частота вращения поля статора отличается незначительно от частоты поля вращающегося ротора, полюсы полей статора и ротора вступают во взаимодействие, двигатель втягивается в синхронизм и начинает работать как синхронный.

В рабочем, т.е. в синхронном, режиме токи в пусковой короткозамкнутой обмотке не возникают и она в работе машины не участвует. Однако при кратковременных толчках механической нагрузки на валу в пусковой обмотке токи наводятся и создают момент, демпфирующий колебания ротора.

Преимущества, недостатки и применение синхронных двигателей.


Преимущество синхронных двигателей перед асинхронными состоит в том, что благодаря возбуждению от независимого источника постоянного тока они работают при высоком коэффициенте мощности (до ) и даже с опережающим током. Это обстоятельство позволяет увеличивать cosφ всей сети. Кроме того, работа двигателя с высоким cosφ обеспечивает уменьшение потребляемого тока и потерь в синхронном двигателе по сравнению с асинхронным той же мощности и, следовательно, более высокий КПД.

Наконец, вращающий момент синхронного двигателя пропорционален напряжению сети Uc . Поэтому при понижении напряжения в сети синхронный двигатель сохраняет большую перегрузочную способность, чем асинхронный, и, следовательно, обладает большей надёжностью.

Вместе с тем синхронный двигатель сложнее по конструкции, чем асинхронный той же мощности, и поэтому дороже. Синхронные двигатели должны иметь источник постоянного тока (специальный возбудитель или выпрямитель), пуск у них протекает сложнее, чем у асинхронных. Частотное регулирование является единственным способом регулирования угловой частоты вращения ротора синхронного двигателя.

Тем не менее, преимущества синхронных двигателей настолько велики, что при мощностях свыше 100 кВт их целесообразно применять всюду, где не требуется часто останавливать и пускать механизмы или регулировать их скорость. В настоящее время они применяются для привода преобразовательных агрегатов, компрессоров, насосов, вентиляторов, мельниц, дробилок, нерегулируемых прокатных станов и т.п.

Отечественная промышленность выпускает трёхфазные синхронные двигатели мощностью от 20 кВт до нескольких десятков тысяч киловатт при частотах вращения от 100 до 1000 об/мин в явнополюсном исполнении и при 1500, 3000 об/мин – в неявнополюсном, с различным исполнением по способу защиты от внешних воздействий (открытое, защищённое, закрытое и т.д.), с различным рабочим положением вала (горизонтальные, вертикальные) и с различными системами возбуждения: от генератора постоянного тока, расположенного на одном валу с двигателем, от тиристорных выпрямителей и т.д.

Изменение активной мощности синхронного двигателя Рмех — Р — = 3 Шл = и;рМто р, подключенного к системе большой мощности(U = = const), происходит при изменении значения тормозного момента на валу (Мтор = var). При увеличении тормозного момента мощ­ность синхронного двигателя возрастает, одновременно увеличива­ется и угол 9, что понижает запас устойчивости двигателя тг/2 — 0. Для того чтобы синхронный двигатель не терял запаса устойчивос­ти при увеличении активной мощности, необходимо одновременно увеличивать ток возбуждения. Синхронные двигатели большой мощ­ности снабжены специальной регулирующей аппаратурой, при по­мощи которой при изменении активной мощности двигателя обес­печивается требуемый уровень запаса устойчивости.

Реактивная мощность синхронного двигателя Q — 3C/7sincp, под­ключенного к системе большой мощностиU =const, при постоян­ной активной мощности Р регулируется изменением тока возбуж­дения 1В. При токе возбуждения 1В 1В Тр) — синхронного компенсатора. Синхронные компен­саторы позволяют улучшить коэффициент мощности cos ц> электри­ческой системы (см. 2.20).

Пуск синхронного двигателя в ход

Результирующий момент синхронного двигателя, возникающий в результате взаимодействия магнитного поля статора с неподвиж­ным возбужденным ротором, при пуске двигателя близок к нулю.

Поэтому ротор двигателя необходимо раскручивать тем или иным способом до частоты вращения, близкой к синхронной. В настоящее время для этой цели используется асинхронный пуск синхронного двигателя. Чтобы приспособить двигатель к такому пуску, при яв- нополюсном роторе в полюсные наконечники закладывается пус­ковая короткозамкнутая обмотка из медных или латунных стерж­ней. Она напоминает беличье колесо асинхронной машины, но за­нимает лишь часть окружности ротора. В некоторых конструкциях двигателей роль короткозамкнутой обмотки выполняют сам массив­ный сердечник ротора и металлические клинья, заложенные в пазы ротора, а также бандажи, не имеющие с сердечником ротора элект­рического соединения.

Пуск двигателя в ход состоит из двух этапов: первый этап — асин­хронный набор частоты вращения при отсутствии возбуждения по­стоянным током и второй этап — втягивание в синхронизм после включения постоянного тока возбуждения. Во время первого этапа асинхронного пуска обмотка возбуждения отключается от источни­ка постоянного тока и замыкается через резистор с сопротивлением, превышающим активное сопротивление обмотки возбуждения в 8 — 10 раз. Не следует оставлять обмотку возбуждения разомкнутой, так как вращающееся поле может индуктировать в ней весьма значи­тельную ЭДС, опасную для целостности изоляции. Нецелесообраз­но также замыкать эту обмотку накоротко, так как в ней возникает значительный однофазный ток, который будет тормозить ротор по достижении им половины синхронной частоты вращения.

Для уменьшения пусковых токов синхронных двигателей часто применяется понижение напряжения при пуске включением двига­теля через пусковой автотрансформатор АТ или индуктивную ка­тушку, например по схеме на рис. 15.19. Сначала замыканием вык­лючателя 2 три фазные обмотки автотрансформатора АТ соединя­ются звездой, а затем включением выключателя 1 подключаются к трехфазной сети. Таким образом, между выводами обмоток статора синхронного двигателя СД подаются пониженные автотрансформа­тором линейные напряжения трехфазной системы. Ротор двигателя начинает вращаться как короткозамкнутый ротор асинхронного дви­гателя. Когда скольжение ротора станет достаточно малым, вы­ключатель 2 размыкается и напряжение на двигателе несколько по­вышается. Это объясняется тем, что теперь лишь часть каждой из фазных обмоток автотрансформатора играет роль индуктивной ка­тушки, включенной последовательно с фазной обмоткой двигателя и несколько ограничивающей своим сопротивлением пусковой ток. Следующая операция пуска заключается во включении двигателя на полное напряжение сети замыканием выключателя 3. Но пока нет постоянного тока возбуждения, ротор вращается асинхронно. Пуск заканчивается включением постоянного тока возбуждения /„ посредством переключателя 4. РеостатыRxи Д2 служат для регули-


рования режима работы возбудителя (В). Под действием электро­магнитных сил двигатель достигает синхронной частоты вращения и развивает требуемый вращающий момент. При таком пуске не нуж­ны операции по синхронизации двигателя с сетью и операции пуска могут быть автоматизированы.

Читайте также: