Как распространяются электромагнитные взаимодействия кратко

Обновлено: 04.07.2024

Электромагнитное взаимодействие - это тип физического взаимодействия, характеризуемый участием электромагнитного поля. Электромагнитное поле либо излучается, либо поглощается при взаимодействии, либо переносит взаимодействие между телами.

В 1759 г. английский естествоиспытатель Р. Симмер сделал заключение о том, что в обычном состоянии любое тело содержит равное количество разноименных зарядов, взаимно нейтрализующих друг друга. При электризации происходит их перераспределение.

В конце 19-го, начале 20-го века опытным путем было установлено, что электрический заряд состоит из целого числа элементарных зарядов е=1,6×10 -19 Кл. Это наименьший существующий в природе заряд. В 1897 г. Дж. Томсоном была открыта и наименьшая устойчивая частица, являющаяся носителем элементарногоотрицательного заряда (электрон, имеющий массу moe=9,1×10 -31 ). Таким образом, электрический заряд является дискретным, т.е. состоящим из отдельных элементарных порций q=± ne, где n – целое число.

Закон сохранения электрического заряда: в электрически замкнутой системе сумма зарядов есть величина постоянная. (Т.е. электрические заряды могут возникать и исчезать, но при этом обязательно появляется и исчезает равное количество элементарных зарядов противоположных знаков). Величина заряда не зависит от его скорости.

, где e - относительная диэлектрическая проницаемость среды (в вакууме e = 1). Силы Кулона существенны до расстояний порядка 10 -15 м (нижний предел). На меньших расстояниях начинают действовать ядерные силы (т.н. сильное взаимодействие). Что касается верхнего предела, то он стремится к :.

Исследование взаимодействия зарядов, проводившееся в 19 в. замечательно еще и тем, что вместе с ним в науку вошло понятиеполя. Начало этому было положено в работах М. Фарадея. Поле неподвижных зарядов получило название электростатического. Электрический заряд, находясь в пространстве, искажает его свойства, т.е. создает поле. Силовой характеристикой электростатического поля является его напряженность . Электростатическое поле является потенциальным. Его энергетической характеристикой служит потенциал j.

Открытие Эрстеда. Природа магнетизма оставалась неясной до конца 19 в., а электрические и магнитные явления рассматривались независимо друг от друга, пока в 1820 г. датский физик Х. Эрстед не открыл магнитное поле у проводника с током. Так была установлена связь электричества и магнетизма. Силовойхарактеристикой магнитного поля является напряженность . В отличие от незамкнутых линий электрического поля силовые линии магнитного поля замкнуты, т.е. оно является вихревым.




Электродинамика. В течение сентября 1820 г. французский физик, химик и математик А.М. Ампер разрабатывает новый раздел науки об электричестве – электродинамику.

Законы Ома, Джоуля-Ленца: важнейшими открытиями в области электричества явились открытый Г. Омом (1826) закон I=U/R и для замкнутой цепи I= ЭДС/(R+r), а также закон Джоуля-Ленца для количества тепла, выделяющегося при прохождении тока по неподвижному проводнику за время t: Q = IUT.

Работая над исследованием электромагнитной индукции, Фарадей приходит к выводу о существовании электромагнитных волн. Позже, в 1831 г. он высказывает идею об электромагнитной природе света.

Одним из первых, кто оценил работы Фарадея и его открытия, был Д.Максвелл, который развил идеи Фарадея, разработав в 1865 г. теорию электромагнитного поля, которая значительно расширила взгляды физиков на материю и привела к созданию электромагнитной картины мира (ЭМКМ).

Концепция силовых линий, предложенная Фарадеем, долгое время не принималась всерьез другими учеными. Дело в том, что Фарадей, не владеядостаточно хорошо математическим аппаратом, не дал убедительного обоснования своим выводам на языке формул. («Это был ум, который никогда не погрязал в формулах – сказал о нем А. Эйнштейн).

Блестящий математик и физик Джеймс Максвелл берет под защиту метод Фарадея, его идею близкодействия и поля, утверждая, что идеи Фарадея могут быть выражены в виде обычных математических формул, и эти формулы сравнимы с формулами профессиональных математиков.

Эта суть сводилась к тому, что изменяющееся магнитное поле создает не только в окружающих телах, но и в вакууме вихревое электрическое поле, которое, в свою очередь, вызывает появление магнитного поля. Таким образом, в физику была введена новая реальность – электромагнитное поле. Это ознаменовало начало нового этапа в физике - этапа, на котором электромагнитное поле стало реальностью, материальным носителем взаимодействия.

Мир стал представляться электродинамической системой, построенной из электрически заряженных частиц, взаимодействующих посредством электромагнитного поля. (Действительно, вспомним, что в МКМ господствовал принцип дальнодействия, согласно которому действие различного рода сил передается мгновенно, без участия среды.)

Система уравнений для электрических и магнитных полей, разработаннаяМаксвеллом, состоит из 4-х уравнений, которые эквивалентны 4-м утверждениям.

Уравнение Утверждение
div E ~ q Электрическое поле, соответствующее какому-либо распределению заряда, определяется из закона Кулона
div H = 0 Магнитные заряды не существуют
Переменное магнитное поле возбуждает электрический ток
Магнитное поле возбуждается токами и переменными электрическими полями

Анализируя свои уравнения, Максвелл пришел к выводу, что должны существовать электромагнитные волны, причем скорость их распространения должна равняться скорости света. Отсюда вывод: свет – разновидность электромагнитных волн. На основе своей теории Максвелл предсказал существование давления, оказываемого электромагнитной волной, а, следовательно, и светом, что было блестяще доказано экспериментально в 1906 г. П.Н. Лебедевым.

Голландский физик Г. Лоренц (1853-1928) считал, что теория Максвелла нуждается в дополнении, так как в ней не учитывается структура вещества. Лоренц высказал в этой связи свои представления об электронах, т.е. крайне малых электрически заряженных частицах, которые в громадном количестве присутствуют во всех телах.

Электромагнитное взаимодействие ответственно за существование основных кирпичиков вещества - атомов и молекул. Оно определяет взаимодействие положительно заряженных ядер и отрицательно заряженных электронов в этих микросистемах. Поэтому к электромагнитному взаимодействию сводится большинство сил, которые наблюдаются в макроскопических явлениях: силы упругости и трения, поверхностного натяжения в жидкостях и др.

Свойства различных агрегатных состояний вещества, химические превращения, электрические, магнитные и оптические явления определяются электромагнитным взаимодействием.

Электромагнитную природу имеет явление сверхпроводимости (сверхпроводимость - полное отсутствие сопротивления постоянному току у многих металлов и металлических сплавов при температурах, близких к абсолютному нулю). Электромагнитную природу имеет и явление сверхтекучести (сверхтекучесть - это свойство жидкого гелия протекать без трения сквозь тонкие капилляры и щели при температуре, ниже 2,17 К).

Электромагнитным взаимодействием обусловлены упругое и неупругое рассеяние электронов, позитронов и мюонов, процессы расщепления ядер фотонами и др.

Проявление электромагнитного взаимодействия широко используется в электротехнике, электронике, оптике, квантовой электронике.

Таким образом, электромагнитное взаимодействие обуславливает подавляющее большинство явлений окружающего нас мира.

Явления, в которых участвуют слабые, медленно меняющиеся электромагнитные поля, управляются законами классической электродинамики (слабость электромагнитного поля означает, что его энергия e -19 Кл. Это наименьший существующий в природе заряд. В 1897 г. Дж. Томсоном была открыта и наименьшая устойчивая частица, являющаяся носителем элементарногоотрицательного заряда (электрон, имеющий массу moe=9,1×10 -31 ). Таким образом, электрический заряд является дискретным, т.е. состоящим из отдельных элементарных порций q=± ne, где n – целое число.

Закон сохранения электрического заряда: в электрически замкнутой системе сумма зарядов есть величина постоянная. (Т.е. электрические заряды могут возникать и исчезать, но при этом обязательно появляется и исчезает равное количество элементарных зарядов противоположных знаков). Величина заряда не зависит от его скорости.

, где e - относительная диэлектрическая проницаемость среды (в вакууме e = 1). Силы Кулона существенны до расстояний порядка 10 -15 м (нижний предел). На меньших расстояниях начинают действовать ядерные силы (т.н. сильное взаимодействие). Что касается верхнего предела, то он стремится к :.

Исследование взаимодействия зарядов, проводившееся в 19 в. замечательно еще и тем, что вместе с ним в науку вошло понятиеполя. Начало этому было положено в работах М. Фарадея. Поле неподвижных зарядов получило название электростатического. Электрический заряд, находясь в пространстве, искажает его свойства, т.е. создает поле. Силовой характеристикой электростатического поля является его напряженность . Электростатическое поле является потенциальным. Его энергетической характеристикой служит потенциал j.

Открытие Эрстеда. Природа магнетизма оставалась неясной до конца 19 в., а электрические и магнитные явления рассматривались независимо друг от друга, пока в 1820 г. датский физик Х. Эрстед не открыл магнитное поле у проводника с током. Так была установлена связь электричества и магнетизма. Силовойхарактеристикой магнитного поля является напряженность . В отличие от незамкнутых линий электрического поля силовые линии магнитного поля замкнуты, т.е. оно является вихревым.

Электродинамика. В течение сентября 1820 г. французский физик, химик и математик А.М. Ампер разрабатывает новый раздел науки об электричестве – электродинамику.

Законы Ома, Джоуля-Ленца: важнейшими открытиями в области электричества явились открытый Г. Омом (1826) закон I=U/R и для замкнутой цепи I= ЭДС/(R+r), а также закон Джоуля-Ленца для количества тепла, выделяющегося при прохождении тока по неподвижному проводнику за время t: Q = IUT.

Работая над исследованием электромагнитной индукции, Фарадей приходит к выводу о существовании электромагнитных волн. Позже, в 1831 г. он высказывает идею об электромагнитной природе света.

Одним из первых, кто оценил работы Фарадея и его открытия, был Д.Максвелл, который развил идеи Фарадея, разработав в 1865 г. теорию электромагнитного поля, которая значительно расширила взгляды физиков на материю и привела к созданию электромагнитной картины мира (ЭМКМ).

Концепция силовых линий, предложенная Фарадеем, долгое время не принималась всерьез другими учеными. Дело в том, что Фарадей, не владеядостаточно хорошо математическим аппаратом, не дал убедительного обоснования своим выводам на языке формул. («Это был ум, который никогда не погрязал в формулах – сказал о нем А. Эйнштейн).

Блестящий математик и физик Джеймс Максвелл берет под защиту метод Фарадея, его идею близкодействия и поля, утверждая, что идеи Фарадея могут быть выражены в виде обычных математических формул, и эти формулы сравнимы с формулами профессиональных математиков.

Эта суть сводилась к тому, что изменяющееся магнитное поле создает не только в окружающих телах, но и в вакууме вихревое электрическое поле, которое, в свою очередь, вызывает появление магнитного поля. Таким образом, в физику была введена новая реальность – электромагнитное поле. Это ознаменовало начало нового этапа в физике - этапа, на котором электромагнитное поле стало реальностью, материальным носителем взаимодействия.

Мир стал представляться электродинамической системой, построенной из электрически заряженных частиц, взаимодействующих посредством электромагнитного поля. (Действительно, вспомним, что в МКМ господствовал принцип дальнодействия, согласно которому действие различного рода сил передается мгновенно, без участия среды.)

Система уравнений для электрических и магнитных полей, разработаннаяМаксвеллом, состоит из 4-х уравнений, которые эквивалентны 4-м утверждениям.

Уравнение Утверждение
div E ~ q Электрическое поле, соответствующее какому-либо распределению заряда, определяется из закона Кулона
div H = 0 Магнитные заряды не существуют
Переменное магнитное поле возбуждает электрический ток
Магнитное поле возбуждается токами и переменными электрическими полями

Анализируя свои уравнения, Максвелл пришел к выводу, что должны существовать электромагнитные волны, причем скорость их распространения должна равняться скорости света. Отсюда вывод: свет – разновидность электромагнитных волн. На основе своей теории Максвелл предсказал существование давления, оказываемого электромагнитной волной, а, следовательно, и светом, что было блестяще доказано экспериментально в 1906 г. П.Н. Лебедевым.

Голландский физик Г. Лоренц (1853-1928) считал, что теория Максвелла нуждается в дополнении, так как в ней не учитывается структура вещества. Лоренц высказал в этой связи свои представления об электронах, т.е. крайне малых электрически заряженных частицах, которые в громадном количестве присутствуют во всех телах.

Электромагнитное взаимодействие ответственно за существование основных кирпичиков вещества - атомов и молекул. Оно определяет взаимодействие положительно заряженных ядер и отрицательно заряженных электронов в этих микросистемах. Поэтому к электромагнитному взаимодействию сводится большинство сил, которые наблюдаются в макроскопических явлениях: силы упругости и трения, поверхностного натяжения в жидкостях и др.

Свойства различных агрегатных состояний вещества, химические превращения, электрические, магнитные и оптические явления определяются электромагнитным взаимодействием.

Электромагнитную природу имеет явление сверхпроводимости (сверхпроводимость - полное отсутствие сопротивления постоянному току у многих металлов и металлических сплавов при температурах, близких к абсолютному нулю). Электромагнитную природу имеет и явление сверхтекучести (сверхтекучесть - это свойство жидкого гелия протекать без трения сквозь тонкие капилляры и щели при температуре, ниже 2,17 К).

Электромагнитным взаимодействием обусловлены упругое и неупругое рассеяние электронов, позитронов и мюонов, процессы расщепления ядер фотонами и др.

Проявление электромагнитного взаимодействия широко используется в электротехнике, электронике, оптике, квантовой электронике.

Таким образом, электромагнитное взаимодействие обуславливает подавляющее большинство явлений окружающего нас мира.

Явления, в которых участвуют слабые, медленно меняющиеся электромагнитные поля, управляются законами классической электродинамики (слабость электромагнитного поля означает, что его энергия e

Электромагни́тное взаимоде́йствие — одно из четырёх фундаментальных взаимодействий. Электромагнитное взаимодействие существует между частицами, обладающими электрическим зарядом [1] . С современной точки зрения электромагнитное взаимодействие между заряженными частицами осуществляется не прямо, а только посредством электромагнитного поля.

С точки зрения квантовой теории поля [2] электромагнитное взаимодействие переносится безмассовым бозоном — фотоном (частицей, которую можно представить как квантовое возбуждение электромагнитного поля). Сам фотон электрическим зарядом не обладает, а значит не может непосредственно взаимодействовать с другими фотонами.

Из фундаментальных частиц в электромагнитном взаимодействии участвуют также имеющие электрический заряд частицы: кварки, электрон, мюон и тау-лептон (из фермионов), а также заряженные калибровочные W ± бозоны.

Электромагнитное взаимодействие отличается от слабого [3] и сильного [4] взаимодействия своим дальнодействующим характером — сила взаимодействия между двумя зарядами спадает только как вторая степень расстояния (см.: закон Кулона). По такому же закону спадает с расстоянием гравитационное взаимодействие. Электромагнитное взаимодействие заряженных частиц намного сильнее гравитационного, и единственная причина, по которой электромагнитное взаимодействие не проявляется с большой силой на космических масштабах — электрическая нейтральность материи, то есть наличие в каждой области Вселенной с высокой степенью точности равных количеств положительных и отрицательных зарядов.

В классических (неквантовых) рамках электромагнитное взаимодействие описывается классической электродинамикой.

Содержание

Основные формулы классической электродинамики

На проводник с током длиной " width="" height="" />
, помещенный в магнитное поле с индукцией " width="" height="" />
, действует сила Ампера:

\vec<F></p>
<p>_A = I \cdot [\Delta \vec \times \vec]

На заряженную частицу с зарядом , движущуюся со скоростью " width="" height="" />
в магнитном поле с индукцией " width="" height="" />
, действует сила Лоренца:

\vec<F></p>
<p>_L = q \cdot [\vec \times \vec]

История теории



  1. Электрические заряды притягиваются или отталкиваются друг от друга с силой, обратно пропорциональной квадрату расстояния между ними: разноимённые заряды притягиваются, одноимённые — отталкиваются.
  2. Магнитные полюса (или состояния поляризации в отдельных точках) привлекают или отталкивают друг друга похожим способом и всегда идут парами: каждый северный полюс не существует отдельно от южного.
  3. Электрический ток в проводе создает круговое магнитное поле вокруг провода, направленное (по или против часовой стрелки) в зависимости от течения тока.
  4. Ток индуцируется в петле провода, когда он сдвигается ближе или дальше относительно магнитного поля или магнит перемещается ближе или дальше от петли провода; направление тока зависит от направления этих перемещений.



Готовясь к лекции, вечером 21 апреля 1820 года, Ганс Христиан Эрстед сделал удивительное наблюдение. Когда он занимался подборкой материала, то заметил, что стрелка компаса отклоняется от северного магнитного полюса, когда электрический ток от батареи, которую он использовал, включался и выключался. Это отклонение навело его на мысль, что магнитные поля исходят со всех сторон провода, по которому проходит электрический ток, подобно тому как распространяется в пространстве свет и тепло, и что опыт указывает на прямую связь между электричеством и магнетизмом.



На момент открытия, Эрстед не предложил удовлетворительного объяснения этого явления, и не пытался представить явление в математических выкладках. Однако, три месяца спустя, он стал проводить более интенсивные исследования. Вскоре после этого он опубликовал результаты своих исследований, доказав, что электрический ток создает магнитное поле, когда течёт по проводам. В системе СГС единицу электромагнитной индукции (Э) назвали в честь его вклада в область электромагнетизма.



Выводы, сделанные Эрстедом, привели к интенсивному исследованию электродинамики мировым научным сообществом. К 1820 году относятся также работы Доминика Франсуа Араго, который заметил, что проволока, по которой течет электрический ток, притягивает к себе железные опилки. Он же намагнитил впервые железные и стальные проволоки, помещая их внутрь катушки медных проволок, по которым проходил ток. Ему же удалось намагнитить иглу, поместив её в катушку и разрядив лейденскую банку через катушку. Независимо от Араго намагничивание стали и железа током было открыто Дэви. Первые количественные определения действия тока на магнит точно так же относятся к 1820 году и принадлежат французским учёным Жан-Батисту Био и Феликсу Савару [5] . Опыты Эрстеда повлияли также на французского физика Андре-Мари Ампера, представившего электромагнитную закономерность между проводником и током в математической форме. Открытие Эрстеда также представляет собой важный шаг на пути к единой концепции энергии.

Это единство, которое было обнаружено Майклом Фарадеем, дополнено Джеймсом Максвеллом, а также уточнено Оливером Хевисайдом и Генрихом Герцем, является одним из ключевых достижений XIX столетия в математической физике. У этого открытия были далеко идущие последствия, одним из которых стало понимание природы света. Свет и другие электромагнитные волны принимают форму квантованных самораспространяющихся колебательных явлений электромагнитного поля, названных фотонами. Различные частоты колебания приводят к различным формам электромагнитного излучения: от радиоволн на низких частотах, к видимому свету на средних частотах, к гамма-лучам на высоких частотах.

Эрстед не был единственным человеком, открывшим связь между электричеством и магнетизмом. В 1802 году Джованни Доменико Романьози, итальянский ученый-правовед, отклонял магнитную стрелку электростатическими разрядами. Но, фактически, в исследованиях Романьози не применялся гальванический элемент и постоянный ток как таковой отсутствовал. Отчёт об открытии были опубликован в 1802 году в итальянской газете, но он был в основном проигнорирован научным сообществом того времени [6] .

В основном любой из нас владеет смартфоном, кто – то любит смотреть телевизор, а у кого-то рабочий день протекает за компьютером. Но почти никто не задумывается о той силе, которая нам позволяет пользоваться всеми этими благами.

Кроме этих самых очевидных вещей, мы должны помнить, что электромагнитное взаимодействие держит атомы всех тел вместе, образуя молекулы, а из них – вещества; и без него мы бы, и все, то нас окружает, не могло бы собраться в единое целое. Без него не было бы также и магнитного поля Земли, защищающего нас от солнечной радиации.

Электромагнитное взаимодействие – одно из четырех фундаментальных взаимодействий, возникающее между частицами, у которых имеется электрический заряд.

Оно может осуществляться только при наличии электромагнитного поля.

Когда мы рассуждаем об электромагнетизме, то подразумеваем взаимодействие двух электрически заряженных частиц (например, два протона, два электрона, электрон и протон). Противоположно заряженные частицы притягиваются друг к другу, а частицы с одинаковым зарядом, наоборот, отталкиваются. Такие взаимодействия происходят у любых заряженных частиц при помощи электрического поля.

Есть и другая вещь, известная любому человеку, - магнит. У магнитов есть зоны положительного и отрицательного зарядов. Если попытаться такой магнит сломать пополам, то, как бы парадоксально это не звучало, мы не получим два разных магнита – один положительно заряженный, а другой – отрицательный. У нас снова в руках окажутся два магнита с теми же самыми разными зонами зарядов.

Почему так получается?

Всё дело в том, что электрическое и магнитное поля являются частями единого электромагнитного поля. Электрическое поле порождает магнитное, и наоборот.

Если мы углубимся в квантовую теорию поля, то узнаем, что электромагнитное взаимодействие переносится фотоном – элементарной частицей, не обладающей массой, но способной взаимодействовать с другими фотонами. Фотон движется всегда и в любой среде со скоростью света.

Электромагнитное взаимодействие является дальнодействующим из-за отсутствия массы у фотонов. Более того, радиусом его действия является бесконечность. Однако, чем больше расстояние, тем меньше сила притяжения. Таким образом, электромагнитное взаимодействие работает на любом расстоянии, но его сила уменьшается при увеличении расстояния, и поэтому это фундаментальное взаимодействие встречается практически везде – в силах трения, упругости, натяжения и т. д.

Электромагнитные поля во времени и пространстве распространяются посредством электромагнитных волн, и эти волны могут путешествовать в любом пространстве, даже в вакууме, поэтому пространство вокруг нас всё пронизано электромагнитными излучениями. Само электромагнитное поле в процессе своего распространения становится электромагнитной волной. Поскольку фотон может действовать на неограниченном расстоянии, то этот переносчик взаимодействия постоянно заставляет колебаться электрические заряды других атомов и молекул. Когда заряд колеблется, то его движение создаёт новую волну, и она уже, в свою очередь, передает эти возмущения дальше и так до бесконечности.

Электромагнитное взаимодействие – это взаимодействие, осуществляемое между заряженным телом (или несколькими телами) и электромагнитным полем.

Электромагнитное поле в данном случае выступает основным проводником между заряженными частицами.

Электромагнитное взаимодействие относится к так называемым фундаментальным взаимодействиям (наряду с сильным, слабым и гравитационным). Его проявления видны повсюду в окружающем нас мире. Электромагнитная природа характерна для многих сил в механике, например, сил упругости, натяжения и других.

Источником электромагнитного поля служат заряженные частицы. Взаимодействие нейтральных (лишенных заряда) частиц осуществляется благодаря квантовым эффектам или особенностям их сложной внутренней структуры. Именно это является основным отличием электромагнитного поля от гравитационного, сила воздействия которого распространяется на все частицы без исключения. Однако именно электромагнитное взаимодействие обеспечивает существование молекул и атомов, потому что они связаны между собой электромагнитными силами. Таким образом, именно этот тип взаимодействия лежит в основе всех явлений на нашей планете.

Электромагнитную природу имеют и химические силы, поскольку они объединяют атомы в молекулы. Сила воздействия электромагнитного поля значительно больше, чем гравитационного. В отличие от сильного и слабого взаимодействия радиусом его действия является бесконечность. Такую особенность можно объяснить тем, что главным переносчиком электромагнитного поля является фотон, не имеющий массы.

От слабого взаимодействия электромагнитные силы также отличаются тем, что по отношению к заряду и пространству они всегда сохраняют свою четность. Однако в отличие от сильного взаимодействия, в нем не происходит сохранения изотопического спина.

Сравнение сил электромагнитного взаимодействия с гравитационными

Попробуем сравнить электромагнитное взаимодействие с гравитационным на основе их отношения к протону. Он является стабильной частицей с массой m p = 1 , 67 · 10 - 27 к г и зарядом q p = 1 , 6 · 10 - 19 К л .

Параметр сравнения Электромагнитное взаимодействие Гравитационное взаимодействие
1 Источник Электрический заряд Тензор энергии-импульса
2 Продолжительность 10 - 21 c 10 16 с
3 Тип проявления Существование молекул, атомов и химических сил Универсальное с участием всех частиц
4 Радиус распространения Бесконечный Бесконечный
5 Переносчик Фотон Гравитон
6 Какие частицы взаимодействуют Заряженные частицы, нейтральные частицы с определенной структурой Все без исключения
7 Статическая сила взаимодействия между протонами F e = q p 2 4 π ε ε 0 r 2 , где ε 0 = 8 , 8 · 10 - 12 Ф м является электрической постоянной, ε - диэлектрической проницаемостью среды, а r – расстоянием между частицами. F g = G m p 2 r 2 где показатель G равен 6 , 67 · 10 - 11 м 3 к г с 2 , а r означает расстояние между частицами.

Что такое постоянная электромагнитного взаимодействия

Существует важная величина, называемая постоянной электромагнитного взаимодействия, которая выражается так:

a = e 2 4 π ε 0 h c .

Здесь заряд электрона будет равен e = - 1 , 6 · 10 - 19 К л , а скорость света, распространяющегося в вакууме, – h = h 2 π = 1 , 05 · 10 - 34 Д ж · c , c = 3 · 10 8 м с . Вычислим значение постоянной:

α = ( 1 , 6 · 10 - 19 ) 2 4 · 3 , 14 · 8 , 8 · 10 - 12 · 1 , 05 · 10 - 34 3 · 10 8 ≈ 2 , 56 · 10 - 38 348 , 15 · 10 - 38 ≈ 1 137 .

Разберем несколько примеров применения постоянной в решении задач.

Условие: в вакууме на расстоянии одного метра находятся два протона. Определите силу электростатического и гравитационного взаимодействия между ними.

Решение

Чтобы найти силу гравитации, нам нужно использовать формулу F g = G m p 2 r 2 . Здесь расстояние между частицами будет равно G = 6 , 67 · 10 - 11 м 3 к г с 2 , а m p = 1 , 67 · 10 - 27 к г .

Вычислим значение с учетом этих данных:

F g = 6 , 67 · 10 - 11 1 , 67 · 10 - 27 2 1 2 = 18 , 6 · 10 - 45 ( Н ) .

Для нахождения силы электростатического взаимодействия нам потребуется закон Кулона:

F e = q p 2 4 π ε ε 0 r 2 .

Здесь электрическая постоянная будет равна ε 0 = 8 , 8 · 10 - 12 Ф м . Буквой ε обозначена диэлектрическая проницаемость среды. В вакууме значение данного параметра будет равно единице. Заряд протона такой же, как у электрона, но с противоположным знаком: q p = 1 , 6 · 10 - 19 К л .

У нас есть все нужные данные для расчета. Вычислим ответ:

F e = 1 , 6 · 10 - 19 2 4 · 3 , 14 · 8 , 8 · 10 - 12 · 1 2 = 2 , 56 · 10 - 38 110 , 53 · 10 - 12 = 2 , 31 · 10 - 28 ( Н ) .

Ответ: итоги расчета говорят нам о том, что два протона будут испытывать силу гравитационного притяжения на заданном расстоянии, равную 18 , 6 · 10 - 45 Н . Электростатическое отталкивание в этом случае будет значительно больше: 2 , 31 · 10 - 28 Н .

Условие: найдите значение удельного заряда частицы, при котором сила гравитационного воздействия будет равна по модулю силе электростатического. Взаимодействующие частицы при этом будут одинаковы.

Решение

Решить эту задачу можно с помощью закона всемирной гравитации и закона Кулона.

F g = G m 2 r 2 , буквой m обозначена масса частицы, G – гравитационная постоянная, а r ­ расстояние, на котором расположены частицы.

F e = q 2 4 π ε ε 0 r 2 , буквой q обозначен заряд каждой частицы, ε 0 – электрическая постоянная, а r ­ расстояние между частицами.

Согласно первоначальным условиям, F g = F e , значит, G m 2 r 2 = q 2 4 π ε ε 0 r 2 и 4 π ε ε 0 G m 2 = q 2 → q m = 4 π ε ε 0 G .

Допустим, что данные частицы находятся в вакууме, тогда ε = 1 . Зная, что значение гравитационной постоянной G = 6 , 67 · 10 - 11 м 3 к г с 2 , а электрической – ε 0 = 8 , 8 · 10 - 12 Ф м , можем вычислить ответ:

q m = 4 · 3 , 14 · 8 , 8 · 10 - 12 · 6 , 67 · 10 - 11 ≈ 8 , 9 · 10 - 11 .

Ответ: искомый заряд частицы будет равен 8 , 9 · 10 - 11 К л к г .

Электромагнитным взаимодействием называют взаимодействие между заряженными телами и заряженным телом и электромагнитным полем. Это взаимодействие между заряженными частицами осуществляется через электромагнитное поле.

Проведем сравнение гравитационного и электромагнитного взаимодействия по отношению к протону, стабильной частице, которая имеет массу равную $m_p=1,67\cdot ^кг$, заряд протона $q_p=1,6\cdot ^Кл$.

Что такое электромагнитное взаимодействие

Постоянная электромагнитного взаимодействия

Электромагнитное взаимодействие в микромире характеризуется такой величиной как постоянная электромагнитного взаимодействия $\alpha $, которая определяется как:

где $e=-1,6\cdot ^Кл$ -- заряд электрона, $\hbar =\frac<2\pi >=1,05\cdot ^Дж\cdot с$. $с=3•10^8\ \frac$ -- скорость света в вакууме.

Тогда $\alpha \ $равна:

Задание: Сравнить силы гравитационного и электростатического взаимодействия между двумя протонами на расстоянии один метр, если частицы находятся в вакууме.

Силе гравитационного взаимодействия вычисляется по формуле:

где $G=6,67^\frac$, r -- расстояние между частицами, $m_p=1,67\cdot ^кг$.

Данные в системе СИ, проведем вычисление силы гравитационного притяжения двух протонов ($F_g$):

Силу электростатического взаимодействия вычислим по закону Кулона ( в системе СИ):

где$_0=8,8\cdot ^\frac$- электрическая постоянная, $\varepsilon $- диэлектрическая проницаемость среды (для вакуума $\varepsilon =1$), $r$ -- расстояние между частицами, заряд протона равен заряду электрона, но со знаком плюс: $q_p=1,6\cdot ^Кл.$

Ответ: После проведенных вычислений мы получили, что сила гравитационного притяжения между двумя протонами на расстоянии 1 метр будет равна $18,6\cdot ^Н$, а сила электростатического отталкивания между теми же протонами на расстоянии 1 метр будет существенно больше и равна: $2,31\cdot ^\ Н.$

Готовые работы на аналогичную тему

Задание: При каком значении удельного заряда $\frac$ частицы силы гравитационного и электростатического взаимодействия будут равны по модулю, если взаимодействуют две одинаковые частицы?

Основой для решения являются закон всемирной гравитации и закон Кулона:

где $G$- гравитационная постоянная, $m$ -- массы каждой частицы, $r$ -- расстояние между частицами.

где $q$ - заряд каждой частицы, $_0$- электрическая постоянная (для системы СИ), $r$ -- расстояние между частицами.

По условию задачи:

В выражении (2.4) $\varepsilon =1$ (будем считать, что частицы находятся в вакууме), $_0=8,8•^\frac$- электрическая постоянная (в системе СИ), $G=6,67^\frac$ -- гравитационная постоянная. Подставим имеющиеся данные в уравнение (2.4), найдем искомый удельный заряд:

Ответ: Удельный заряд частицы (одной из двух одинаковых) должен быть равен $8,9^\frac.$

Читайте также: