Как происходит дифракция на двух и более щелях кратко

Обновлено: 04.07.2024

(Урок получения новых знаний 11 класс, профильный уровень – 2 часа).

Образовательные цели урока:

  • Ввести понятие дифракции света
  • Объяснить дифракцию света с помощью принципа Гюйгенса-Френеля
  • Ввести понятие зон Френеля
  • Объяснить устройство и принцип действия дифракционной решетки

Развивающие цели урока

  • Развитие умений и навыков по качественному и количественному описанию дифракционных картин

Оборудование: проектор, экран, презентация.

План урока

  • Дифракция света
  • Дифракция Френеля
  • Дифракция Фраунгофера
  • Дифракционная решетка

Ход урока.

1. Организационный момент.

2. Изучение нового материала.

Дифракция - явление огибания волнами препятствий, встречающихся на их пути, или в более широком смысле - любое отклонение распространения волн вблизи препятствий от законов геометрической оптики. Благодаря дифракции волны могут попадать в область геометрической тени, огибать препятствия, проникать через небольшие отверстия в экранах и т. д. Например, звук хорошо слышен за углом дома, т. е. звуковая волна его огибает.

Если свет представляет собой волновой процесс, на что убедительно указывает явление интерференции, то должна наблюдаться и дифракция света.

Дифракция света- явление отклонения световых лучей в область геометрической тени при прохождении мимо краев препятствий или сквозь отверстия, размеры которых сравнимы с длиной световой волны (слайд№2).

Тот факт, что свет заходит за края препятствий, известен людям давно. Первое научное описание этого явления принадлежит Ф. Гримальди. В узкий пучок света Гримальди помещал различные предметы, в частности тонкие нити. При этом тень на экране оказывалась шире, чем это должно быть согласно законам геометрической оптики. Кроме того, по обе стороны тени обнаруживались цветные полосы. Пропуская тонкий пучок света через маленькое отверстие, Гримальди также наблюдал отступление от закона прямолинейного распространения света. Светлое пятно против отверстия оказывалось большего размера, чем это следовало ожидать при прямолинейном распространении света (слайд№2).

В 1802 г. Т. Юнг, открывший интерференцию света, поставил классический опыт по дифракции (слайд №3).

В непрозрачной ширме он проколол булавкой два маленьких отверстия В и С на небольшом расстоянии друг от друга. Эти отверстия освещались узким световым пучком, прошедшим через малое отверстие А в другой ширме. Именно эта деталь, до которой очень трудно было додуматься в то время, решила успех опыта. Интерферируют ведь только когерентные волны. Возникшая в соответствии с принципом Гюйгенса сферическая волна от отверстия А возбуждала в отверстиях В и С когерентные колебания. Вследствие дифракции от отверстий В и С выходили два световых конуса, которые частично перекрывались. В результате интерференции этих двух световых волн на экране появлялись чередующиеся светлые и темные полосы. Закрывая одно из отверстий. Юнг обнаружил, что интерференционные полосы исчезали. Именно с помощью этого опыта впервые Юнгом были измерены длины волн, соответствующие световым лучам разного цвета, причем, весьма точно.

Теория дифракции

Французский ученый О. Френель не только более детально исследовал различные случаи дифракции на опыте, но и построил количественную теорию дифракции. В основу теории Френель положил принцип Гюйгенса, дополнив его идеей об интерференции вторичных волн. Принцип Гюйгенса в его первоначальном виде позволял находить только положения волновых фронтов в последующие моменты времени, т. е. определять направление распространения волны. По существу, это был принцип геометрической оптики. Гипотезу Гюйгенса об огибающей вторичных волн Френель заменил физически ясным положением, согласно которому вторичные волны, приходя в точку наблюдения, интерферируют друг с другом (слайд №4).

Различают два случая дифракции:

Если преграда, на которой происходит дифракция, находится вблизи от источника света или от экрана, на котором происходит наблюдение, то фронт падающих или дифрагированных волн имеет криволинейную поверхность (например, сферическую); этот случай называется дифракцией Френеля.

Если размеры препятствия много меньше расстояния до источника, то волну, падающую на препятствие, можно считать плоской. Дифракцию плоских волн часто называют дифракцией Фраунгофера (слайд №5).

Метод зон Френеля.

Для объяснения особенностей дифракционных картин на простых объектах (слайд №6), Френель придумал простой и наглядный метод группировки вторичных источников – метод построения зон Френеля. Этот метод позволяет приближенным способом рассчитывать дифракционные картины (слайд №7).

Зоны Френеля – множество когерентных источников вторичных волн, максимальная разность хода между которыми равна λ/2 .

Если разность хода от двух соседних зон равна λ/2, следовательно, колебания от них приходят в точку наблюдения М в противоположных фазах, так, что волны от любых двух соседних зон Френеля гасят друг друга (слайд №8).

Например, при пропускании света через отверстие малого размера, в точке наблюдения можно обнаружить как светлое, так и темное пятно. Получается парадоксальный результат – свет не проходит через отверстие!

Для объяснения результата дифракции, необходимо посмотреть, сколько зон Френеля укладывается в отверстии. Когда на отверстии укладывается нечетное число зон, то в точке наблюдения возникнет максимум (светлое пятно). Когда на отверстии укладывается четное число зон, то в точке наблюдения возникнет минимум (темное пятно). На самом деле свет, конечно же, проходит через отверстие, но интерференционные максимумы возникают в соседних точках (слайд №9 -11).

Зонная пластинка Френеля.

Из теории Френеля можно получить еще ряд замечательных, иногда парадоксальных следствий. Одно из них – возможность использования в роли собирающей линзы зонной пластинки. Зонная пластинка – прозрачный экран с чередующимися светлыми и темными кольцами. Радиусы колец подбираются так, что кольца из непрозрачного материала закрывают все четные зоны, тогда в точку наблюдения приходят колебания только от нечетных зон, происходящих в одной и той же фазе, что приводит к увеличению интенсивности света в точке наблюдения (слайд №12).

Второе замечательное следствие теории Френеля – предсказание существования светлого пятна (пятна Пуассона) в области геометрической тени от непрозрачного экрана (слайд № 13-14).

Для наблюдения светлого пятна в области геометрической тени необходимо, чтобы непрозрачный экран перекрывал небольшое число зон Френеля (одну-две).

Дифракция Фраунгофера.

Если размеры препятствия много меньше расстояния до источника, то волну, падающую на препятствие, можно считать плоской. Плоскую волну можно также получить, располагая источник света в фокусе собирающей линзы (слайд №15).

Дифракцию плоских волн часто называют дифракцией Фраунгофера по имени немецкого ученого Фраунгофера. Этот вид дифракции рассматривается особо по двум причинам. Во-первых, это более простой частный случай дифракции, а во-вторых, такого рода дифракция часто встречается в разнообразных оптических приборах.

Дифракция на щели

Большое практическое значение имеет случай дифракции света на щели. При освещении щели параллельным пучком монохроматического света на экране получается ряд темных и светлых полос, быстро убывающих по интенсивности (слайд №16).

Вывод:

  • а) с уменьшением ширины щели центральная светлая полоса расширяется;
  • б) при заданной ширине щели, расстояние между полосами тем больше, чем больше длина волны света;
  • в) поэтому в случае белого света имеет место совокупность соответствующих картин для разных цветов;
  • г) при этом главный максимум будет общим для всех длин волн и представится в виде белой полоски, а боковые максимумы - это цветные полосы с чередованием цветов от фиолетового цвета к красному.

Дифракция на двух щелях.

Дифракционная решетка.

Дифракционная решетка представляет собой совокупность большого числа очень узких щелей, разделенных непрозрачными промежутками (слайд№21). Если на решетку падает монохроматическая волна – то щели (вторичные источники) создают когерентные волны. За решеткой ставится собирающая линза, далее- экран. В результате интерференции света от различных щелей решетки на экране наблюдается система максимумов и минимумов (слайд№22).

Положение всех максимумов, кроме главного зависит от длины волны. Поэтому если на решетку падает белый свет, то он разлагается в спектр. Поэтому дифракционная решетка является спектральным прибором, служащим для разложения света в спектр. С помощью дифракционной решетки можно точно измерять длину волны, так как при большом числе щелей области максимумов интенсивности сужаются, превращаясь в тонкие яркие полосы, а расстояние между максимумами (ширина темных полос) растет (слайд №23-24).

Разрешающая способность дифракционной решетки.

Для спектральных приборов, содержащих дифракционную решетку, важна способность раздельного наблюдения двух спектральных линий, имеющих близкие длины волн.

Способность раздельного наблюдения двух спектральных линий, имеющих близкие длины волн, называют разрешающей способностью решетки (слайд №25-26).

Если мы хотим разрешить две близкие спектральные линии, то необходимо добиться, чтобы интерференционные максимумы, соответствующие каждой из них, были по возможности более узкими. Для случая дифракционной решетки это означает, что общее число штрихов, нанесенных на решетку, должно быть по возможности очень большим. Так, в хороших дифракционных решетках, имеющих около 500 штрихов на одном миллиметре, при общей длине около 100 мм, полное число штрихов равно 50000.

Решетки в зависимости от их применения бывают металлическими или стеклянными. Лучшие металлические решетки имеют до 2000 штрихов на один миллиметр поверхности, при этом общая длина решетки составляет 100-150 мм. Наблюдения на металлических решетках проводят только в отраженном свете, а на стеклянных – чаще всего в проходящем свете.

Наши ресницы с промежутками между ними представляют собой грубую дифракционную решетку. Если посмотреть, прищурившись, на яркий источник света, то можно обнаружить радужные цвета. Явления дифракции и интерференции света помогают

Природе раскрашивать всё живое, не прибегая к использованию красителей (слайд№27).

3. Первичное закрепление материала.

Контрольные вопросы

  1. Почему дифракция звука повседневно более очевидна, чем дифракция света?
  2. Каковы дополнения Френеля к принципу Гюйгенса?
  3. В чем заключается принцип построения зон Френеля?
  4. В чем заключается принцип действия зонных пластинок?
  5. Когда наблюдается дифракция Френеля, дифракция Фраунгофера?
  6. В чем отличие дифракции Френеля на круглом отверстии при освещении его монохроматическим и белым светом?
  7. Почему дифракция не наблюдается на больших отверстиях и больших дисках?
  8. Чем определяется тот факт, будет ли число зон Френеля, открываемых отверстием, четным или нечетным?
  9. Каковы характерные особенности дифракционной картины, получающейся при дифракции на малом непрозрачном диске.
  10. Каково отличие дифракционной картины на щели при освещении монохроматическим и белым светом?
  11. Какова предельная ширина щели, при которой еще будут наблюдаться минимумы интенсивности?
  12. Как влияет на дифракцию Фраунгофера от одной щели увеличение длины волны и ширины щели?
  13. Как изменится дифракционная картина, если увеличить общее число штрихов решетки, не меняя постоянной решетки?
  14. Сколько дополнительных минимумов и максимумов возникает при дифракции на шести щелях?
  15. Почему дифракционная решетка разлагает белый свет в спектр?
  16. Как определить наибольший порядок спектра дифракционной решетки?
  17. Как изменится дифракционная картина при удалении экрана от решетки?
  18. Почему при использовании белого света только центральный максимум белый, а боковые максимумы радужно окрашены?
  19. Почему штрихи на дифракционной решетке должны быть тесно расположены друг к другу?
  20. Почему штрихов должно быть большое число?

Примеры некоторых ключевых ситуаций (первичное закрепление знаний) (слайд №29-49)

Физика

Электродинамика

Магнитное поле

Механические колебания

Электромагнитные колебания

Механические волны

Электромагнитные волны

Оптика

Геометрическая оптика

Задачи на сферическое зеркало

Линза

Волновая оптика

Основы теории относительности

Основы квантовой физики

Излучения и спектры

Световые кванты

Атомная физика

Ядерная физика

Физика элементарных частиц

Открытие позитрона. Античастицы

Современная физическая картина мира

Современная физическая картина мира

Строение Вселенной

Строение Вселенной

Звёзды и источники их энергии. Современные представления о происхождении и эволюции Солнца и звёзд

Рассмотрим теперь дифракцию от двух щелей шириной а, разделенных непрозрачным промежутком шириной (рис. 70).

Пусть плоский фронт монохроматической волны достиг положения, совпадающего с плоскостью пары щелей. С помощью линзы соберем все параллельные группы дифракционных параллельных лучей на экране MN. Выберем на экране произвольную точку А, в которой собирается пучок параллельных лучей, идущих в некотором направлении, как показано на рисунке 70, и определим, от чего зависит получение максимума или минимума освещенности в этой точке.

Пусть выбранное направление таково, что выполняется условие (15.8) получения минимума света от одной щели:

Так как в этом направлении каждая щель в отдельности на экране света не дает, значит, и при наличии двух щелей в этом направлении не будет наблюдаться света.

Условие (15.8) в применении к двум щелям называют условием прежних минимумов. Ясно, что оно справедливо для любого числа щелей, так как независимо от числа щелей минимумы наблюдаются в тех же местах на экране, что и в случае одной щели.

Теперь выберем такое направление, в котором каждая щель в отдельности дает на экране свет. Для случая двух щелей могут в зависимости от разности хода слагаемых колебаний представиться две возможности: 1) интерференция на экране света от обеих щелей приводит к усилению света; 2) происходит взаимное гашение. Назовем точки щелей, расположенных на расстоянии соответственными точками. Очевидно, что усиление света будет происходить тогда, когда разность хода от соответственных точек равна четному числу полуволн. Как видно из рисунка 70, эта разность хода определяется формулой:

При выполнении условия

свет от соответственных точек будет при интерференции в точке А давать максимум освещенности. Выражение (15.12) называют выражением для главных максимумов. Выражение для главных максимумов так же, как и выражение для прежних минимумов, справедливо при любом количестве щелей.

В направлении, для которого разность хода от соответственных точек щелей равна нечетному числу полуволн, наблюдается интерференционный минимум на экране. Поэтому в направлениях, в которых каждая щель в отдельности дает на экране свет, при совместном действии щелей света наблюдаться не будет, если выполняется условие:

Это справедливо для любого четного числа щелей. Направления, определяемые выражением (15.13), называют направлениями на дополнительные минимумы. Такое название происходит оттого, что в случае одной щели в этих направлениях на экране будет свет.

Если в непрозрачном экране проделаны две идентичные параллельные щели, то они дадут одинаковые накладывающиеся друг на друга картины, вследствие чего интенсивность каждой точки экрана увеличилась бы вдвое. Такое сложение интенсивностей произойдёт только при некогерентном освещении обеих щелей. При когерентном же освещении необходимо принять во внимание взаимную интерференцию волн, дифрагировавших на обеих щелях, что приведёт к более сложному распределению интенсивностей на экране. Найдём это распределение.


Пусть обе щели имеют ширину b, разделены непрозрачным промежутком a, так что a + b = d. Очевидно, что дифракционные минимумы будут на прежних местах. ,


где m = ±1, ±2, … Ибо те направления, по которым ни одна из щелей не посылает света, не получат его и при двух щелях. Кроме того, возможны направления, по которым когерентные колебания, посылаемые двумя щелями, взаимно гасят друг друга. В этом случае говорят об интерференционных минимумах. Такие направления определяются, как видно из рис. 4.24, условием

т.е. , где m = 0, ±1, ±2, … Наоборот, в направлениях, определяемых из условий , где m = 0, ±1, ±2, … действие одной щели усиливается действием другой, так что

этим направлениям соответствуют главные интерференционные максимумы.


Как видно из формул и , между двумя интерференционными максимумами расположится один интерференционный минимум; если b


На рис. 4.25 сплошная кривая даёт действительное распределение интенсивности согласно формуле . Пунктирная кривая соответствовала бы сложению интенсивностей от обеих щелей, если бы обе щели освещались некогерентными между собой световыми пучками. Общие световые потоки сквозь щели, определяемые площадями, заключающиеся между этими кривыми и осью абсцисс, должны быть одинаковыми.

Угловая ширина основной дифракционной картины по-прежнему равна 2l/b; так как и для двух щелей почти весь свет сосредоточен в области центрального дифракционного максимума.


Дифракция является одним из важных эффектов, характерных для волны любой природы. Это явление человек учитывает при изготовлении оптических и звуковых приборов (микроскопов, телескопов, громкоговорителей). В данной статье речь пойдет о дифракции на щели света.

Что такое дифракция?

Перед тем как говорить о дифракции на щели, следует познакомиться с понятием этого явления. Любая волна (звук, свет), которую сгенерировал некоторый источник, будет распространяться параллельно и прямолинейно, если параметры пространства, в котором она движется, сохраняются неизменными. Например, для света такими параметрами будут плотность среды и характеристики гравитационного поля.

Дифракция - это отклонение от прямолинейного распространения волны, когда на своем пути она встречает непрозрачное препятствие. В результате такого искривления траектории волна распространяется в некоторые области пространства за препятствием.

Дифракция морских волн

Дифракция бывает двух типов:

  • Огибание препятствия волной. Это случается, если размер непрозрачного объекта меньше, чем длина волны. Поскольку окружающие нас макроскопические тела имеют гораздо большие размеры, чем длина световой волны, то этот тип дифракции в быту не наблюдается для света, но для звука он происходит часто.
  • Прохождение волнового фронта через узкое отверстие. Если длина волны сравнима с шириной отверстия, то явление проявляется четко. Дифракция на щели света относится к этому типу.

Какова причина возникновения этого явления?

Чтобы ответить на вопрос, необходимо вспомнить про принцип Гюйгенса-Френеля, который был предложен Христианом Гюйгенсом в середине XVII века, а затем уточнен для электромагнитных представлений о свете Огюстеном Френелем в первой половине XIX века.

Отмеченный принцип гласит, что каждая точка волнового фронта, в свою очередь, также является источником вторичных волн. Когда свет движется в гомогенной среде, то результат сложения амплитуд вторичных волн приводит к расширению и распространению волнового фронта. Когда свет встречает непрозрачное препятствие, то многие источники вторичных волн блокируются, результирующая же волна немногих оставшихся источников имеет отличную от первоначальной траекторию, то есть возникает дифракция.

Принцип Гюйгенса-Френеля

Сложность решения задачи дифракции

Отмеченное явление легко объяснить на словах, однако для получения траекторий дифрагированных волн от разных препятствий следует использовать уравнения Максвелла для электромагнитных волн. Эта математическая задача является достаточно трудоемкой и для общего случая она не имеет решения.

На практике пользуются часто не максвелловской теорией, а упомянутым принципом Гюйгенса-Френеля. Но даже его применение предполагает введения ряда приближений при получении математических законов дифракции.

Ниже при рассмотрении дифракции на щели будем полагать, что фронт волны является плоским и горизонтально падает на отверстие. Кроме того, полученную картину будем анализировать вдали от щели. Совокупность этих условий свойственна так называемой дифракции Фраунгофера.

Дифракция на узкой щели и интерференция

Предположим, что на щель шириной b падает плоский фронт световой волны длиной λ. После прохождения через щель на удаленном экране возникает следующая световая (дифракционная) картина: напротив щели имеется яркий максимум, именно на него приходится большая часть интенсивности волны (до 90 % от первоначальной). Слева и справа от него появятся другие максимумы менее яркие, которые разделены темными полосами (минимумами). Ниже на рисунке приведен соответствующий график и формула для интенсивности I полос на дифракционной картине.

Дифракция на узкой щели

В формуле β - это угол наблюдения.

Из графика видно, что условия максимума при дифракции на щели можно записать так:

sin(β) = λ * (2 * m + 1) / (2 * b), если m = 1, 2, 3.

sin(β) = λ * (2 * m - 1) / (2 * b), если m = -1, -2, -3.

sin(β) = 0 - центральный максимум.

С увеличением угла наблюдения интенсивность максимумов уменьшается.

Важно понимать, что описанная дифракционная картина является результатом не только явления дифракции, но и интерференции, то есть наложения друг на друга волн с различной фазой. Явление интерференции налагает некоторые условия, при которых можно наблюдать дифракционную картину. Главным из них является когерентность дифрагированных волн, то есть постоянство разности их фаз во времени.

Изменение ширины щели

Что будет происходить с дифракцией на щели, если увеличивать или уменьшать ширину последней. В приведенных в предыдущем пункте выражениях для максимумов ширина щели b стоит в знаменателе. Это означает, что при увеличении ее значения угол наблюдения максимумов будет уменьшаться, то есть они будут сужаться. Центральный пик будет становиться более узким и интенсивным. Этот вывод согласуется с тем фактом, что чем больше ширина щели, тем слабее на ней проявляется дифракция.

Изменение ширины щели

Рисунок выше демонстрирует отмеченный вывод.

Заметим, что при постоянной ширине щели b сделать узкими пики (ослабить дифракцию) можно, если уменьшить длину волны света (λ).

Читайте также: