Как обозначается и как определяется продольная сила в сечении кратко

Обновлено: 05.07.2024

Метод сечений позволяет определить внутренние силы, которые возникают в стержне, находящемся в равновесии под действием внешней нагрузки.

Рассмотрим идеально упругий призматический стержень прямоугольного поперечного сечения (рис. 1.2, а).

Выделим внутри стержня какие-либо две частицы K и L, расположенные на бесконечно малом расстоянии друг от друга. Для большей наглядности предположим, что между этими частицами имеется некоторая пружинка, удерживающая их на определенном расстоянии друг от друга. Пусть натяжение пружинки равно нулю.

Приложим теперь к стержню растягивающую силу (рис. 1.2, б). Пусть в результате деформации стержня, частица K перейдет в положение , а частица L – в положение . Соединяющая эти частицы пружинка при этом растянется. После снятия внешней нагрузки частицы вернутся в первоначальное положение K и L благодаря усилию, которое возникло в пружинке. Сила, которая возникла между частицами (в пружинке) в результате деформации идеально упругого стержня, называются силой упругости или внутренней силой. Она может быть найдена методом сечений .

Этапы метода сечений

Метод сечений состоит из четырех последовательных этапов: разрезать, отбросить, заменить, уравновесить .

Разрежем стержень, находящийся в равновесии под действием некоторой системы сил (рис. 1.3, а) на две части плоскостью, перпендикулярной к его оси z.

Отбросим одну из частей стержня и рассмотрим оставленную часть.

Поскольку мы как бы разрезали бесчисленное множество пружинок, соединявших бесконечно близкие частицы тела, разделенного теперь на две части, в каждой точке поперечного сечения стержня необходимо приложить силы упругости, которые при деформации тела возникли между этими частицами. Иными словами, заменим действие отброшенной части внутренними силами (рис. 1.3, б).

Внутренние силы в методе сечений

Полученную бесконечную систему сил по правилам теоретической механики можно привести к центру тяжести поперечного сечения. В результате получим главный вектор R и главный момент M (рис. 1.3, в).

Разложим главный вектор и главный момент на составляющие по осям x, y (главные центральные оси) и z.

Получим 6 внутренних силовых факторов , возникающих в поперечном сечении стержня при его деформировании: три силы (рис. 1.3, г) и три момента (рис. 1.3, д).

Сила N - продольная сила

момент относительно оси z () – крутящий момент

моменты относительно осей x, y () – изгибающие моменты.

Запишем для оставленной части тела уравнения равновесия ( уравновесим ):

Из уравнений определяются внутренние усилия, возникающие в рассматриваемом поперечном сечении стержня.

Вычисление продольной и поперечных сил, крутящего и изгибающих моментов

продольная сила N равна сумме проекций всех сил (активных и реактивных), действующих на любую из частей рассеченного стержня, на ось z;

поперечные силы равны сумме проекций всех сил, действующих на любую из частей стержня, на оси x и y, соответственно;

крутящий момент равен сумме моментов всех сил, действующих на любую из частей стержня, относительно продольной оси z;

изгибающие моменты равны сумме моментов всех сил, действующих на любую из частей стержня, относительно осей x и y, соответственно.

В этой статье поговорим о таком внутреннем силовом факторе как продольная сила. Также дам ссылки на смежные статьи, которые каким-то образом связаны с продольной силой.

Что такое продольная сила?

Продольная сила – это внутренний силовой фактор, который возникает в поперечных сечениях элементов конструкций, работающих на растяжение (сжатие).

Конечно, продольная сила может появляться не только в элементах конструкций, которые работают только на чистое растяжение или сжатие. Она может возникать в сечениях, как ОДИН ИЗ силовых факторов, совместно с поперечной силой или изгибающим моментом при сложном сопротивлении.

Зачем нужна?

Этот силовой фактор используется в расчётах на прочность и жёсткость элементов конструкций, работающих на растяжение (сжатие).

Зная значение продольной силы в поперечном сечении элемента конструкции, можно определить нормальное напряжение в этом сечении. А зная значение максимального нормального напряжния, которое, как правило, устанавливается из эпюры продольных усилий, осуществляются прочностные расчёты.

Как определяется?

Как и другие внутренние силовые факторы, продольная сила определяется методом сечений.

Для того чтобы определить продольную силу в произвольном сечении элемента, его мысленно рассекают в этом сечении на две части, рассматриваются равновесие одной из частей, заменив действие отброшенной части продольной силой. Из уравнения статики, в частности, суммы проекций на одну из осей, выражается продольное усилие. Для построения эпюр эту процедуру проводят несколько раз, для каждого участка стержня (бруса).

Как обозначается?

Продольная сила обозначается буквой N с индексом, который совпадает с названием продольной оси, направленной в сторону растяжения или сжатия нагруженного элемента и перпендикулярной поперечным сечениям.

Чаще всего, эта ось обозначается буквой – x. Например, таким образом: Nx

В чём измеряется?

Продольная сила, как и обычные внешние сосредоточенные силы, измеряется в ньютонах.

На практике, в расчётах используются килоньютоны (кН). Также иногда в литературе можно встретить размерность – кгс и тс.

Центральное растяжение-сжатие возникает в случае, когда на концах стержня вдоль его оси действуют две равные противоположно направленные силы. При этом в каждом сечении по длине стержня возникает внутреннее усилие ( продольная сила $N$ кН), которая численно равна сумме всех сил, которые действуют вдоль оси стержня и расположены с одной стороны от сечения.

продольная сила

Из условий равновесия отсеченной части стержня $N = F$.

Продольная сила при растяжении считается положительной, при сжатии – отрицательной .

Пример определения внутренних сил.


Участком нагружения считают часть бруса между внешними силами.

На представленном рисунке 3 участка нагружения.

Воспользуемся методом сечений и определим внут­ренние силовые факторы внутри каждого участка.

Расчет начинаем со свободного конца бруса, что­бы не определять величины реакций в опорах.


Продольная сила положи­тельна, участок 1 растянут.


Продольная сила положительна, участок 2 растянут.


Продольная сила отрицательна, участок 3 сжат.

Полученное значение N3 равно реакции в заделке.

Под схемой бруса строим эпюру продольной силы (рис. 20.2, б).

Эпюрой продольной силы называется график распределения продольной силы вдоль оси бруса.

Ось эпюры параллельна продольной оси.

Нулевая линия про­водится тонкой линией. Значения сил откладывают от оси, положительные — вверх, отрицательные — вниз.

В пределах одного участка значение силы не меняется, поэто­му эпюра очерчивается отрезками прямых линий, параллельными оси Oz.

Напряжения. Действующие и допускаемые напряжения

Величина внутренней силы дает представление о сопротивлении поперечного сечения в целом (интегрально), но не дает представления об интенсивности работы материала в отдельных точках сечения. Так, при равной продольной силе материал в стержне с большим сечением будет работать менее интенсивно, менее напряженно чем меньший.

Напряжения – внутренние силы, приходящиеся на единицу площади сечения. Напряжения, направленные перпендикулярно (по нормали) к сечению называются нормальными .


$\sigma = \frac$

Единицы измерения напряжений - Па, кПа, МПа.

Знаки напряжений принимают так, как и для продольной силы.

Действующие напряжения - напряжения, которые возникают в рассматриваемом сечении.

Любой стержень в момент разрушения имеет определенные напряжения, которые зависят только от материала стержня и не зависят от площади сечения.

Допускаемые напряжения $\left[ \sigma \right]$ – такие напряжения, которые не должны быть превышены в запроектированных конструкциях. Допустимые напряжения зависят от прочности материала, характера его разрушения, степени ответственности конструкции.

Принцип Сен-Венана : в сечениях, достаточно удаленных от места приложения нагрузки, распределение напряжений не зависит от способа приложения нагрузки, а зависит только от его равнодействующей.

то есть, распределение напряжений в сечении I-I для трех различных случаев, показанных на рисунке, принимается одинаковым.

иллюстрация принципа Сен-Венана

Рисунок - иллюстрация принципа Сен-Венана

Абсолютная и относительная деформация

При растяжении возникает удлинение стержня – разница между длиной стержня до и после погрузки. Эта величина называется абсолютной деформацией .

Относительная деформация – отношение абсолютной деформации к первоначальной длине.

Центральным растяжением (или центральным сжатием) называется такой вид деформации, при котором в поперечном сечении бруса возникает только продольная сила (растягивающая или сжимающая), а все остальные внутренние усилия (поперечные силы, изгибающие моменты и крутящий момент) равны нулю. Иногда центральное растяжение (или центральное сжатие) кратко называют растяжением (или сжатием).

На рис. 1.2, а изображен прямой брус, закрепленный одним концом и нагруженный на другом конце силой направленной вдоль его оси.

Во всех поперечных сечениях этого бруса возникают только продольные растягивающие силы и, следовательно, такой брус по всей длине является центрально растянутым. При противоположно направленной силе Р (рис. 1.2, б) брус по всей длине испытывает сжатие.

Брус, изображенный на рис. 1.2, в, испытывает центральное растяжение только на участках на участке брус не является центрально растянутым, так как, например, в сечении кроме продольной силы, действуют также поперечная сила и изгибающий момент.

Растягивающие продольные силы принято считать положительными, а сжимающие — отрицательными.

На рис. 2.2, а изображен брус, нагруженный силами направленными вдоль его оси, двумя силами параллельными оси и приложенными на равных расстояниях от нее в поперечном сечении с, а также двумя силами направленными под углом а к оси бруса и приложенными в поперечном сечении d на равных расстояниях от оси.

На рис. 2.2, б изображена расчетная схема, полученная путем замены бруса его осью и переноса внешних нагрузок к этой оси.

Силы на расчетной схеме действуют вдоль оси бруса; силы и силы показанные на рис. 2.2, а, приводятся соответственно к силам также направленным вдоль оси.

Таким образом, на расчетной схеме (рис. 2.2, б) все внешние силы действуют вдоль оси бруса. Следовательно, в поперечных [сечениях рассматриваемого бруса возникают только продольные силы.

Для определения силы N, воспользуемся методом сечений. Составим уравнение равновесия в виде суммы проекций на ось бруса всех сил, действующих на левую его часть (рис. 2.2, в):

Этот же результат можно получить и не составляя уравнения равновесия, а используя то положение, что на основании метода сечений проекция внутренних сил на ось бруса (т. е. продольная сила), действующих со стороны левой его части на правую, равна сумме проекций на эту же ось всех внешних сил, приложенных к левой части.

Аналогично найдем продольные силы в сечениях II—II, III — III, IV—IV (рис. 2.2, б), проектируя силы, приложенные слева от этих сечений, на ось бруса:

Очевидно, что на всем участке (между точками приложения сил ) продольная сила постоянна и равна аналогично и на других участках (между точками приложения внешних сил) продольные силы имеют постоянные значения.

Построим график, показывающий изменение продольных сил по длине оси бруса, называемый эпюрой продольных сил (эпюрой N). Для этого проведем ось эпюры параллельную оси бруса (рис. 2.2, д), и перпендикулярно к ней отложим ординаты, изображающие в некотором масштабе величины продольных сил в поперечных сечениях бруса. Полученную таким путем эпюру принято штриховать (так же как и эпюры других внутренних усилий, рассматриваемые в последующих главах курса) прямыми линиями, перпендикулярными к ее оси. Каждая такая линия в принятом масштабе дает величину продольной силы в соответствующем поперечном сечении бруса.

В поперечном сечении, в котором к брусу приложена сосредоточенная сила, не перпендикулярная к его оси, значение продольной силы изменяется скачкообразно: слева от этого сечения, продольная сила имеет одно, а справа — другое значение, отличающееся на величину проекции (на ось бруса) указанной сосредоточенной силы. В соответствии с этим эпюра, изображенная на рис. 2.2, д, имеет скачки (уступы) в точках а, b, с, d, е, равные соответственно величинам и значению реакции опорного закрепления бруса.

Для построения эпюр внутренних усилий, возникающих в поперечных сечениях бруса, нет необходимости изображать и брус с действующими на него нагрузками и расчетную схему, а достаточно привести один из этих чертежей. Точно так же нет необходимости изображать отдельные части бруса, на которые он расчленяется поперечными сечениями.

Например, для решения рассмотренной задачи можно изобразить лишь брус (рис. 2.2, с) или его расчетную схему (рис. 2.2, б), а также эпюру продольных сил N (рис. 2.2, д) и мысленно представить остальные схемы, приведенные на рис. 2.2.

При действии на брус внешней распределенной осевой (т. е. направленной вдоль оси бруса) нагрузки продольные силы на участке, на котором такая нагрузка приложена, изменяются непрерывно. Для примера на рис. 3.2, б показана эпюра продольных сил для бруса, изображенного на рис. 3.2, а.

На этот брус, кроме двух сосредоточенных сил действует распределенная нагрузка (собственный вес бруса) интенсивностью Эпюра N (рис. 3.2,б) построена на основе уравнений продольных сил, составленных для сечений, отстоящих от верхнего конца бруса на расстоянии

Читайте также: