Как доказать существование выталкивающей архимедовой силы кратко

Обновлено: 04.07.2024

План урока:

Сила Архимеда – выталкивающая сила

Сидит на берегу рыбак с удочкой, внимательно смотрит на поплавок, ждет, когда рыбка клюнет. Вряд ли задумываются любители рыбной ловли над тем, какие законы физики используются для изготовления рыболовных снастей. Кроме лески и крючков берутся поплавок и грузило. Предназначение их совершенно противоположное. Поплавок должен плавать на поверхности воды, подергиваться при клеве. Грузило, наоборот, должно затонуть и опустить крючки на глубину, где плавает рыба.

Поплавок и грузило Источник

Простейшие явления, происходящие на воде, которые часто встречаются в жизни и взрослых, и детей, объясняются наличием внутри воды (да и любой жидкости тоже) выталкивающей силы.

Простой лабораторный опыт. Если взять динамометр, прикрепить к нему металлический цилиндр (пружина растянется под весом цилиндра), а затем опустить его в воду, показания динамометра уменьшатся. Это значит, что появилась сила, выталкивающая тело из воды, направленная вверх. Результирующая двух сил стала меньше.

Выталкивающая сила всегда направлена вверх. Какова же причина возникновения такой силы и ее происхождение?

Пусть в стакане с водой находится правильное тело – параллелепипед. Пусть площадь его основания S и высота H.

Все грани параллелепипеда находятся под водой, верхняя - на глубине h1, нижняя – h2. Сверху давление p1 = ρ g h1, а снизу – p2 = ρ g h2.. Давление p2 больше p1, так как h2 больше h1. На вертикальные грани параллелепипеда действуют одинаковые давления, стремящиеся его сжать. Значит, сила давления снизу больше силы давления сверху. Разность этих сил и является силой, выталкивающей тело из жидкости. После алгебраических преобразований получается правило вычисления выталкивающей силы.

F = F2 – F1 = p2 S – p1 S = ρж g h2 S - ρж g h1 S = ρж g S (h2 – h1). Из рисунка видно, что разность h2 – h1 равна высоте параллелепипеда H, но произведение S∙H равно объему данной фигуры Vт. Тогда, F = ρж g S H = ρж g Vт. Результирующая сила, по которой вычисляют выталкивающую силу, запишется в следующем виде:

Легенда такова: правитель города Сиракузы на острове Сицилия был родственником Архимеда. Однажды он приказал мастеру изготовить золотую корону. Когда корона была готова, Гирон засомневался в честности мастера, заподозрив, что мастер заменил частично золото серебром или другими примесями. Герон потребовал от Архимеда установить истину.

Чтобы решить эту проблему, надо знать объем короны и объем золота той же массы. Если они совпадут, то мастер – молодец, в противном случае он – лжец.

Определенные таким способом объемы куска золота и короны оказались различными. Изготовитель короны был нечестен.

В формуле FA = ρж g Vт произведение ρж Vт = m – это масса вытесненной жидкости, объем ее равен объему тела, вытесняющему эту жидкость. Значит,

FA = Pт, т.е. тела выталкиваются из жидкости с силой, такой же, как и вес вытесненной жидкости.

Закон легко доказывается опытным путем:

Для опыта берется ведерко Архимеда, состоящее из двух частей: полое ведерко 2 и тяжелый цилиндр 3 такого же объема, что и ведерко. Ведерко и цилиндр вместе подвешиваются к динамометру 1, показания динамометра фиксируются (рис.а). Под цилиндр помещается сливной стакан 4 (стакан с носиком, направленным вниз для слива жидкости). Жидкость в стакан первоначально налита точно до сливного носика.

В тот момент, когда цилиндр помещается в воду, она вытесняется цилиндром и сливается в сосуд 5. На цилиндр вверх действует архимедова сила, показания динамометра уменьшаются (рис.б), т.е. вес цилиндра становится меньше.

Из сосуда 5 вытесненная жидкость выливается в пустое ведерко 2 (рис. в). Когда вся вода перелита в ведерко, динамометр фиксирует первоначальный вес (рис. г). Это означает, что при помещении в воду цилиндр потерял вес, равный весу жидкости, которая вытесняется из сливного стакана.

  • на все тела, помещенные в жидкость, оказывает действие направленная вверх архимедова сила;
  • архимедова сила связана с давлением, а значит, с плотностью жидкости, и объемом тела, помещенного в жидкость;
  • архимедова сила не зависит от плотности изучаемого тела и глубины погружения.

О жидкости, в которой нельзя утонуть

В воде одни тела сразу тонут, а другие плавают. Тот же поплавок у рыбака держится на поверхности, а грузило плавает. Не тонет сухая древесина, но, если она долго пробудет в воде, пропитается ею, то окажется на дне. Существуют древесные породы, например, бакаут [1] (железное дерево) и черное дерево [2] , тонущие в воде в сухом виде. Почему одни тела свободно плавают, а другие тонут?

На тело, помещенное в жидкость, вниз действует сила тяжести и вверх - архимедова сила. Которая из двух сил преобладает, туда и направлена равнодействующая. Тело переместится в сторону равнодействующей силы:

Следует особо обратить внимание на разницу двух из приведенных случаев. Обычно говорят, что тело плавает, независимо, где оно плавает: внутри жидкости или на поверхности. Но, если Fтяж = FA, тело плавает внутри. Если Fтяж ˂ FA, тело плавает на поверхности (тело не может выпрыгнуть из жидкости и повиснуть над ней, сила тяжести вернет его).

При сравнении формул обеих сил просматривается объяснение, при каком условии силы различны или одинаковы.

В обеих формулах есть одинаковые множители: g и Vт. Отличие в плотностях. Видно, что, если ρт ˂ ρж, то сила тяжести меньше архимедовой – тело поднимается к поверхности жидкости. Если ρт ˃ ρж, то сила тяжести больше выталкивающей – тело идет на дно. Если ρт = ρж, силы тоже равны – тело плавает между дном и поверхностью (внутри) жидкости.

Именно поэтому поплавок, который обычно полый внутри (плотность воздуха 1,29 кг/м 3 ), плавает на воде (плотность воды 1000 кг/м 3 ). Свинцовое грузило (плотность свинца 11 300 кг/м 3 ) тонет.

Конечно, условия такого плавания подходят для сплошных тел. Например, стекло с плотностью 2600 кг/м 3 тонет в воде, а закупоренная стеклянная бутылка плавает, потому что весь объем закрытой бутылки занимает воздух с небольшой плотностью.

Способность бутылки плавать издавна использовали мореплаватели для передачи посланий о крушениях на землю. В пустую бутылку вкладывали свиток с текстом, бутылку закупоривали и бросали за борт. Долго бутылка путешествовала по морским просторам, но когда-то все равно волнами приливов прибивалась к суше.

Средняя плотность тела человека находится в пределах от 1030 до 1070 кг/м 3 . Значит, в чистой воде человек без умения плавать тонет.

Есть Мертвое море, где нельзя утонуть. В этом море, как и в воде залива Кара-Богаз-Гол (в Каспийском море) и озера Эльтон не утонуть, так как в них вода содержит около 27 % солей. Соли повышают плотность воды до 1180 кг/м 3 , что больше плотности человеческого тела. В обычной морской воде солей 2-3 % и плотность этой морской воды 1030 кг/м 3 .

Некоторые домохозяйки используют для определения свежести купленных куриных яиц (плотность примерно 1090 кг/м 3 ) простой способ. Через мелкие поры в тонкой скорлупе часть жидкости сырого яйца испаряется, замещаясь воздухом. Плотность такого яйца уменьшается. Свежее более плотное яйцо в чистой воде затонет, несвежее – всплывет.

Другой пример из жизни домохозяек. Они наливают в кастрюлю с водой, где отваривают макароны, растительное масло, чтобы макароны не слипались. Как бы ни размешивали смесь масла и воды, масло всплывает наверх. Объяснить просто. Плотность масла 930 кг/м 3 , меньше плотности воды. Стоит ли наливать масло? Не стоит. Масло будет плавать поверх воды. Большая часть макарон будет находиться в чистой воде. Поэтому масло никак не повлияет на макароны.

Нефть, мазут, бензин всегда находятся на поверхности воды, что представляет угрозу для окружающей среды при водных катастрофах, связанных с этими веществами.

Жидкости менее плотные плавают сверху, а более плотные опускаются вниз. В жидкой ртути плавает большинство металлов, только наиболее плотные (осмий, вольфрам, иридий, золото и некоторые другие) тонут.

Интересный пример плавания представляет подводная лодка. Она может плавать на поверхности воды, внутри ее и может залечь на дно. Можно схематически показать, как это происходит.

Конструкция лодки двухкорпусная: внутренний и внешний корпусы. Внутренний корпус предназначен для технических устройств, оборудования, людей. Между внешним и внутренним корпусами находятся балластные цистерны. Когда лодке требуется погружение, открываются кингстоны – отверстия, через которые забортная вода поступает между внутренним и внешним отсеками, заполняя балластные цистерны. Сила тяжести возрастает и становится больше архимедовой. Лодка погружается.

Чтобы прекратить погружение или всплыть, цистерны под большим давлением продуваются компрессорами, вода вытесняется в океан, ее место занимает воздух. Сила тяжести уменьшается. В момент равенства силы тяжести и архимедовой лодка будет плавать внутри воды. При дальнейшем заполнении цистерн воздухом лодка всплывает.

Почему не тонут корабли?

Теперь следует объяснить плавание судов. Понятно, что корабли, изготовленные из строительного деревянного материала, плавают по волнам, так как плотность дерева меньше плотности воды. Условие плавания здесь срабатывает безоговорочно. Современные корабли изготовлены преимущественно из металлов, у которых большая плотность. Почему металлический гвоздь тонет, а корабль нет?

Кораблю придают специальную форму, чтобы он как можно больше вытеснял воды, вес которой превосходит силу тяжести судна. Этот вес равен выталкивающей (архимедовой) силе, и значит, она больше силы тяжести. Из металла делают основной корпус судна, а остальной его объем заполнен воздухом. Корпусом корабль вытесняет значительное количество воды, достаточно глубоко погружаясь в нее.

Глубину погружения судна моряки называют осадкой. После загрузки корабля его осадка увеличивается. Перегружать корабль нельзя, иначе нарушится условие плавания, корабль может затонуть. Рассчитывается максимальная осадка, на судне проводится красная линия, которую называют ватерлинией, ниже ее корабль оседать не должен.

Вес корабля с максимально взятым грузом называется водоизмещением.

Суда используются в различных целях: для пассажирских и грузовых перевозок, для научно-исследовательских работ, для охраны границ государства.

К сожалению, с кораблями происходят и неприятности. Во время шторма или других катастроф они могут затонуть. Опять приходит на помощь закон Архимеда.

Со спасательного судна [3] на прочных стропах опускают полые цилиндры большого объема. Чтобы они затонули, их заполняют водой. Водолазы закрепляют эти цилиндры на корпусе корабля. Сжатым воздухом под большим давлением, подаваемым по шлангам, вода из цилиндров вытесняется, заменяется воздухом. Вес цилиндров резко уменьшается. Они начинают выталкиваться из воды и вместе с кораблем всплывают на поверхность.

Спасение затонувшего корабля

В судоходстве, мореплавании, спасении судов помогает закон Архимеда, как один из самых важных законов природы.

Воздухоплавание

Красивое зрелище: цветные воздушные шары на разной высоте голубого неба. Какая сила поднимает их вверх?

Человек издавна мечтал освоить воздушный океан, как птица, поднявшись в небеса. Мечта стала явью благодаря открытой архимедом силе, действующей во всех жидкостях и газах. На все тела на Земле оказывает действие выталкивающая их из воздуха сила. Для твердых тел она значительно меньше силы тяжести, на практике ее не учитывают. Для газов эта сила имеет существенное значение.

А вот имеет ли воздух вес, проверяется очень легко, даже в домашних условиях: найти середину ровной палочки или линейки, вколотить туда маленький гвоздик так, чтобы палочка могла свободно вокруг него поворачиваться. Можно подвесить палочку на нитке за середину. На края палочки повесить два одинаково надутых шара. Палочка располагается горизонтально, т.е. наблюдается равновесие. Выпустить воздух из одного шарика. Равновесие нарушается. Шарик с воздухом перевешивает.

Опыт в лабораторных условиях проводится также легко и понятно. Находится масса открытого (значит, там есть воздух) стеклянного шара (рис. а). Затем насосом откачивается из шара воздух (рис.б) и шар плотно закрывается пробкой. Новое определение массы показывает, что масса шара без воздуха меньше (рис. в). Зная массу можно найти вес воздуха.

Газ в оболочке шара должен иметь плотность заметно меньшую плотности воздуха, как и плотность тела на поверхности какой-либо жидкости меньше плотности самой жидкости. Плотность гелия 0,18 кг/м 3 , водорода 0,09 кг/м 3 , а плотность воздуха 1,29 кг/м 3 . Поэтому для наполнения оболочек шаров используются подобные газы.

Создать подъемную силу для воздушного шара можно уменьшением плотности воздуха.

Из анализа таблицы зависимости плотности воздуха от температуры следует вывод: с ростом температуры снижается плотность воздуха. Соответственно с повышением температуры разница между архимедовой силой и силой тяжести возрастает. Эта разница сил и является подъемной силой шара.

При подъеме температура воздуха в оболочке шара снижается. Воздух приходится нагревать, что небезопасно.

Подогрев воздуха в шаре

Полет на таких шарах осуществляется недолго. Чтобы продлить его, используют балласт – дополнительный груз, который крепится на гондоле [4] (устройство, где находятся люди и приборы для работы). Сбрасывая балласт, можно подниматься выше. Спуская воздух из оболочки, можно опускаться вниз. Спускаясь или поднимаясь в разные слои атмосферы, можно уловить движение воздушных масс и двигаться в их направлении. Но подобрать нужное направление достаточно сложно. Таким способом можно лишь немного влиять на направление движения. Поэтому воздушные шары обычно движутся по направлению ветра.

На гигантских по своим размерам шарах (20 000 – 30 000 м 3 ) удавалось достигать стратосферы. Такие шары называют стратостатами. Гондола стратостата должна иметь пригодный для жизни человека микроклимат. Воздух и температура в стратосфере не соответствуют условиям жизни человека. Приходится специально обустраивать гондолы стратостатов.

Другие, более простые, воздушные шары называют аэростатами. Если к гондоле шара пристроить двигатель, то получится управляемый человеком аэростат, называемый дирижаблем.

К сожалению, полеты аэростатов зависят от капризов природы. Однако эти устройства обладают неоспоримыми преимуществами:

  • огромная подъемная сила;
  • экологически чистые аппараты;
  • не нуждаются в больших количествах топлива;
  • зрелищны.

Поэтому эти аппараты еще долго будут служить человеку.

Словарь

1. Бакаут (железное дерево) – вечнозеленое дерево тропиков с плотностью древесина близкой к плотности чугуна.

2. Черное эбеновое дерево – вечнозеленое тропическое дерево, в ядре которого не видны годичные кольца. Ядро твердое, тяжелое. Плотность дерева 1300 кг/м 3 .

3. Спасательное судно – судно специального (вспомогательного) назначения, служащее для подъема на поверхность затонувших объектов или для помощи кораблям, терпящим бедствие.

4. Гондола – устройство, крепящееся к воздушному шару для помещения туда людей, различных вещей и аппаратуры.

Помимо силы тяжести, на тело, погруженное в жидкость, действует выталкивающая сила — архимедова сила. Жидкость оказывает давление на все части тела, но давление не одинаковое. Ведь нижний край корпуса больше погружен в жидкость, чем верхний, и давление увеличивается с глубиной. Это означает, что сила, действующая на нижнюю сторону корпуса, будет больше, чем сила, действующая на верхнюю сторону. Следовательно, создается сила, которая пытается вытолкнуть тело из жидкости.

Величина архимедовой силы зависит от плотности жидкости и объема той части тела, которая находится непосредственно в жидкости. Сила Архимеда действует не только в жидкостях, но и в газах.

Закон Архимеда: на тело, погруженное в жидкость или газ, действует выталкивающая сила, равная весу жидкости или газа в объеме тела.

Сила Архимеда, действующая на погруженное в жидкость тело, может быть рассчитана по формуле:

На тело внутри жидкости действуют две силы: сила тяжести и сила Архимеда. Под действием этих сил тело может двигаться. Для плавания тела существует три условия:

  • если сила тяжести больше силы Архимеда, тело тонет, погружается на дно;
  • если сила тяжести равна силе Архимеда, то тело может находиться в равновесии в любой точке жидкости, при этом тело плавает внутри жидкости;
  • если сила тяжести меньше силы Архимеда, тело будет плавать и подниматься.

Закон Архимеда распространяется и на воздухоплавание. Первый воздушный шар был создан в 1783 году братьями Монгольфье. В 1852 году француз Жиффар создал дирижабль — управляемый аэростат с воздушным рулем и пропеллером.

Силы, действующие на погруженное в жидкость тело

Выталкивающая сила.

Наблюдение. Почему сложно погрузить мяч в воду и почему он выпрыгивает из воды, как только мы его бросаем? Почему в море плавать легче, чем в озере? Почему мы можем поднять камень в воде, а не в воздухе?

Газы очень похожи на жидкости. Воспитательная сила также действует на тела, находящиеся в газе. Под действием этой силы воздушные шары, метеозонды и детские шары, наполненные водородом, поднимаются вверх. А от чего зависит выталкивающая сила?

Опыт 1. Два тела разного объема, но одинаковой массы, погрузим полностью в одну и ту же жидкость (воду). Мы видим, что тело большего объема выталкивается из жидкости (воды) с большей силой.

Выталкивающая сила зависит от объема погруженного в жидкость тела. Чем больше объем тела, тем большая выталкивающая сила действует на него.

Опыт 2. Два тела одинакового объема и массы полностью погружены в разные жидкости, например воду и керосин. Неуравновешенность в данном случае свидетельствует о том, что на тело в воде действует большая плавучесть, это можно объяснить тем, что плотность воды больше плотности керосина.

Выталкивающая сила зависит от плотности жидкости, в которую погружено тело. Чем больше плотность жидкости, тем большая выталкивающая сила действует на погруженное в нее тело.

Обобщая результаты наблюдений и опытов можно сделать следующий вывод.

На тело, погруженное в жидкость (газ), действует выталкивающая сила, равная по значению весу жидкости (газа), вытесненной этим телом.

Это утверждение называется законом Архимеда, древнегреческого ученого, который открыл его и, согласно легенде, успешно применил его для решения практической задачи: он определил, содержала ли золотая корона царя Гиерона примеси серебра. Сила, которая выталкивает тело из жидкости или газа, также называется силой Архимеда.

Основываясь на законе Архимеда, вы можете сразу написать формулу для определения силы плавучести, но чтобы лучше понять, почему она возникает, мы выполним несложные вычисления. Для этого рассмотрим тело в форме прямоугольного стержня, погруженного в жидкость так, чтобы его верхний и нижний края были параллельны поверхности жидкости.

Посмотрим, к чему приведет действие сжимающих сил на поверхность этого тела.

Согласно закону Паскаля горизонтальные силы F3 и F4, действующие на симметричные боковые поверхности стержня, попарно равны по величине и противоположно направлены. Стержни вверх не толкают, а только сжимают с боков. Обратите внимание на силы гидростатического давления на верхнем и нижнем крае стержня.

Доказательство существования архимедовой силы

Мы уже знаем, что сила Архимеда является результатом сил давления жидкости на все части тела. На рис. 1 схематически показаны силы, действующие на участки одной и той же площади для тела любой формы. По мере увеличения глубины эти силы увеличиваются, поэтому равнодействующая всех сжимающих сил направлена вверх.

Рис.1. К доказательству закона Архимеда для тела произвольной формы

Для тела в состоянии покоя сила тяжести равна весу, а это означает, что сила Архимеда равна весу заданного объема жидкости. А это объем погруженной части тела: ведь мы мысленно заменили ее жидкостью.

Таким образом, мы доказали, что на тело любой формы действует архимедова сила, которая по абсолютной величине равна весу жидкости в объеме, занимаемом телом.

Это доказательство — пример мысленного эксперимента. Это популярный метод рассуждения многих ученых. Но выводы по результатам мысленного эксперимента должны быть проверены в реальном эксперименте. Поэтому мы проверим закон Архимеда на опыте.

Поставим опыт.

Навесим на пружину пустое ведро (так называемое ведро Архимеда) и на него небольшой камень любой формы (рис. 2, а). Обратите внимание на удлинение пружины и замените емкость под камнем, в которую налита вода до уровня сливной трубы (рис. 2, б). Когда камень полностью погружен в воду, вытесняющая его вода сливается через сливную трубу в стакан. Мы заметим, что удлинение пружины уменьшилось из-за плавучести.

Рис. 2. Опыт показывает, что сила Архимеда равна весу воды, вытесненной телом

Теперь давайте выльем воду, которую камень вытолкнул из стакана, в ведро Архимеда — это только увеличивает вес камня за счет веса воды, вытолкнувшей его. И мы увидим, что удлинение пружины такое же, как и до погружения камня в воду (рис. 2, в). Это означает, что сила Архимеда действительно равна весу воды, которую вытолкнул камень.

Равновесие тел в жидкости

Закон Архимеда

Гравитационное поле Земли создает гидростатическое давление, которое приводит к существованию статической подъемной силы, действующей на тела, погруженные в жидкость. Закон, определяющий величину силы плавучести, был открыт Архимедом: данная сила (сила Архимеда (Fa)) равна весу жидкости, объем которой равен объему погруженной в нее части тела:

F a = ρ * V * g ( 1 ) ,

где ρ — плотность жидкости (газа); V — объем тела, находящийся в веществе; g — ускорение свободного падения.

Сила Архимеда проявляется только при наличии силы тяжести. Таким образом, в условиях невесомости гидростатическое давление равно нулю, что означает Fa = 0.

Сила Архимеда направлена вверх. Он проходит через центр масс вытесняемой телом жидкости (эта точка обозначается буквой С). Точка C называется центром возвышения тела. Положение точки плавучести определяет баланс и устойчивость тела плавучести.

Условия плавания тела в жидкости.

Закон Архимеда позволяет нам объяснить проблемы, связанные с парением тел. Представьте себе тело, которое помещено в жидкость и предоставлено самому себе. Тело тонет, когда его вес превышает вес вытесняемой им жидкости. Когда вес тела и вес жидкости, которую оно перемещает, одинаковы, тело находится в равновесии в жидкости.

Тело плавает и перемещается к поверхности жидкости, если вес жидкости, выталкиваемой телом, превышает вес тела. Когда он поднимается на поверхность жидкости, тело плавает. В этом случае деталь может выступать над поверхностью жидкости.

Условия плавания тел в жидкости для однородных тел (плотность вещества тела ρ=const) определяют следующим образом:

  1. Тело тонет, если ρ > ρ g (ρg−плотность жидкости).
  2. Тело всплывает, если ρ ρ g .
  3. Если ρ = ρ g тело плавает (находится в равновесии) в жидкости.

Для неоднородных тел используют понятие средней плотности, при этом среднюю плотность тела сравнивают с плотностью жидкости.

При рассмотрении движения тела на границе жидкостей имеющих разные плотности, учитывают, что сила Архимеда равна:

F a = ( ρ 1 * V 1 + ρ 2 * V 2 + … ) * g ( 2 ) ,

ρ1 — плотность первой жидкости; ρ2 — плотность второй жидкости; V1 — объем части тела, находящийся в первой жидкости; V2 — объем этого же тела, находящийся во второй жидкости.

Равновесие тел в жидкости

Если средняя плотность тела меньше плотности жидкости, часть тела будет выступать над поверхностью. Для плавучих сооружений очень важно понятие устойчивости плавания. При определении устойчивости баланса тела случаи делятся:

  • тело полностью погружено в жидкость;
  • тело частично погружено в жидкость.

Если тело полностью находится в жидкости и плавает в ней (средняя плотность тела равна плотности жидкости), то для возможных поворотов и движений центр тяжести тела и центр плавучести не меняют свое положение относительно тела. Равновесие устойчиво, если центр тяжести тела находится ниже центра плавучести.

Если бы тело и жидкость были абсолютно несжимаемыми (или их сжимаемость была бы одинаковой), баланс тела был бы безразличен. Но на самом деле твердые тела, как правило, имеют меньшую сжимаемость, чем жидкости. Корпуса из таких материалов равномерно плавают в жидкостях одинаковой плотности.

Гораздо более сложный случай, когда тело не полностью находится в жидкости, когда деталь выступает над свободной поверхностью жидкости. В этом случае перемещение тела из положения равновесия вызывает изменение формы объема жидкости, которую тело вытесняет. Происходит изменение положения центра плавучести относительно тела.

Устойчивость равновесия такого тела определяется представлением о метацентре плавающего тела. Это точка, назовем ее M, которая получается на пересечении вертикальной оси симметрии тела и линии действия силы плавучести. Если метацентр расположен выше центра масс тела, то момент силы плавучести пытается вернуть тело в равновесие, а значит, тело плавает равномерно.

Примеры задач на плавание тел

Средняя плотность подводной лодки равна плотности воды. Может ли эта лодка висеть на определенной глубине в затопленном состоянии?

Предположим, что на данной глубине средняя плотность лодки равна плотности воды. Пусть лодка по какой-то причине погрузится немного глубже. Сжимаемость лодки определяется больше сжимаемостью ее конструкции, чем сжимаемостью ее материала. На самом деле сжимаемость лодки всегда намного больше сжимаемости воды.

Это означает, что при небольшом дополнительном погружении лодки гидростатическое давление увеличивается, что приводит к деформации ее корпуса. При этом средняя плотность лодки увеличивается, она становится выше плотности воды, лодка погружается все глубже и глубже. Точно так же мы можем рассматривать случай, случайным образом уменьшая глубину погружения лодки. В этом случае условия равновесия будут нарушены, и лодка поплывет.

Казалось бы, нет ничего проще, чем закон Архимеда. Но когда-то сам Архимед здорово поломал голову над его открытием. Как это было?

С открытием основного закона гидростатики связана интересная история.

Интересные факты и легенды из жизни и смерти Архимеда


Роль Архимеда в осаде Сиракуз

В 212 году до нашей эры Сиракузы были осаждены римлянами. 75-летний Архимед сконструировал мощные катапульты и легкие метательные машины ближнего действия, а также так называемые "когти Архимеда". С их помощью можно было буквально переворачивать вражеские корабли. Столкнувшись со столь мощным и технологичным сопротивлением, римляне не смогли взять город штурмом и вынуждены были начать осаду. По другой легенде Архимед при помощи зеркал сумел поджечь римский флот, фокусируя солнечные лучи на кораблях. Правдивость данной легенды представляется сомнительной, т.к. ни у одного из историков того времени упоминаний об этом нет.

Смерть Архимеда

Согласно многим свидетельствам, Архимед был убит римлянами, когда те все-таки взяли Сиракузы. Вот одна из возможных версий гибели великого инженера.

Ну а теперь о наболевшем: о законе и силе Архимеда.

Как был открыт закон Архимеда и происхождение знаменитой "Эврика!"

Античность. Третий век до нашей эры. Сицилия, на которой еще и подавно нет мафии, но есть древние греки.

Изобретатель, инженер и ученый-теоретик из Сиракуз (греческая колония на Сицилии) Архимед служил у царя Гиерона второго. Однажды ювелиры изготовили для царя золотую корону. Царь, как человек подозрительный, вызвал ученого к себе и поручил узнать, не содержит ли корона примесей серебра. Тут нужно сказать, что в то далекое время никто не решал подобных вопросов и случай был беспрецедентным.


Архимед долго размышлял, ничего не придумал и однажды решил сходить в баню. Там, садясь в тазик с водой, ученый и нашел решение вопроса. Архимед обратил внимание на совершенно очевидную вещь: тело, погружаясь в воду, вытесняет объем воды, равный собственному объему тела.

Суть закона Архимеда

Если Вы спрашиваете себя, как понять закон Архимеда, мы ответим. Просто сесть, подумать, и понимание придет. Собственно, этот закон гласит:

На тело, погруженное в газ или жидкость действует выталкивающая сила, равная весу жидкости (газа) в объеме погруженной части тела. Эта сила называется силой Архимеда.


Как видим, сила Архимеда действует не только на тела, погруженные в воду, но и на тела в атмосфере. Сила, которая заставляет воздушный шар подниматься вверх – та же сила Архимеда. Высчитывается Архимедова сила по формуле:


Здесь первый член - плотность жидкости (газа), второй - ускорение свободного падения, третий - объем тела. Если сила тяжести равна силе Архимеда, тело плавает, если больше – тонет, а если меньше – всплывает до тех пор, пока не начнет плавать.

Сила Архимеда - сила, благодаря которой корабль плавает

Трудно переоценить вклад и значение древнегреческих учёных в современную жизнь, ведь многие из созданных в ту пору изобретений, теорий и концепций всё ещё используются сегодня. Один из примеров — сила Архимеда, гидростатическое давление, которое играет основную роль в законе статики жидкости и газов.

Сила архимеда

Определение и формула

Закон Архимеда гласит, что если твёрдое тело погружено в жидкость, то на него действует выталкивающая сила, равная весу жидкости в объёме тела.

При некоторых обстоятельствах объём вещества одинаков объёму воды. В частности, когда твёрдый объект любого класса полностью погружен в воду, объём вытесненной воды должен быть равен объёму объекта. Кроме того, по определению силы Архимеда, при погружении объект получит плавучую силу, одинаковую весу вытесненной воды. Таким образом, объект, взвешенный в воздухе и затем взвешенный при погружении в воду, будет иметь эффективный вес, уменьшенный на вес вытесненной воды, если подъёмная сила воздуха незначительна.

Определение закона Архимеда

Что произойдёт, если стакан наполнить водой доверху, а затем добавить кубики льда? Точно так же, как вода расплескалась через край, когда Архимед сел в свою ванну, жидкость в стакане выльется, если бросить туда кубики льда. Если взвесить разлившуюся воду (вес — это сила, направленная вниз), она будет равняться восходящей силе на предмете. По этой силе можно определить объём или среднюю плотность объекта.

При взвешивании в воздухе предмет получает силу выталкивания, равную весу воздуха, перемещаемого объектом. Однако плотность воздуха довольно мала (по сравнению с плотностью большинства твёрдых частиц), чтобы можно было пренебречь этой плавучей силой при взвешивании большинства твёрдых частиц в воздухе.

Формула силы Архимеда записывается как F = pgV, где:

  1. F = выталкивающая сила тела (сила Архимеда). Единица измерения — ньютон.
  2. p = давление объекта. Измеряется в Паскалях.
  3. g = ускорение под действием силы тяжести. Метр на секунду в квадрате.
  4. V = объём вытесненной жидкости в кубических метрах.

Формула принципа Архимеда полезна для нахождения силы, объёма смещённого тела или плотности жидкости, при условии, что некоторые из этих чисел известны.

При демонстрации закона Архимеда следует отметить, что в этом явлении многое зависит от гравитации. То есть сила плавучести, которая всегда противостоит элементу притяжения, на самом деле вызвана самой гравитацией. Давление внутри флюидов вырастает с увеличением глубины, поскольку внутри жидкости действует гравитационный вес сверху. Это давление, которое постоянно повышается, прикладывает силу к объекту, погруженному в воду, и увеличивается с глубиной жидкости. Результатом этого является плавучесть.

Принцип плавучести

Другими словами, для предмета, плавающего на поверхности жидкости (например, лодки) или плавающего под водой (субмарина или дирижабль в воздухе), вес вытесненной жидкости равен весу объекта. Таким образом, только в особом случае плавания сила выталкивания, действующая на объект, равна его весу.

Принцип плавучести

Например, существует блок из твёрдого железа, который весит 1 тонну. Поскольку железо почти в восемь раз плотнее воды, при погружении оно вытесняет только 1/8 тонны воды, что недостаточно для удержания его на плаву. Теперь следует предположить, что тот же железный блок преобразован в чашу. Он по-прежнему весит 1 тонну, но при помещении в жидкость он вытесняет больший объём воды, чем когда он был блоком. Чем глубже погружена железная чаша, тем больше воды она вытесняет и тем сильнее действует на неё выталкивающая сила. Когда плавучая сила равна 1 тонне, она не опустится дальше.

Когда лодка вытесняет вес воды, равный её собственному весу, она плавает. Каждый корабль, подводная лодка и дирижабль должны быть спроектированы так, чтобы смещать вес жидкости, по крайней мере, равный его собственному весу. Корпус 10000-тонного корабля должен быть достаточно широким, длинным и глубоким, чтобы вытеснять соответствующее количество тонн воды. Он нуждается в дополнительной грани для равновесия и борьбы с волнами, которые иначе заполнили бы его и, увеличив его массу, потопили корабль.

Практически принцип Архимеда позволяет рассчитывать плавучесть объекта, частично или полностью погруженного в жидкость:

Эффект плавучести

  1. Нисходящая сила на объекте — это просто его вес.
  2. Восходящая или выталкивающая сила — это то, что указано выше по закону Архимеда.
  3. Чистая сила — это разница между величинами силы выталкивания и её весом.

Следует отметить, что если вес объекта меньше, чем вес вытесняемой жидкости, объект будет испытывать подъём, как и происходит в случае с деревянным брусом, который остаётся ниже поверхности воды. Объект, который по своей природе тяжелее количества жидкости, которую он может вытеснить, утонет при освобождении, но в то же время испытает потерю веса, равную весу вытесненной жидкости. Фактически, когда дело доходит до взвешивания, необходимо внести поправку, чтобы иметь возможность компенсировать эффект плавучести окружающего его воздуха.

Хотя они связаны с этим, принцип плавания и концепция, согласно которой затопленный объект вытесняет объём жидкости, равный его собственному объёму, не являются законом Архимеда. Как указано выше, он приравнивает подъёмную силу к весу вытесненной жидкости.

Практическое применение

Принцип Архимеда имеет множество применений в области медицины и стоматологии и используется для определения плотности костей и зубов. В статье 1997 года, опубликованной в журнале Medical Engineering & Physics, исследователи использовали силу Архимеда для измерения объёма внутренней губчатой ​​части кости, которая может применяться в различных исследованиях старения, остеопороза, прочности костей, жёсткости и эластичности.

Конусно-лучевая компьютерная томография

В статье, опубликованной в 2017 году в журнале Oral Surgery, использовались различные методы для определения воспроизводимости, одним из которых был принцип Архимеда. Его сравнивали с использованием конусно-лучевой компьютерной томографии для измерения объёма зубов. Тесты, сравнивающие закон и замера КЛКТ, показали, что последние будут точным инструментом при планировании стоматологических процедур.

Простой, надёжный и экономически эффективный проект для подводной лодки, описанный в статье 2014 года в журнале Informatics, Electronics and Vision, основан на принципе Архимеда. Конструкция этой прототипной субмарины использует расчёты, включающие массу, плотность и объём как подводной лодки, так и вытесненной воды, чтобы определить необходимый размер балластного танка. Он должен обозначить количество воды, способное его заполнить, и, следовательно, выяснить нижнюю границу глубины, на которую может погружаться подводная лодка.

Также можно наблюдать действие силы Архимеда в природе:

Плавательный пузырь у рыбы

  1. Определённая группа рыб использует принцип Архимеда, чтобы подниматься и спускаться по воде. Чтобы подняться на поверхность, они наполняют свой плавательный пузырь (воздушные мешки) газами.
  2. В исследовании 2016 года использовался метод измерения теней, оставляемых водомерками, для понимания создаваемой ими кривизны поверхности воды. Авторы утверждают, что есть большой интерес к пониманию физики, стоящей за водными жуками, потому что это позволить создать экспериментальных биомиметических роботов, способных ходить по воде.
  3. Плотность льда ледников и айсбергов меньше плотности океана, поэтому их частично выносит наверх.

Греческий учёный внёс огромный вклад в кораблестроение, сформировав критерии устойчивости плавающих объектов. Закон Архимеда также используется в широком спектре научных исследований, включая медицину, инженерию, энтомологию, инженерию и геологию.

Открытие закона

Открытие закона Архимедом

Однажды Архимед наполнил ванну и заметил, что вода пролилась через край, когда он сел в неё. Тогда учёный понял, что жидкость, вытесненная его телом, была равна его весу. Оборудование для взвешивания объектов с достаточной точностью уже существовало, и теперь, когда Архимед также мог измерить объём, их соотношение дало бы плотность объекта — важный показатель чистоты, поскольку золото почти в два раза плотнее серебра и имеет значительно больший вес для того же объёма вещества при стандартных температурах и давлении.

Читайте также: