К каким тканям относят меристемы а покровным б проводящим в образовательным г механическим кратко

Обновлено: 02.07.2024

Сложнейшее устройство растительного организма поражает. Для понимания внутренней работы растений ботаники делят их на взаимосвязанные части — ткани.Сегодняшний урок поможет разобраться в удивительном многообразии тканей растений.

Обложка урока взята с источника.

План урока:

Ткани — совокупность клеток с единым происхождением, функциями и строением. Ткани появились из-за потребностей вышедших на сушу растений.

Виды тканей растений

Ткани растений бывают простыми и сложными. Клетки в простых тканях выполняют одну основную функцию, а в сложных берут на себя дополнительные задачи. Примером простых тканей служит меристема, сложных — ксилема и флоэма.

Классификация по функциям и строению тканей растений:

Но это ещё не всё. Даже в рамках одного вида тканей клетки различаются, поэтому классификацию дополняют подвиды.

Образовательная ткань

Образовательная ткань растений— родители: из них развиваются остальные ткани. Клетки недифференцированной ткани делятся множество раз и тем самым обеспечивают рост растения в длину и толщину.

Узнать клетки образовательной ткани не составляет труда: это скопления близко расположенных клеток с мелкими стенками и вакуолями и без запаса дополнительных веществ. Лишний груз этим клеткам не нужен, ведь их единственная функция — деление.

По топографической классификации меристемы делят на:

  1. Верхушечные;
  2. Боковые;
  3. Вставочные;
  4. Раневые.

Благодаря апикальным тканям растение растёт в длину, а благодаря латеральным — в толщину. Благодаря интеркалярным меристемам происходит рост у оснований междоузлий. Раневые ткани приходят на помощь там, где растение повреждено.

Схема распределения меристем 1. Апикальная, 2. Латеральная, 3. Интеркалярная, 4. Раневая.

Основная ткань

Основная ткань растений — дом: между её клетками расположены другие ткани. Судя по названию, основная ткань составляет основу растений. Как части одного строения, клетки основной ткани выполняют разнообразные задачи, поэтому их делят на подвиды:

  1. Ассимиляционная (хлоренхима);
  2. Основная (типичная);
  3. Запасающая;
  4. Воздухоносная (аэренхима);
  5. Поглощающая.

В общем виде клетки этого вида ткани состоят из живых клеток с тонкими стенками. Далее строение зависит от выполняемой задачи.

Ассимиляционная паренхима отвечает за фотосинтез и газообмен: клетки по размеру средние, имеют много хлоропластов. Типичная ткань заполняет пустые места: в клетках нет хлорофилла. Запасающая паренхима хранит вещества: в клетках этой ткани откладываются крахмальные зёрна, белковые гранулы и липидные капли.Воздухоносная ткань есть у растений, которые живут в водных пространствах: клетки аэренхимы находятся на расстоянии друг от друга, имеют межклетники, которые заполнены воздухом. Поглощающая паренхима отвечает за всасывание воды через корневые волоски: клетки крупные, содержат в вакуолях специальное слизистое вещество.

Паренхима клубня картофеля

Проводящая ткань

Проводящая ткань растений— лифт: по этим клеткам перемещается вода и разнообразные вещества. Если лифт движется вверх, его называют ксилемой, если вниз — флоэмой.

Дополнительная функция древесины заключается в опоре растения. Древесина образуется из клеток камбия и находится ближе к центральной части растения.

К составным частям ксилемы относят трахеиды, трахеи (сосуды), древесинные волокна и паренхима. Трахеиды и трахеи выполняют проводящую функцию, а волокна и паренхима — механическую.

Трахеиды — мёртвые клетки скошенной формы. У этих клеток есть одревесневшая оболочка, нет цитоплазмы. В стенках трахеид расположены поровые мембраны, через которые перемещается вода с растворёнными минеральными веществами. По трахеидам жидкость протекает медленно.

Трахеи —пустые трубки, которые разделены на членики. Эти клетки узкие и вытянутые с частично сохранёнными участками цитоплазмы. Боковые стенки члеников одревесневают,

а поперечные разрушаются и образуют сквозные проёмы — перфорации. Трахеи высокопроницаемы, поэтому по таким отверстиям вода перемещается быстрее, чем по поровым мембранам.

Второй тип проводящей ткани — флоэма.

Луб находится под корой.

Ситовидные трубки — скопление клеток, которые срастаются с помощью пластинок. Клетки ситовидных трубок живые, продолговатые, неодревесневшие. Ядро разрушается в начале формирования трубок. Клетки имеют стенки, в которых расположены мельчайшие отверстия, напоминающие сито. Дыры соседних клеток соединяют длинные жгуты цитоплазмы, через которые проходят вещества. Беспорядочный поток веществ регулируют клетки-спутницы, которые размещаются возле трубок. Также клетки-спутницы берут на себя другие функции: продукцию необходимых ферментов и энергии.

Ситовидные клетки есть у папоротникообразных и голосеменных. У этих клеток нет специальных клеток-спутниц.

Внутреннее строение стебля

Покровная ткань

Покровная ткань растений— крыша и стены: эти клетки размещаются на протяжении поверхности растения.

Первичная ткань — эпидерма, которая покрывает листья и плоды. Клетки эпидермиса живые. Оболочка изгибистая, что обеспечивает прилегание клеток. Снаружи все клетки покрыты толстой кутикулой. Задачи эпидермиса сводятся к защите, регуляции газообмена через устьица и транспирации.

Вторичная ткань — перидерма, которая приходит на смену эпидерме. Клетки перидермы мёртвые, насыщенные жироподобным веществом — суберином. Перидерма состоит из феллогена (пробкового камбия), феллемы (пробки) и феллодермы (подпитывающей ткани). Феллоген, разрастаясь, синтезирует к поверхности феллему, а внутрь — феллодерму. Перидерма придаёт дополнительную защиту растению. Газообмен происходит через чечевички.

Третичная ткань — ритидом, который создаётся в результате отложения слоёв перидермы. Ритидом — группа мёртвых клеток, которая состоит из деформированных мёртвых участков коры и слоёв феллемы. Корка обеспечивает максимальную защиту.

Механическая ткань

Механическая ткань растений— каркас: эти клетки поддерживают форму растения. Благодаря прочным механическим тканям растения дают отпор разрыву. Такая ткань развивается из верхушечной меристемы, а также в результате работы камбия. Различают два вида механической ткани: колленхима и склеренхима.

Колленхима укрепляет молодые органы, располагаясь под кожицей. Клетки колленхимы живые, эластичные. Неровно утолщённая неодревеневшая клеточная стенка содержит пектин и гемицеллюлозу, что помогает клеткам растягиваться.

Склеренхима обладает большей прочностью, поэтому обеспечивает осевую опору растения.

Волокна — длинные клетки с крупными оболочками, собранные в пучки. В ксилеме располагаются древесинные волокна, а во флоэме — лубяные.

Склереиды — различные по морфологии клетки с одревесневшими стенками. Склереиды бывают палочковидные, удлинённые и звёздчатые. Такие клетки образуют скорлупу и косточки.

Механическая ткань: А – каменистые клетки, Б – клетки колленхимы, В – волокна склеренхимы

Выделительная ткань растений

Выделительная ткань — сточная труба: через эти клетки уходят продукты метаболизма. Различают ткани секреторные и экскреторные.

К экскреторным тканям относят железистые волоски, нектарники и гидатоды. Железистые волоски выделяют на поверхность минеральные соли, нектарники — нектар, а гидатоды — воду и соли. Процесс выделения гидатодами воды при низкой транспирации называется гуттацией.

В секреторных тканях продукты метаболизма накапливаются в отдельных вместилищах. Такие ткани бывают схизогенными и лизогенными. Схизогенные вместилища — межклетники, которые заполнены выделительными веществами. Лизогенные вместилища — скопления клеток, которые разрушаются после накопления веществ.

К выделительным тканям внутренней секреции относят смоляные каналы, идиобласты и млечники. Смоляные каналы накапливают смолу, идиобласты — танины, эфирные масла, а млечники — млечный сок.

Появление тканей у растений

В водной среде мягкие условия, поэтому водоросли имеют только клетки, а не развитые ткани. Потребность в организованных скоплениях клеток возникла, когда растительные организмы вышли в наземную среду. Первыми водные пространства покинули древние растения — псилофиты, у которых появилась важная проводящая ткань.

У мхов появляется единственная ткань — основная, основной задачей которой становится фотосинтез. Папоротники к паренхиме добавляют хорошо развитую проводящую ткань. У голосеменных развиваются все виды тканей: основная, проводящая, образовательная, покровная, механическая и выделительная. Ткани покрытосеменных растений достигают наивысшего развития.

Ткани появились у высших растений в связи со специализацией клеток. Ткань – совокупность клеток и межклеточного вещества, сходных по происхождению, строению и выполняемым функциям.

У растений различают шесть основных групп тканей:

  • Образовательные (меристематические) ткани;
  • Покровные (пограничные) ткани;
  • Основные ткани;
  • Механические ткани;
  • Проводящие ткани;
  • Выделительные (секреторные) ткани.

А теперь рассмотрим поближе каждую из групп тканей.

Образовательные ткани (меристемы). Растения обладают неограниченным ростом благодаря наличию образовательных тканей, которые дают начало остальным видам тканей.

По происхождению различают: первичные и вторичные меристемы.Первичные – меристемы зародыша, они обуславливают развитие проростка и первичный рост органов. Вторичные меристемы возникают на базе первичных и обеспечивают рост органов преимущественно в ширину.

По местоположению различают верхушечные, боковые и вставочные меристемы. Верхушечные (апикальные) находятся на концах главных и боковых осей стебля и корня, определяют главным образом рост органа в длину.

Боковые (латеральные) меристемы. Возникают за счет деятельности первичных меристем. Как правило, обуславливают утолщение осевых органов. К латеральным меристемам относятся камбий и пробковый камбий – феллоген.

Вставочные (интеркалярные) меристемы. Участки интенсивно делящихся клеток, расположенные обычно в узлах побегов или в основаниях листовых пластинок. Представляют собой остатки верхушечной меристемы. Когда рост междоузлий или листа прекращается, интеркалярная меристема превращается в постоянные ткани, то есть их деятельность кратковременна. Но иногда эти меристемы могут функционировать достаточно долго (например, у оснований междоузлий хвощей, злаков).

К вторичным меристемам относятся и раневые (травматические) меристемы. Появляются в местах механического разрушения тканей из живых клеток различных паренхимных тканей, образуя раневую ткань – каллюс (каллус). Обеспечивают зарастание раны, перекрывают доступ возбудителям болезней.

Покровные ткани. Как правило, покровными тканями называют ткани, покрывающие тело растения и взаимодействующие с внешней средой. Они защищают внутренние ткани от действия неблагоприятных факторов среды, регулируют газообмен и транспирацию. К собственно покровным тканям относятся первичная покровная ткань – кожица, вторичная покровная ткань – перидерма и третичная покровная ткань – корка.

Первичная покровная ткань. Кожицу листьев и стеблей называют эпидермой, кожицу корня – эпиблемой. Основные функции эпидермы – защита молодых органов от высыхания, механическая защита и газообмен. Эпидерма, как правило, представлена одним слоем плотно сомкнутых клеток, на внешней поверхности жироподобное вещество кутин образует защитную пленку – кутикулу. На поверхности кутикулы часто имеется восковой налет. Стенки клеток обычно извилистые, наружные стенки толще остальных.

Для газообмена и транспирации в эпидерме имеются специальные образования – устьица.

Устьице представляет собой щелевидное отверстие в эпидерме, ограниченное двумя клетками бобовидной формы. Это замыкающие клетки. В отличие от остальных клеток эпидермы они содержат хлоропласты. Стенки замыкающих клеток, обращенные в сторону устьичной щели, утолщены. Клетки эпидермы, окружающие замыкающие, называют побочными или прилегающими. Под устьицем находится газовоздушная камера. Замыкающие и побочные клетки, устьичная щель и газовоздушная камера образуют устьичный аппарат. Устьица чаще располагаются на нижней стороне листа.
Иногда клетки эпидермы образуют различные придатки, волоски и чешуйки (трихомы). Волоски выполняют защитную функцию, сильное опушение защищает растение от перегрева и потери влаги. Железистые волоски выполняют защитную функцию (например, у крапивы).

Вторичная покровная ткань, перидерма. Состоит из феллемы – собственно пробки, феллогена – пробкового камбия и феллодермы – пробковой паренхимы. Она сменяет эпидерму, которая постепенно отмирает и слущивается. Закладывается преимущественно в стеблях и корнях.

Вторичная образовательная ткань феллоген может образовываться как из клеток кожицы, так и из клеток паренхимы. Наружу феллоген откладывает клетки пробки, содержимое клеток отмирает. Пробка не проницаема для воды и газов и для газообмена и транспирации в пробке формируются чечевички. Внутрь феллоген откладывает клетки, которые остаются живыми, клетки феллодермы.

Третичная покровная ткань, ритидом, или корка. У большинства древесных растений пробка заменяется коркой. При образовании корки новый слой феллогена и перидермы закладывается в основной ткани, лежащей глубже первой наружной перидермы. Вновь образовавшиеся слои пробки отчленяют к периферии органа не только перидерму, но и часть лежащей под ней паренхимы коры. Так возникает толстое многоклеточное и мертвое образование. Так как корка не может растягиваться, при утолщении ствола она лопается, и образуются трещины.

Механические ткани. Основное назначение – обеспечить механическую прочность различным органам растения. Они очень хорошо развиты у растений, растущих в воздушной среде. Состоят из клеток с толстыми стенками, часто одревесневшими. Различают два вида механической ткани – колленхиму и склеренхиму.

Колленхима, первичная механическая ткань, развита главным образом в растущих стеблях, черешках и листьях двудольных растений. Образована живыми, вытянутыми в длину клетками, часто содержащими хлоропласты. Клеточные стенки неравномерно утолщены.

Склеренхима – наиболее важная механическая ткань высших растений. Образована клетками с равномерно утолщенными, часто одревесневшими стенками. Протопласт отмирает рано, и опорную функцию выполняют мертвые клетки, которые называют волокнами.

Проводящие ткани. Обеспечивают транспорт веществ в растении. Одна группа проводящих тканей обеспечивает проведение в основном воды и минеральных солей и называется ксилема, другая – проводит раствор органических веществ и называется флоэма.

Ксилема (древесина) – сложная ткань, которая включает в себя проводящую, механическую и основную ткани. Проводящая ткань ксилемы состоит из сосудов (трахей) и трахеид, осуществляющих восходящий ток воды и минеральных веществ, механическая ткань представлена древесными волокнами, основная – древесной паренхимой.

Флоэма (луб) также сложная ткань, которая включает в себя проводящую, механическую и основную ткани. Проводящая ткань флоэмы состоит из ситовидных клеток и ситовидных трубок с сопровождающими их клетками-спутницами, Основная ткань представлена лубяной паренхимой, механическая – лубяными волокнами.

Ситовидные трубки характерны для покрытосеменных растений. Перфорации собраны группами и образуют ситовидные пластинки, которые располагаются на торцевых концах клеток. В зрелых члениках ситовидных трубок ядро отсутствует, центральная вакуоль рассасывается, клеточный сок соединяется с цитоплазмой. Однако клетка остается живой. Протопласт принимает вид удлиненных тяжей, проходящих через перфорации из членика в членик. Рядом с каждым члеником ситовидной трубки располагаются клетки-спутницы. Они принимают участие в транспорте веществ по ситовидным трубкам.

Основные ткани. Они составляют основу органов, заполняя пространства между другими тканями, обеспечивают все стороны внутреннего обмена веществ у растений. Их называют клетками паренхимы. Различают несколько разновидностей основной паренхимы:

Ткань – это совокупность клеток, имеющих общее происхождение, положение и выполняющих общую функцию. Перед тем как разбираться во всем разнообразии тканей высших растений, следует вспомнить строение растительной клетки и ее отличия от животных клеток. Клетки высших растений состоят из клеточной оболочки (клеточной стенки), протопласта (ядра и цитоплазмы) и вакуоли с клеточным соком. В цитоплазме находятся различные органеллы – рибосомы, пластиды, митохондрии, аппарат Гольджи и т.д. Отличительными чертами растительной клетки является наличие целлюлозной клеточной стенки, большой центральной вакуоли с клеточным соком, а также присутствие пластид в цитоплазме. Запасным веществом растительных клеток в отличие от животных является крахмал, а деление клеток происходит с образованием фрагмопласта.

Признаки

Клетки растений

Клетки животных

Немногочисленные крупные с клеточным соком

Многочисленные мелкие пищеварительные или сократительные

С образованием фрагмопласта

Строение растительной клетки. 1 – плазмалемма; 2 – пластида; 3 – клеточная стенка; 4 – цитоплазма; 5 – митохондрия; 6 – плазмодесма; 7 – комплекс Гольджи (диктосомы); 8 — эндоплазматическая сеть; 9 — оболочка ядра; 10 – ядрышко; 11 – ядро; 12 – тонопласт (оболочка вакуоли); 13 – вакуоль.

Ткани высших растений можно классифицировать по-разному. Так, можно различать простые и сложные ткани. Простые ткани сложены одинаковыми клетками. Например, к простым тканям относятся склеренхима, паренхима и хлоренхима. Сложные ткани состоят из разных клеток (проводящих, механических, запасающих). Примерами сложных тканей могут служить флоэма и ксилема. Также ткани можно разделить по происхождению на первичные и вторичные – образовавшиеся в результате деятельности первичных или вторичных меристем соответственно (например, первичная ксилема и вторичная ксилема). Говоря о разнообразии тканей высших растений, чаще всего прибегают к классификации, основанной на их функциях в организме растения. Так, ткани растений разделяют по выполняемым ими функциям на следующие группы:

  • покровные (эпидерма, пробка);
  • механические (склеренхима, колленхима);
  • ассимилирующие (хлоренхима);
  • поглощающие (ризодерма, веламен);
  • проводящие (ксилема, флоэма);
  • запасающие (запасающая паренхима);
  • основные (основная паренхима);
  • образовательные (апикальная меристема, камбий, феллоген);
  • секреторные (железистые волоски, смоляные ходы);
  • вентиляционные (аэренхима).

Покровные ткани

Рисунок 1: Эпидерма.

Рисунок 2: Основные типы устьичных аппаратов. 1 – диацитный; 2 –парацитный; 3 –анизоцитный; 4 — аномоцитный.

Вторичная покровная ткань высших растений – это пробка. Пробковый слой обычно образуется на вторично утолщенных стеблях и корнях высших растений. Пробка (она же феллема), образуется в результате работы так называемого пробкового камбия (или феллогена). В феллогене клетки делятся и откладываются наружу, их клеточные стенки утолщаются и суберинизируются (опрбковевают). Суберин – это вещество непроницаемое для воды и воздуха, следовательно, внутреннее содержимое клеток вскоре отмирает. В результате пробковый слой состоит из мертвых клеток и является газо- и водонепроницаемой покровной тканью.

Рисунок 3: Феллема, феллоген, феллодерма.

Механические ткани

Существует две специализированные механические ткани высших растений – склеренхима и колленхима.

Склеренхима, как правило, состоит из клеток вытянутой формы – волокнообразных. Их клеточные стенки утолщаются и лигнифицируются, то есть одревесневают. Живое содержимое клетки впоследствии отмирает. Таким образом, склеренхима – это мертвая ткань, механическую функцию в которой выполняют жесткие клеточные стенки. Склеренхима твердая жесткая ткань и в растении она выполняет армирующую функцию, располагаясь обычно тяжами или слоями. Однако иногда склеренхима может быть представлена в виде отдельных клеток с одревесневшими клеточными стенками, разбросанных в толще некой мягкой ткани (например, паренхимы). Такие клетки называются склереидами. По форме различают разные типы склереид: брахисклереиды, астросклереиды, остеосклереиды и волокнистые склереиды. Все склеренхимные элементы вместе составляют стереом – совокупность всех толстостенных одревесневших клеток растения. Следует также помнить, что отчасти механическую функцию, подобно склеренхиме, выполняет водопроводящая ткань ксилема (в особенности ядровая древесина – вторичная ксилема, прекратившая проводить воду).

Рисунок 1: Склеренхима.

Рисунок 2: Колленхима. А – рыхлая; Б – пластинчатая; В – уголковая. 1 – первичная; клеточная стенка; 2 – вторичная клеточная стенка; 3 – межклетник; 4 – протопласт.

Ассимилирующие ткани (хлоренхима)

Рисунок 1: Хлоренхима.

Рисунок 2: Поперечный срез листа. 1 – эпидерма; 2 – столбчатая хлоренхима; 3 – губчатая хлоренхима; 4 – подустьичная полость; 5 – устьице.

Поглощающие ткани

Высшие растения поглощают воду с помощью специальных тканей. У мохообразных отсутствуют корни, и всасывание воды происходит всей поверхностью тела (например, с помощью гиалиновых клеток у сфагновых мхов) или с помощью ризоидов – длинных тонкостенных клеток. Сосудистые растения имеют корни, поверхность которых покрыта ризодермой (эпиблемой) – специализированной всасывающей тканью. Ризодерма гомологична эпидерме, то есть также формируется из одного внешнего слоя клеток, покрывающих орган. Однако ризодерма не является покровной тканью, поскольку практически не выполняет защитную функцию. Ее клетки тонкостенные и специализируются на поглощении воды и минеральных солей из почвы, поглощение при этом происходит избирательно и с затратой энергии. В ризодерме различают два типа клеток: трихобласты и атрихобласты. У трихобластов наружная часть клетки выпячивается и образует длинный вырост – корневой волосок, служащий для увеличения поверхности всасывания. Корневой волосок выделяет слизь, которая помогает растворять поглощать минеральные вещества из почвы. Атрихобласты не формируют корневых волосков, но также поглощают вещества своей поверхностью.

Рисунок: Ризодерма. А – Продольный разрез корня; Б – Клетки ризодермы. 1 – зона проведения; 2 – зона всасывания; 3 – зона роста; 4 – зона деления; 5 – корневые волоски; 6 – корневой чехлик.

У некоторых тропических эпифитных растений вместо ризодермы развивается веламен. Веламен гомологичен ризодерме, но в отличие от нее является многослойной тканью и состоит из отмерших клеток. Их клеточные стенки имеют спиральные утолщения, которые служат ребрами жесткости, сами клеточные стенки частично разрушаются, а внутреннее содержимое клеток отмирает. В результате получается структура наподобие губки, которая способна впитывать воду из влажного воздуха, тумана или осадков. Таким образом, веламен поглощает вещества пассивно и не избирательно. Направленный и избирательный транспорт воды дальше внутрь корня происходит при участии экзодермы, подстилающей веламен (как, впрочем, и любую ризодерму).

Проводящие ткани (ксилема, флоэма)

Ксилема – сложная ткань, то есть состоит из клеток разной морфологии. В состав ксилемы одновременно входят и проводящие, и механические, и запасающие элементы.

Ксилема проводит воду с растворенными в ней минеральными веществами от корней по всему остальному телу растения. Таким образом, по ксилеме в основном осуществляется восходящий ток. Проводящие элементы ксилемы – это сосуды и трахеиды. Следует помнить, что ксилема голосеменных растений лишена сосудов. Трахеида образуется из клетки удлиненной формы, ее клеточная стенка утолщается и лигнифицируется, то есть одревесневает. Протопласт при этом отмирает и в результате получается мелкий капилляр, по которому может транспортироваться вода. Прочные клеточные стенки предохраняют просвет капилляра от схлопывания. От трахеиды к трахеиде вода транспортируется через специальные поры. Сосуд, по сути, является таким же капилляром, как и трахеида, но более длинным, широкопросветным и многоклеточным. Каждый сосуд состоит из отдельных клеток (члеников сосуда) с одревесневшей оболочкой и отмершим протопластом, между члениками сосуда формируются уже не поры, а перфорационные пластинки (то есть сквозные отверстия). Между сосудами, как и между трахеидами, есть поры, через которые также может транспортироваться вода. Кроме проводящих элементов, в состав ксилемы входят механические волокна – волокна либриформа. Это удлиненные клетки, похожие на трахеиды, однако их клеточные стенки очень сильно утолщены и лигнифицированы. Просвет таких капилляров слишком мал для осуществления транспорта воды, зато толстая и прочная клеточная стенка выполняет механическую функцию подобно склеренхиме. Ксилема в основном состоит из мертвых клеток, обычно небольшой процент живых клеток представлен древесинной паренхимой. Эти клетки в основном выполняют запасающую функцию.

Флоэма, как и ксилема, – это сложная ткань, которая состоит из разных клеток. В состав флоэмы входят проводящие механические и паренхимные (в том числе запасающие) элементы.

Рисунок: Проводящие ткани. А – ксилема; Б – флоэма. 1 – сосуды ксилемы; 2 – трахеиды; 3 – клетки древесной паренхимы; 4 – поры; 5 - ситовидные трубки; 6 – клетки – спутницы; 7 – ситовидные поля; 8 – клетки лубяной паренхимы.

Запасающие ткани (запасающая паренхима)

Запасающие ткани высших растений бывают различными по происхождению, также различия заключаются в том, какие именно вещества и в какой части клетки запасаются.

Главное запасное вещество высших растений – это крахмал. Крахмал синтезируется и откладывается в виде зерен в специальных пластидах – амилопластах. Крахмальные зерна увеличиваются в размере и растягивают пластиду. В результате клетка такой запасающей ткани содержит множество крупных зерен крахмала – примером может служить запасающая ткань в клубне картофеля.

Если растение запасает питательные вещества не на очень долгий срок, то они могу откладываться в виде сахаров в вакуолях клеток. Например, в сочной ткани многих плодов. Сочный плод рассчитан на то, что его съест некое животное, а значит, он должен быть привлекательным для него – питательным и сладким.

В эндосперме некоторых семян запасание происходит за счет утолщения клеточной стенки, в которой откладывается гемицеллюлоза.

При прорастании семени клетки частично растворяют свои клеточные стенки и потребляют углеводы, из которых она состоит. В качестве запасного вещества может выступать белок. Он может откладываться в вакуолях (алейрон) или в лейкопластах. В цитоплазме запасаются жиры в виде сферосом.

Кроме питательных веществ, ткань может запасать воду. Клетки водоносной ткани бывают ослизнены и имеют крупные вакуоли, в которых сохраняется влага.

Рисунок: Запасающая паренхима клубня картофеля. 1 – крахмальные зерна.

Основные ткани (основная паренхима)

К системе тканей основной паренхимы традиционно относят все ткани, образованные из основной меристемы (не являющиеся покровными и проводящими) то есть запасающие, фотосинтезирующие и т.д. Однако эти ткани специализированы на выполнении конкретной функции и рассматриваются обычно отдельно. Основной паренхимой в узком смысле называют ткань, состоящую из рыхло расположенных более или менее шарообразных клеток.

Между клетками есть заметные межклетники.

Данная ткань не специализирована для выполнения какой-то определенной функции, это структурная ткань, заполняющая пространство того или иного органа. Поскольку клетки основной паренхимы живые, их клеточные стенки не лигнифицированы, а в цитоплазме есть полный набор клеточных органелл, при необходимости она может становиться запасающей, водоносной или фотосинтезирующей тканью.

Также основная паренхима может проявлять меристематическую активность – клетки могу начать делиться. Со временем клеточные стенки паренхимы могут одревесневать, тем самым начиная выполнять механическую функцию.

Таким образом, основная паренхима – это неспециализированная структурная ткань, которая может специализироваться при определенных условиях.

Рисунок: Основная паренхима.

Образовательные ткани

Массив ткани, в которой происходят клеточные деления в теле высшего растения, следует назвать образовательной тканью или меристемой. Образовательные ткани не являются постоянными. Клетки меристемы недифференцированные и не специализированные, у них тонкие клеточные оболочки. Данные клетки делятся и в дальнейшем преобразуются в ту или иную специализированную ткань.

Высшие растения имеют верхушечный рост, их побеги (и корни) нарастают за счет верхушечной или апикальной меристемы. Рассмотрим апикальную меристему стебля. Это массив делящихся клеток на вершине растущей оси побега, ниже апекса ткань разделяется на три отдельные меристемы: протодерму, прокамбий и основную меристему. Протодерма – это один поверхностный слой клеток меристемы. Из протодермы в дальнейшем формируется эпидерма. Прокамбий представлен тяжами клеток, которые дифференцируясь, становятся проводящими тканями (формируют проводящие пучки). Остальные ткани стебля (паренхима, хлоренхима, склеренхима и т.д.) формируются из основной меристемы.

Рисунок 1: Апикальная меристема стебля.

У высших растений выделяют две вторичные латеральные меристематические ткани – камбий и феллоген. Камбий (или сосудистый камбий) закладывается в проводящих пучках стебля или корня между флоэмой и ксилемой. В результате клеточных делений внутрь откладывается ткань, дифференцирующаяся в ксилему, а наружу – будущая флоэма. За счет работы камбия происходит процесс вторичного утолщения стебля или корня. Соответственно, сформированные камбием проводящие ткани будут называться вторичными – вторичная ксилема и вторичная флоэма. Следует помнить, что при вторичном утолщении камбиальная зона возникает не только внутри проводящих пучков, но и формируется так называемый межпучковый камбий. В результате на поперечном срезе камбий имеет вид общего меристематического кольца.

Рисунок 2: Камбий. 1 – эпидерма; 2 – паренхима; 3 – флоэмные волокна; 4 – флоэма; 5 – пучковый камбий; 6 – ксилема; 7 – межпучковый камбий.

Феллоген (или пробковый камбий) возникает в корнях и стеблях растений при их вторичном утолщении. При утолщении эпидерма и впоследствии первичная кора опадает и отмирает, покровную функцию в данном случае выполняет пробковый слой, формируемый феллогеном. В результате клеточных делений в феллогене, наружу откладываются клетки феллемы (или пробка). Феллоген снизу подстилается слоем клеток – феллодермой. Комплекс из трех данных тканей носит название перидерма.

Рисунок 3: Феллема, феллоген, феллодерма.

Секреторные ткани (железистые волоски, смоляные ходы)

Секреторные (или выделительные) структуры высших растений очень разнообразны как по строению, так и по происхождению. Они делятся на две группы: экзогенные и эндогенные.

Экзогенные секреторные структуры расположены на поверхности тела растения. К ним относятся гидатоды – структуры, выделяющие капельно-жидкую воду. Их наличие характерно для растений, обитающих в условиях повышенной влажности. К гидатоде подходят проводящие элементы ксилемы, по которым транспортируется вода. Также к экзогенным структурам относятся различные железистые волоски или более крупные многоклеточные железки. Они, как правило, выделяют эфирные масла, которые скапливаются под кутикулой наружных клеток структуры. Нектарники также являются экзогенными секреторными структурами. Они выделяют секрет богатый сахарами, сахара поступают в нектарники по флоэмным элементам. Различают флоральные (расположенные в цветке) и экстрафлоральные нектарники.

Эндогенные секреторные структуры находятся внутри тела растения. Они бывают одноклеточные и многоклеточные. Одноклеточные структуры могут быть разнообразными по содержанию – это слизевые, кристаллоносные, масляные клетки, одноклеточные млечники, а также прочие клетки, накапливающие в себе те или иные вещества. Многоклеточные эндогенные структуры обычно выделяют секрет в некую полость, представляющую собой межклетник. По типу межклетников различают схизогенные и лизигенные вместилища. По типу содержащегося в них секрета различают смоляные, слизевые, камеденосные ходы и т.д. К многоклеточным структурам также относят млечники. Они состоят из трубчатых клеток, внутри которых находится млечный сок. Если концевые стенки трубчатых клеток деградируют, то такой млечник называют нечленистым.

Рисунок: Секреторные структуры.

Вентиляционные ткани (аэренхима)

Аэренхима – это вентиляционная ткань или ткань проветривания. Главную функцию аэренхимы выполняют крупные межклетники, по которым и циркулирует воздух. Воздух необходим высшим растениям как для дыхания, так и для процессов фотосинтеза. Наличие аэренхимы характерно для водных или околоводных высших растений. Воздух, находящийся в системе полостей аэренхимы, не только вентилирует все части растения (в особенности подводные), но и придает им плавучесть, как, например, листьям кувшинки.

Рисунок: Аэренхима. А – аэренхима на поперечном срезе стебля; Б – клетки пленчатой перегородки, разделяющей полости аэренхимы; В – аэренхима из трехмерно расположенных звездчатых клеток.

Вентиляционная ткань выполняет свою функцию за счет многочисленных увеличенных межклетников. Стоит помнить, что межклетники по типу происхождения делятся на три типа. Схизогенные межклетники образовались в результате простого расхождения клеток в пространстве. Лизигенные полости формируются в результате деградации (лизиса) некоторых клеток. Крупные рексигенные полости являются результатом механического разрыва тканей, например, в центре черешков или стеблей некоторых растений.

С тех пор процессы пролиферации и дифференцировки клеток ушли далеко вперед, создав настоящее чудо - вас, человека. У растения жизнь начинается точно так же - с одной маленькой клетки, из которой в дальнейшем будут развиваться ткани и органы самых разных форм. Главная заслуга роста растения принадлежит образовательной ткани.

Образовательные ткани растений

Как вы видите, на картинке схематично изображено месторасположение образовательной ткани. Главным образом это:

  • Кончик побега - конус нарастания в почках
  • Кончик корня - зона деления, прикрытая корневым чехликом для защиты
  • Камбий - обеспечивает рост растения в ширину
  • Основание междоузлий и черешков листьев - это также зоны активного роста растения

Именно в этих местах и происходит деление клеток и рост растения. Важно отметить, что сезонные изменения активности клеток камбия являются причиной возникновения годичных колец древесины. Внешний вид годичных колец обусловлен хронологической закономерностью: весной больше образуется проводящей ткани (более тонкая и рыхлая внутри), а осенью - механическая (толстая, более твердая). Именно поэтому годичные кольца на спиле дерева выглядят как чередование колец, отличающихся друг от друга.

Годичные кольца

На внешний вид годичных колец оказывают весьма сильное влияние условия внешней среды. Так, при дефиците трофического компонента (питательных веществ), к примеру, у растений, растущих на болоте, годичные кольца выглядят тоньше своих обычных размеров.

Ветер также оказывает существенное влияние: при его постоянном действии происходит перераспределение древесины по стволу. Оказывая действие на крону, ветер смещает центр тяжести дерева, что сказывается на его нижележащих отделах. Они начинают компенсаторно утолщаться для предотвращения слома дерева. При постоянно дующем ветре ствол сильно искривляется, а форма кроны становится флагообразной.

Камбий

Тема камбия и форм стволов растений весьма занимательна, и все-таки мы должны разобраться в строении самой образовательной ткани. Она представлена живыми мелкими быстро делящимися клетками с относительно крупным ядром. Объем цитоплазмы небольшой, она вязкая по консистенции, оболочка клетки тонкая. Это уязвимые клетки, которые растение оберегает по-своему, подобно тому, как животные оберегают только что появившееся потомство.

Влияние условий внешней среды на рост растения

Первичные меристемы - закладываются в эмбриогенезе

1) Вставочные меристемы (интеркалярные) - в виде отдельных участков в зоне активного роста в разных частях растения. Такие ткани можно найти в основании междоузлий у злаков, черешков листьев у многих растений. У злаковых наблюдается быстрый рост стебля за счет множественного расположения данной ткани на стебле - "вставочный рост".

2) Прокамбий - основа будущего камбия, перицикла, окружающего проводящие ткани в один или несколько слоёв (у голосеменных). В корнях перицикл является корнеродным слоем, так как в корне с него начинается формирование осевого цилиндра, наружным слоем которого он является. В нём закладываются придаточные и боковые корни, что имеет принципиальное значение для формирования корневой системы растения.

3) Верхушечные (апикальные) - формируются на верхушках стеблей и кончиках корней. В периферической части корня различают три слоя:

  • Дерматоген - в дальнейшем преобразующийся в первичную покровно-всасывающую ризодерму (эпиблему или ризодерму)
  • Периблема - образующая ткани первичной коры
  • Плерома - внутренний слой ткани центрального осевого цилиндра

Образовательная ткань

Вторичные меристемы - закладываются в постэмбриональном развитии

Камбий и феллоген (пробковый камбий) - занимают боковое положение по отношению к оси органа, обеспечивают рост вширь. Растения часто повреждаются, их задевают животные, нарушая целостность тканей и органов. На этот случай в группе вторичных меристем есть раневые меристемы, дающие начало защитной ткани в местах повреждения растения.

Вторичные меристемы

Топографическая классификация меристем

Спешу заверить, это отнюдь не сложная классификация, которой нужно бояться. Речь пойдет о взгляде на те же образовательные ткани с другой стороны. В переводе с греч. τόπος — место. Мы рассмотрим меристемы в соответствии с их месторасположением на растении.

  • Верхушечная или апикальная (лат. apex - вершина) - расположена на кончике корня и конусе нарастания побега
  • Боковая или латеральная (лат. latus - бок): камбий – обеспечивает рост стебля и корня в толщину
  • Краевая или маргинальная (лат. margo - край) меристема даёт начало листовой пластинке
  • Вставочная или интеркалярная (лат. inter - между и calaris - вставочный, добавочный) — расположена преимущественно у основания стеблевых междоузлий между зонами дифференцированных тканей.

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

Читайте также: