Что такое ядро ос кратко

Обновлено: 06.07.2024

  • Ядро́ (англ. kernel) — центральная часть операционной системы (ОС), обеспечивающая приложениям координированный доступ к ресурсам компьютера, таким как процессорное время, память, внешнее аппаратное обеспечение, внешнее устройство ввода и вывода информации. Также обычно ядро предоставляет сервисы файловой системы и сетевых протоколов.

Как основополагающий элемент ОС, ядро представляет собой наиболее низкий уровень абстракции для доступа приложений к ресурсам системы, необходимым для их работы. Как правило, ядро предоставляет такой доступ исполняемым процессам соответствующих приложений за счёт использования механизмов межпроцессного взаимодействия и обращения приложений к системным вызовам ОС.

Связанные понятия

Виртуальная машина (VM, от англ. virtual machine) — программная и/или аппаратная система, эмулирующая аппаратное обеспечение некоторой платформы (target — целевая, или гостевая платформа) и исполняющая программы для target-платформы на host-платформе (host — хост-платформа, платформа-хозяин) или виртуализирующая некоторую платформу и создающая на ней среды, изолирующие друг от друга программы и даже операционные системы (см.: песочница); также спецификация некоторой вычислительной среды (например.

Дра́йвер (англ. driver, мн. ч. дра́йверы) — компьютерное программное обеспечение, с помощью которого другое программное обеспечение (операционная система) получает доступ к аппаратному обеспечению некоторого устройства. Обычно с операционными системами поставляются драйверы для ключевых компонентов аппаратного обеспечения, без которых система не сможет работать. Однако для некоторых устройств (таких, как видеокарта или принтер) могут потребоваться специальные драйверы, обычно предоставляемые производителем.

Операцио́нная систе́ма, сокр. ОС (англ. operating system, OS) — комплекс взаимосвязанных программ, предназначенных для управления ресурсами компьютера и организации взаимодействия с пользователем.

Фа́йловая систе́ма (англ. file system) — порядок, определяющий способ организации, хранения и именования данных на носителях информации в компьютерах, а также в другом электронном оборудовании: цифровых фотоаппаратах, мобильных телефонах и т. п. Файловая система определяет формат содержимого и способ физического хранения информации, которую принято группировать в виде файлов. Конкретная файловая система определяет размер имен файлов (и каталогов), максимальный возможный размер файла и раздела, набор.

Микроядро (англ. microkernel) или μ-ядро (англ. μ‑kernel) — ядро операционной системы, реализующее минимальный набор функций.

Упоминания в литературе

Связанные понятия (продолжение)

Интерфейс командной строки (англ. Command line interface, CLI) — разновидность текстового интерфейса (CUI) между человеком и компьютером, в котором инструкции компьютеру даются в основном путём ввода с клавиатуры текстовых строк (команд), в UNIX-системах возможно применение мыши. Также известен под названием консоль.

Виртуа́льная па́мять (англ. virtual memory) — метод управления памятью компьютера, позволяющий выполнять программы, требующие больше оперативной памяти, чем имеется в компьютере, путём автоматического перемещения частей программы между основной памятью и вторичным хранилищем (например, жёстким диском). Для выполняющейся программы данный метод полностью прозрачен и не требует дополнительных усилий со стороны программиста, однако реализация этого метода требует как аппаратной поддержки, так и поддержки.

Графи́ческий интерфе́йс по́льзователя (ГИП), графический пользовательский интерфейс (ГПИ) (англ. graphical user interface, GUI) — разновидность пользовательского интерфейса, в котором элементы интерфейса (меню, кнопки, значки, списки и т. п.), представленные пользователю на дисплее, исполнены в виде графических изображений. Также называется графической оболочкой управления.

Систе́мный вы́зов (англ. system call) в программировании и вычислительной технике — обращение прикладной программы к ядру операционной системы для выполнения какой-либо операции.

Многозада́чность (англ. multitasking) — свойство операционной системы или среды выполнения обеспечивать возможность параллельной (или псевдопараллельной) обработки нескольких задач. Истинная многозадачность операционной системы возможна только в распределённых вычислительных системах.

Библиоте́ка (от англ. library) в программировании — сборник подпрограмм или объектов, используемых для разработки программного обеспечения (ПО).

Отла́дчик (деба́ггер, англ. debugger от bug) — компьютерная программа, предназначенная для поиска ошибок в других программах, ядрах операционных систем, SQL-запросах и других видах кода. Отладчик позволяет выполнять трассировку, отслеживать, устанавливать или изменять значения переменных в процессе выполнения кода, устанавливать и удалять контрольные точки или условия остановки и т.д.

Проце́сс — программа, которая выполняется в текущий момент. Стандарт ISO 9000:2000 определяет процесс как совокупность взаимосвязанных и взаимодействующих действий, преобразующих входящие данные в исходящие.

Система управления пакетами — набор программного обеспечения, позволяющего управлять процессом установки, удаления, настройки и обновления различных компонентов программного обеспечения. Системы управления пакетами активно используются в различных дистрибутивах операционной системы Linux и других UNIX-подобных операционных системах.

Межпроцессное взаимодействие (англ. inter-process communication, IPC) — обмен данными между потоками одного или разных процессов. Реализуется посредством механизмов, предоставляемых ядром ОС или процессом, использующим механизмы ОС и реализующим новые возможности IPC. Может осуществляться как на одном компьютере, так и между несколькими компьютерами сети.

Де́мон (daemon, dæmon, др.-греч. δαίμων божество) — компьютерная программа в системах класса UNIX, запускаемая самой системой и работающая в фоновом режиме без прямого взаимодействия с пользователем.

Ассе́мблер (от англ. assembler — сборщик) — транслятор исходного текста программы, написанной на языке ассемблера, в программу на машинном языке.

Моноли́тное ядро́ — классическая и, на сегодняшний день, наиболее распространённая архитектура ядер операционных систем. Монолитные ядра предоставляют богатый набор абстракций оборудования. Все части монолитного ядра работают в одном адресном пространстве.

Исхо́дный код (также исхо́дный текст) — текст компьютерной программы на каком-либо языке программирования или языке разметки, который может быть прочтён человеком. В обобщённом смысле — любые входные данные для транслятора. Исходный код транслируется в исполняемый код целиком до запуска программы при помощи компилятора или может исполняться сразу при помощи интерпретатора.

Ути́ли́та (англ. utility) — вспомогательная компьютерная программа в составе общего программного обеспечения для выполнения специализированных типовых задач, связанных с работой оборудования и операционной системы (ОС).

Файловый менеджер (англ. file manager) — компьютерная программа, предоставляющая интерфейс пользователя для работы с файловой системой и файлами. Файловый менеджер позволяет выполнять наиболее частые операции над файлами — создание, открытие/проигрывание/просмотр, редактирование, перемещение, переименование, копирование, удаление, изменение атрибутов и свойств, поиск файлов и назначение прав.

Среда́ рабо́чего стола́ (также графическое окружение рабочего стола, англ. desktop environment) — это разновидность графических интерфейсов пользователя, основанная на метафоре рабочего стола.

Исполняемый файл (англ. executable file, также выполняемый, реже исполнимый, выполнимый) — файл, содержащий программу в виде, в котором она может быть исполнена компьютером. Перед исполнением программа загружается в память, и выполняются некоторые подготовительные операции (настройка окружения, загрузка библиотек).

Начальная загрузка — сложный и многошаговый процесс запуска компьютера. Загрузочная последовательность — это последовательность действий, которые должен выполнить компьютер для запуска операционной системы (точнее, загрузчика), независимо от типа установленной ОС.

Текстовый пользовательский интерфейс, ТПИ (англ. Text user interface, TUI; также Character User Interface, CUI) — разновидность интерфейса пользователя, использующая при вводе-выводе и представлении информации исключительно набор буквенно-цифровых символов и символов псевдографики. Характеризуется малой требовательностью к ресурсам аппаратуры ввода-вывода (в частности, памяти) и высокой скоростью отображения информации. Появился на одном из начальных этапов развития вычислительной техники, при развитии.

Интегри́рованная среда́ разрабо́тки, ИСP (англ. Integrated development environment — IDE), также единая среда разработки, ЕСР — комплекс программных средств, используемый программистами для разработки программного обеспечения (ПО).

Маши́нный код (платфо́рменно-ориенти́рованный код), маши́нный язы́к — система команд (набор кодов операций) конкретной вычислительной машины, которая интерпретируется непосредственно процессором или микропрограммами этой вычислительной машины.Компьютерная программа, записанная на машинном языке, состоит из машинных инструкций, каждая из которых представлена в машинном коде в виде т. н. опкода — двоичного кода отдельной операции из системы команд машины. Для удобства программирования вместо числовых.

Дистрибути́в (англ. distribute - распространять) — это форма распространения программного обеспечения.

Загрузчик операционной системы — системное программное обеспечение, обеспечивающее загрузку операционной системы непосредственно после включения компьютера (процедуры POST) и начальной загрузки.

Интерпретатор (англ. interpreter ıntə:'prıtə, от лат. interpretator - толкователь) — программа (разновидность транслятора), выполняющая интерпретацию.

Операционная система реального времени (ОСРВ, англ. real-time operating system, RTOS) — тип операционной системы, основное назначение которой — предоставление необходимого и достаточного набора функций для работы систем реального времени на конкретном аппаратном оборудовании.

Виртуальная файловая система (англ. virtual file system — VFS) или виртуальный коммутатор файловой системы (англ. virtual filesystem switch) — уровень абстракции поверх конкретной реализации файловой системы. Целью VFS является обеспечение единообразного доступа клиентских приложений к различным типам файловых систем. VFS может быть использована для доступа к локальным устройствам и файлам (fat32, ext4, ntfs), сетевым устройствам и файлам на них (nfs), а также к устройствам, не предназначенным для.

Кросс-платформенность или межплатформенность — способность программного обеспечения работать с двумя и более аппаратными платформами и (или) операционными системами. Обеспечивается благодаря использованию высокоуровневых языков программирования, сред разработки и выполнения, поддерживающих условную компиляцию, компоновку и выполнение кода для различных платформ. Типичным примером является программное обеспечение, предназначенное для работы в операционных системах Linux и Windows одновременно.

Монтирование файловой системы — системный процесс, подготавливающий раздел диска к использованию операционной системой.

Сценарный язык (язык сценариев, жарг. скриптовый язык; англ. scripting language) — высокоуровневый язык сценариев (англ. script) — кратких описаний действий, выполняемых системой. Разница между программами и сценариями довольно размыта. Сценарий — это программа, имеющая дело с готовыми программными компонентами.

Те́кстовый реда́ктор — самостоятельная компьютерная программа или компонент программного комплекса (например, редактор исходного кода интегрированной среды разработки или окно ввода в браузере), предназначенная для создания и изменения текстовых данных в общем и текстовых файлов в частности.

Вытесняющая многозадачность (приоритетная многозадачность, англ. preemptive multitasking, дословно упреждающая многозадачность) — это вид многозадачности, при которой операционная система принимает решение о переключении между задачами по истечении некоего кванта времени.

Пото́к выполне́ния (тред; от англ. thread — нить) — наименьшая единица обработки, исполнение которой может быть назначено ядром операционной системы. Реализация потоков выполнения и процессов в разных операционных системах отличается друг от друга, но в большинстве случаев поток выполнения находится внутри процесса. Несколько потоков выполнения могут существовать в рамках одного и того же процесса и совместно использовать ресурсы, такие как память, тогда как процессы не разделяют этих ресурсов. В.

Байт-код (байтко́д; англ. bytecode, также иногда p-код, p-code от portable code) — стандартное промежуточное представление, в которое может быть переведена компьютерная программа автоматическими средствами. По сравнению с исходным кодом, удобным для создания и чтения человеком, байт-код — это компактное представление программы, уже прошедшей синтаксический и семантический анализ. В нём в явном виде закодированы типы, области видимости и другие конструкции. С технической точки зрения, байт-код представляет.

Виртуализа́ция — предоставление набора вычислительных ресурсов или их логического объединения, абстрагированное от аппаратной реализации, и обеспечивающее при этом логическую изоляцию друг от друга вычислительных процессов, выполняемых на одном физическом ресурсе.


Ядро операционной системы (Kernel) - часть операционной системы: постоянно находящаяся в оперативной памяти, управляющая всей операционной системой, содержащая: драйверы устройств, подпрограммы управления памятью, планировщик заданий, реализующая системные вызовы и т.п.

Все операции, связанные с процессами, выполняются под управлением той части операционной системы, которая называется ядром. Ядро представляет собой лишь небольшую часть кода операционной системы в целом, однако оно относится к числу наиболее интенсивно используемых компонент системы. По этой причине ядро обычно резидентно размещается в основной памяти, в то время как другие части операционной системы перемещаются во внешнюю память и обратно по мере необходимости. Одной из самых важных функций, реализованных в ядре, является обработка прерываний. В больших многоабонентских системах в процессор поступает постоянный поток прерываний. Быстрая реакция на эти прерывания играет весьма важную роль с точки зрения полноты использования ресурсов системы и обеспечения приемлемых значений времени ответа для пользователей, работающих в диалоговом режиме.

Когда ядро обрабатывает текущее прерывание, оно запрещает другие прерывания и разрешает их снова только после завершения обработки текущего прерывания. При постоянном потоке прерываний может сложиться такая ситуация, что ядро будет блокировать прерывания в течение значительной части времени, т. е. не будет иметь возможности эффективно реагировать на прерывания. Поэтому ядро обычно разрабатывается таким образом, чтобы оно осуществляло лишь минимально возможную предварительную обработку каждого прерывания, а затем передавало это прерывание на дальнейшую обработку соответствующему системному процессу, после начала работы которого ядро могло бы разрешить последующие прерывания.

Содержание

Основные функции ядра

Основные функция ядра:Ядро операционной системы, как правило, содержит программы для реализации следующих функций:

  • обработка прерываний;
  • создание и уничтожение процессов;
  • переключение процессов из состояния в состояние;
  • диспетчирование ;
  • приостановка и активизация процессов ;
  • синхронизация процессов ;
  • организация взаимодействия между процессами;
  • манипулирование блоками управления процессами;
  • поддержка операций ввода-вывода;
  • поддержка распределения и перераспределения памяти;
  • поддержка работы файловой системы ;
  • поддержка механизма вызова-возврата при обращении к проце¬дурам;
  • поддержка определенных функций по ведению учета работы
  • машины.

Типы архитектур ядер операционных систем

Монолитное ядро

Монолитное ядро предоставляет богатый набор абстракций оборудования. Все части монолитного ядра работают в одном адресном пространстве. Это такая схема операционной системы, при которой все компоненты её ядра являются составными частями одной программы, используют общие структуры данных и взаимодействуют друг с другом путём непосредственного вызова процедур. Монолитное ядро — старейший способ организации операционных систем. Примером систем с монолитным ядром является большинство UNIX-систем.

Достоинства: Скорость работы, упрощённая разработка модулей. Недостатки: Поскольку всё ядро работает в одном адресном пространстве, сбой в одном из компонентов может нарушить работоспособность всей системы. Примеры: Традиционные ядра UNIX (такие как BSD), Linux; ядро MS-DOS, ядро KolibriOS.

Модульное ядро

Все модули ядра работают в адресном пространстве ядра и могут пользоваться всеми функциями, предоставляемыми ядром. Поэтому модульные ядра продолжают оставаться монолитными. Модульность ядра осуществляется на уровне бинарного образа, а не на архитектурном уровне ядра, так как динамически подгружаемые модули загружаются в адресное пространство ядра и в дальнейшем работают как интегральная часть ядра. Модульные монолитные ядра не следует путать с архитектурным уровнем модульности, присущий микроядрам и гибридным ядрам. Практически, динамичная загрузка модулей, это просто более гибкий способ изменения образа ядра во время выполнения — в отличие от перезагрузки с другим ядром. Модули позволяют легко расширить возможности ядра по мере необходимости.

Микроядро

Достоинства: Устойчивость к сбоям оборудования, ошибкам в компонентах системы. Основное достоинство микроядерной архитектуры — высокая степень модульности ядра операционной системы. Это существенно упрощает добавление в него новых компонентов. В микроядерной операционной системе можно, не прерывая её работы, загружать и выгружать новые драйверы, файловые системы и т. д. Существенно упрощается процесс отладки компонентов ядра, так как новая версия драйвера может загружаться без перезапуска всей операционной системы. Компоненты ядра операционной системы ничем принципиально не отличаются от пользовательских программ, поэтому для их отладки можно применять обычные средства. Микроядерная архитектура повышает надежность системы, поскольку ошибка на уровне непривилегированной программы менее опасна, чем отказ на уровне режима ядра.

Недостатки: Передача данных между процессами требует накладных расходов. Классические микроядра предоставляют лишь очень небольшой набор низкоуровневых примитивов, или системных вызовов, реализующих базовые сервисы операционной системы.

Экзоядро

Экзоядро — ядро операционной системы, предоставляющее лишь функции для взаимодействия между процессами и безопасного выделения и освобождения ресурсов. Предполагается, что API для прикладных программ будут предоставляться внешними по отношению к ядру библиотеками (откуда и название архитектуры). Возможность доступа к устройствам на уровне контроллеров позволит эффективней решать некоторые задачи, которые плохо вписываются в рамки универсальной ОС, например, реализация СУБД будет иметь доступ к диску на уровне секторов диска, а не файлов и кластеров, что положительно скажется на быстродействии.

Наноядро

Наноядро — архитектура ядра операционной системы, в рамках которой крайне упрощённое и минималистичное ядро выполняет лишь одну задачу — обработку аппаратных прерываний, генерируемых устройствами компьютера. После обработки прерываний от аппаратуры наноядро, в свою очередь, посылает информацию о результатах обработки (например, полученные с клавиатуры символы) вышележащему программному обеспечению при помощи того же механизма прерываний. Примером является KeyKOS — самая первая ОС на наноядре. Первая версия вышла ещё в 1983-м году.

Гибридное ядро

Комбинация разных подходов

Существуют варианты ОС GNU, в которых вместо монолитного ядра применяется ядро Mach (такое же, как в Hurd), а поверх него крутятся в пользовательском пространстве те же самые процессы, которые при использовании Linux были бы частью ядра. Другим примером смешанного подхода может служить возможность запуска операционной системы с монолитным ядром под управлением микроядра. Микроядро обеспечивает управление виртуальной памятью и работу низкоуровневых драйверов. Все остальные функции, в том числе взаимодействие с прикладными программами, осуществляются монолитным ядром. Данный подход сформировался в результате попыток использовать преимущества микроядерной архитектуры, сохраняя по возможности хорошо отлаженный код монолитного ядра.

Смешанное ядро, в принципе, должно объединять преимущества монолитного ядра и микроядра: казалось бы, микроядро и монолитное ядро — крайности, а смешанное — золотая середина. В них возможно добавлять драйверы устройств двумя способами: и внутрь ядра, и в пользовательское пространство. Но на практике концепция смешанного ядра часто подчёркивает не только достоинства, но и недостатки обоих типов ядер. Примеры: Windows NT, DragonFlyBSD.

Ядро - это центральный компонент операционной системы. Ядро также считается сердцем операционной системы. Он отвечает за управление всеми процессами, памятью, файлами и т. д. Ядро функционирует на самом низком уровне операционной системы. Он действует как интерфейс (мост) между пользовательским приложением (программным обеспечением) и аппаратным обеспечением. Поэтому связь между программным обеспечением и аппаратным обеспечением осуществляется через ядро.

Основные функции, которые выполняет ядро:

  • управление процессами
  • управление памятью
  • управление устройством
  • обработка прерываний
  • операции ввода/вывода

Теперь давайте разберемся подробнее в этих функциях ядра.

ФУНКЦИИ ЯДРА В ОПЕРАЦИОННОЙ СИСТЕМЕ

УПРАВЛЕНИЕ ПРОЦЕССАМИ

Создание, выполнение и завершение процессов выполняются внутри системы всякий раз, когда система находится во включенном состоянии (режиме ON). Процесс содержит всю информацию о задаче, которую необходимо выполнить. Таким образом, для выполнения любой задачи внутри системы создается процесс. В то же время существует множество процессов, которые находятся в активном состоянии внутри системы. Управление всеми этими процессами очень важно для предупреждения тупиковых ситуаций и для правильного функционирования системы, и оно осуществляется ядром.

УПРАВЛЕНИЕ ПАМЯТЬЮ

Всякий раз, когда процесс создается и выполняется, он занимает память, и когда он завершается, память должна быть освобождена и может быть использована снова. Но память должна быть обработана кем-то, чтобы освобожденная память могла быть снова назначена новым процессам. Эта задача также выполняется ядром. Ядро отслеживает, какая часть памяти в данный момент выделена и какая часть доступна для выделения другим процессам.

УПРАВЛЕНИЕ УСТРОЙСТВАМИ

Ядро также управляет всеми различными устройствами, подключенными к системе, такими как устройства ввода и вывода и т. д.

ОБРАБОТКА ПРЕРЫВАНИЙ

При выполнении процессов возникают условия, при которых сначала необходимо решить задачи с большим приоритетом. В этих случаях ядро должно прерывать выполнение текущего процесса и обрабатывать задачи с большим приоритетом, которые были получены в промежутке.

ОПЕРАЦИИ ВВОДА/ВЫВОДА

Поскольку ядро управляет всеми подключенными к нему устройствами, оно также отвечает за обработку всех видов входных и выходных данных, которыми обмениваются эти устройства. Таким образом, вся информация, которую система получает от пользователя, и все выходные данные, которые пользователь получает через различные приложения, обрабатываются ядром.

ТИПЫ ЯДЕР В ОПЕРАЦИОННОЙ СИСТЕМЕ

Как выше было сказано ядро - это программа, которая является основным компонентом операционной системы. Теперь давайте рассмотрим типы ядер.

Ядро подразделяется на два основных типа:

Существует еще один тип ядра, который является комбинацией этих двух типов ядер и известен как гибридное ядро. Рассмотрим каждый из них вкратце.

МОНОЛИТНОЕ ЯДРО

В этом типе архитектуры ядра все функции, такие как управление процессами, управление памятью, обработка прерываний и т. д. выполняются в пространстве ядра.Монолитные ядра сначала состояли только из одного модуля, и этот модуль отвечал за все функции, которые выполнялись ядром. Это увеличило производительность ОС, так как все функции присутствовали внутри одного модуля, но это также привело к серьезным недостаткам, таким как большой размер ядра, очень низкая надежность, потому что даже если одна функция ядра отказала, это привело к отказу всей программы ядра и плохому обслуживанию, по той же причине. Таким образом, для повышения производительности системы был применен модульный подход в монолитных ядрах, в которых каждая функция присутствовала в отдельном модуле внутри пространства ядра. Таким образом, для исправления любых ошибок или в случае сбоя, только этот конкретный модуль был выгружен и загружен после исправления.

МИКРОЯДРА

В этом типе архитектуры ядра основные пользовательские службы, такие как управление драйверами устройств, управление стеком протоколов, управление файловой системой и управление графикой, присутствуют в пространстве пользователя, а остальные функции управление памятью, управление процессами присутствует внутри пространства ядра. Таким образом, всякий раз, когда система имеет потребность в услугах, присутствующих в пространстве ядра, ОС переключается в режим ядра, а для служб пользовательского уровня она переключается в режим пользователя. Этот тип архитектуры ядра уменьшает размер ядра, но скорость выполнения процессов и предоставления других услуг значительно ниже, чем у монолитных ядер.

ГИБРИДНОЕ ЯДРО

Для наилучшей производительности системы нам требуется как высокая скорость, так и малый размер ядра, чтобы наша система могла иметь максимальную эффективность. Поэтому для решения этой задачи был разработан новый тип ядра, который представлял собой комбинацию монолитного ядра и микроядра. Этот тип ядра известен как гибридное ядро. Такой тип архитектуры используется практически во всех системах, которые производятся в настоящее время.

У этого термина существуют и другие значения, см. операционной системы (ОС), обеспечивающая приложениям координированный доступ к ресурсам файловой системы и сетевых протоколов .

Как основополагающий элемент ОС, ядро представляет собой наиболее низкий уровень приложений к ресурсам системы, необходимым для их работы. Как правило, ядро предоставляет такой доступ исполняемым процессам соответствующих приложений за счёт использования механизмов

Содержание

Типы архитектур ядер операционных систем [ ]

Монолитное ядро [ ]

Наноядро [ ]

Гибридное ядро [ ]

Комбинация разных подходов [ ]

Все рассмотренные подходы к построению операционных систем имеют свои достоинства и недостатки. В большинстве случаев современные операционные системы используют различные комбинации этих подходов.

Смешанное ядро, в принципе, должно объединять преимущества монолитного ядра и микроядра: казалось бы, микроядро и монолитное ядро — крайности, а смешанное — золотая середина. В них возможно добавлять драйверы устройств двумя способами: и внутрь ядра, и в пользовательское пространство.

Читайте также: