Что такое вихревое электрическое поле чем оно отличается от электростатического поля кратко

Обновлено: 05.07.2024

Второе уравнение Максвелла представляет собой закон электромагнитной индукции.Максвелл высказал гипотезу, что всякое переменное магнитное поле возбуждает в окружающем пространстве электрическое поле, которое и является причиной возникновения индукционного тока в проводящем контуре. Изменяющееся во времени магнитное поле порождает вихревое электрическое поле , циркуляция которого вдоль произвольного замкнутого контура равна

где магнитный поток

На основании теоремы Стокса

Соотношение (16.9) является вторым уравнением Максвелла в дифференциальной форме: вихрь вектора пропорционален скорости изменения вектора .

16d:\Program Files\Physicon\Open Physics 2.5 part 1\content\chapter1\section\paragraph2\theory.htmld:\Program Files\Physicon\Open Physics 2.5 part 1\design\images\ring_h.jpg.3. Третье и четвертое уравнения Максвелла

Третье уравнений Максвелла в интегральной форме

выражает тот факт, что в природе отсутствуют магнитные заряды, т.е. все силовые линии вектора являются замкнутыми линиями.

Воспользуемся известной из векторного анализа теоремой Гаусса

и запишем третье уравнение Максвелла в виде

, .(16.12)

Уравнение (16.12) называется третьим уравнением Максвелла в дифференциальной форме.

Наконец, воспользуемся теоремой Остроградского-Гаусса (10.12), которое и является четвертым уравнением Максвелла

где - объемная плотность свободных зарядов.

Сутьчетвертого уравнения состоит в том, что поток вектора электрического смещения через произвольную замкнутую поверхность равен алгебраической сумме свободных зарядов, расположенных внутри этой поверхности.

Поскольку в природе существуют как положительные, так и отрицательные электрические заряды, то силовые линии вектора не являются замкнутыми линиями. Они начинаются на положительных зарядах и заканчиваются на отрицательных зарядах.

Применив к уравнению (16.13) теорему Гаусса (16.11), запишем четвертое уравнение Максвелла в дифференциальной форме:

Полная система уравнений Максвелла в дифференциальной форме

Отметим, что в уравнениях Максвелла (1873 г.) заложено существование электромагнитных волн. Согласно уравнениям Максвелла, всякое переменное магнитное поле возбуждает в окру­жающем пространстве вихревое электрическое поле, а всякое переменное электрическое поле вызывает появление вихревого магнитного поля. Возбуждение взаимосвязанных электрического и магнитного полей и есть электромагнитная волна. Экспериментальное подтверждение гениальных предсказаний Максвелла было осуществлено в опытах Герца в 1888 г.

Векторы полей, входящие в уравнения Максвелла, не являются независимыми. Между ними существует определенная связь:

, , , (16.16)

где - удельная проводимость вещества.

Эти уравнения называются материальными уравнениями.

Контрольные вопросы

1. Что является причиной возникновения вихревого электрического поля? Чем оно отличается от электростатического поля?

2. Чему равна циркуляция вихревого электрического поля?

3. Что такое ток смещения?

4. Выведите выражение для плотности тока смещения.

5. Запишите теорему о циркуляции вектора напряженности магнитного поля, объяснив ее физический смысл.

6. Запишите полную систему уравнений Максвелла в интегральной форме и объясните их физический смысл.

7. Запишите полную систему уравнений Максвелла в дифференциальной форме и объясните их физический смысл.

8. Какие основные выводы можно сделать на основе теории Максвелла?

Второе уравнение Максвелла представляет собой закон электромагнитной индукции.Максвелл высказал гипотезу, что всякое переменное магнитное поле возбуждает в окружающем пространстве электрическое поле, которое и является причиной возникновения индукционного тока в проводящем контуре. Изменяющееся во времени магнитное поле порождает вихревое электрическое поле , циркуляция которого вдоль произвольного замкнутого контура равна

где магнитный поток




На основании теоремы Стокса

Соотношение (16.9) является вторым уравнением Максвелла в дифференциальной форме: вихрь вектора пропорционален скорости изменения вектора .

16d:\Program Files\Physicon\Open Physics 2.5 part 1\content\chapter1\section\paragraph2\theory.htmld:\Program Files\Physicon\Open Physics 2.5 part 1\design\images\ring_h.jpg.3. Третье и четвертое уравнения Максвелла

Третье уравнений Максвелла в интегральной форме

выражает тот факт, что в природе отсутствуют магнитные заряды, т.е. все силовые линии вектора являются замкнутыми линиями.

Воспользуемся известной из векторного анализа теоремой Гаусса

и запишем третье уравнение Максвелла в виде

, .(16.12)

Уравнение (16.12) называется третьим уравнением Максвелла в дифференциальной форме.

Наконец, воспользуемся теоремой Остроградского-Гаусса (10.12), которое и является четвертым уравнением Максвелла

где - объемная плотность свободных зарядов.

Сутьчетвертого уравнения состоит в том, что поток вектора электрического смещения через произвольную замкнутую поверхность равен алгебраической сумме свободных зарядов, расположенных внутри этой поверхности.

Поскольку в природе существуют как положительные, так и отрицательные электрические заряды, то силовые линии вектора не являются замкнутыми линиями. Они начинаются на положительных зарядах и заканчиваются на отрицательных зарядах.

Применив к уравнению (16.13) теорему Гаусса (16.11), запишем четвертое уравнение Максвелла в дифференциальной форме:

Полная система уравнений Максвелла в дифференциальной форме

Отметим, что в уравнениях Максвелла (1873 г.) заложено существование электромагнитных волн. Согласно уравнениям Максвелла, всякое переменное магнитное поле возбуждает в окру­жающем пространстве вихревое электрическое поле, а всякое переменное электрическое поле вызывает появление вихревого магнитного поля. Возбуждение взаимосвязанных электрического и магнитного полей и есть электромагнитная волна. Экспериментальное подтверждение гениальных предсказаний Максвелла было осуществлено в опытах Герца в 1888 г.

Векторы полей, входящие в уравнения Максвелла, не являются независимыми. Между ними существует определенная связь:

, , , (16.16)

где - удельная проводимость вещества.

Эти уравнения называются материальными уравнениями.

Контрольные вопросы

1. Что является причиной возникновения вихревого электрического поля? Чем оно отличается от электростатического поля?

2. Чему равна циркуляция вихревого электрического поля?

3. Что такое ток смещения?

4. Выведите выражение для плотности тока смещения.

5. Запишите теорему о циркуляции вектора напряженности магнитного поля, объяснив ее физический смысл.

6. Запишите полную систему уравнений Максвелла в интегральной форме и объясните их физический смысл.

7. Запишите полную систему уравнений Максвелла в дифференциальной форме и объясните их физический смысл.

Теория электромагнитного поля была созда­на английским ученым Д. К. Максвелл в 1865 г. Согласно этой теории переменное магнитное по­ле порождает переменное электрическое поле, а переменное электрическое поле в свою очередь — переменное магнитное поле.

2. Что служит источником электромагнитного поля?

Источником электромагнитного поля служат ускоренно движущиеся электрические заряды.

3. Чем отличаются силовые линии вихревого электрического поля от силовых линий электростатического?

Силовые линии вихревого электрического по­ля замкнуты сами на себя, а силовые линии элек­тростатического поля начинаются на положитель­ных зарядах и кончаются на отрицательных.

4. Опишите механизм возникновения индукционного тока, опираясь на знание о существовании электромагнитного поля.

Индукционный ток возникает за счет вих­ревого электрического поля, под действием кото­рого свободные заряды в проводнике приходят в направленное движение, т.е. возникает электриче­ский ток.

В электростатике источником поля являются положительно или отрицательно заряженные неподвижные частицы.

Возьмем замкнутый проводник. В проводнике имеются свободные электроны, движение которых без воздействия электрического поля носит хаотичный характер. Поместим проводник в магнитное поле. По закону электромагнитной индукции, открытому М. Фарадеем, при изменении магнитного потока, пронизывающего виток, в витке появляется электродвижущая сила (ЭДС).

ЭДС действует на свободные электроны проводника, в результате заряды начинают двигаться упорядоченно. Так возникает индукционный ток, который вместе с ЭДС является индикатором вихревого поля.

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

Вихревое поле в физике — это электрическое поле, появляющееся в результате взаимодействия переменного магнитного поля и проводящего контура. Силовые линии вихревого поля всегда замкнуты.

Особенности, что является причиной возникновения

Магнитное поле само по себе не является источником зарядов, оно порождает ЭДС.

Сделаем следующий вывод: главное отличие вихревого поля от электростатического заключается в том, что условие существования первого — наличие изменяющегося во времени магнитного потока, а второго — наличие электрического заряда или зарядов.

Из указанного свойства следует, что вихревое поле может существовать даже при отсутствии проводника. Благодаря этой особенности явление электромагнитной индукции и электрические вихревые поля находят применение в ускорителях частиц.

  • наличии тока проводимости, то есть при движении заряженных частиц;
  • изменении во времени электрического поля.

Изменяющееся во времени электрическое поле, порождающее магнитное, называют током смещения.

Ток смещения не является током в общепринятом понимании. Токи смещения — это не движущийся поток частиц-зарядов, а скорее физическое явление.

Явление, при котором под действием электрического образуется магнитное поле, называют магнитоэлектрической индукцией.

Взаимодействие электрического и магнитного полей приводит к появлению электромагнитных волн. При этом напряженность электрического поля и индукция магнитного совершают колебания в перпендикулярных плоскостях.

магнитоэлектрической индукцией

Скорость распространения электромагнитных волн, как и любых других волн, будет зависеть от свойств среды.

Работа вихревого электрического поля

В электростатическом поле работа по перемещению заряда зависит от величины этого перемещения. Когда заряженная частица, находясь в электростатическом поле, перемещается по замкнутому контуру, работа равна нулю.

Это утверждение нельзя применить к полю, имеющему вихревой характер. В этом случае, на всей траектории движения векторы силы и перемещения направлены в одну строну, и циркуляция векторного поля (работа сил поля) будет равна ЭДС.

Вихревое электрическое поле является не потенциальным, так как работа сил не зависит от величины перемещения.

Потенциальными называют поля, работа сил которых не зависит от траектории движения объекта, а определяется величиной перемещения — разностью конечных и начальных координат объекта. Силовые линии таких полей всегда разомкнуты.

Примерами потенциальных полей являются электростатическое, гравитационное поля.

Напряженность вихревого электрического поля, формула

Электрическое поле в данной точке характеризуется величиной напряженности.

Линии напряженности вихревого электрического поля представляют собой замкнутые витки. Направление вектора напряженности совпадает с направлением индукционного тока и определяется по правилу Ленца.

Индукционный ток в витке направлен так, чтобы противодействовать внешнему магнитному полю, приведшему к появлению этого тока.

На практике часто используют правило правой руки. Для этого правой рукой охватывают проводник так, чтобы отогнутый большой палец совпадал с направлением силовых линий магнитного поля. Четыре пальца при этом укажут направление вектора напряженности. При уменьшении магнитного поля вектор напряженности будет направлен в противоположную сторону.

При уменьшении магнитного потока

Сила, с которой поле воздействует на единичный заряд q, определяется по формуле:

\(\overrightarrow F=q\cdot\overrightarrow E\)

Отсюда получим выражение для напряженности:

ЭДС представляет собой работу сил поля, отнесенную к величине заряда, то есть:

где S — величина перемещения, м.

Вихревое поле возникает в замкнутом проводнике, перемещение равно длине окружности. Тогда подставив в выражении для ЭДС формулу силы, получим:


Подобно тому, как движущийся электрический заряд создаёт вихревое магнитное поле, направление вектора индукции которого определяется правилом правого винта (рис. 1.6), переменное магнитное поле создаёт вихревое электрическое поле (рис. 1.13), направление напряжённости которого определяется правилом левого винта:

Если направление увеличения вектора магнитной индукции совпадает с направлением поступательного движения левого винта, то направление вращения шляпки левого винта совпадает с направлением вектора напряжённости электрического поля.

_1_13.tif

Рис. 1.13. Вихревое электрическое поле. Замкнутый контур напряжённости электрического поля перпендикулярен плоскости рисунка

Возникновение вихревого электрического поля под действием переменного магнитного поля называется явлением электромагнитной индукции (индукцией). Само вихревое электрическое поле, возникшее под действием магнитного поля, называется индуцированным электрическим полем.

На практике, переменное магнитное поле нередко получают изменением силы тока в соленоиде (рис. 1.11). Экспериментально вихревое электрическое поле можно обнаружить с помощью металлического (например, алюминиевого) кольца (проводящего контура) внутрь которого вносится магнит (рис. 1.14).

_1_14.wmf

Рис. 1.14. Иллюстрация возникновения индукционного тока

Как видно из рис. 1.14 вихревое электрическое поле, вызванное движением магнита внутрь кольца, приводит к возникновению электрического тока в проводящем контуре (индукционного тока) и вектору магнитной индукции, направленному из кольца против движения магнита. Кольцо становится подобным магниту, обращённому одноимённым полюсом к приближающемуся магниту. Одноимённые же полюсы отталкиваются. Поэтому кольцо от магнита будет отталкиваться, а стержень, свободно вращающийся вокруг вертикальной оси, поворачиваться. При движении магнита из кольца направление электрического тока в проводящем контуре сменится на противоположное также как и направление вектора магнитной индукции. В результате кольцо к магниту станет притягиваться. При движении внутрь кольца южного полюса магнита поведение стержня с кольцами окажется тем же самым. Электрический ток, возникающий под действием индуцированного электрического поля называется индукционным током. Русским физиком Э.Х. Ленцем впервые было сформулировано общее правило определения направления индукционного тока. Согласно правилу Ленца возникающий в замкнутом контуре индукционный ток своим магнитным полем противодействует тому изменению магнитного потока, которым он вызван. Важно отметить, что если магнит внести в другое (разрезанное) кольцо, то электрического тока в нём не возникнет и стержень не повернётся.

Работу по перемещению единичного положительного заряда вдоль замкнутого контура называют электродвижущей силой (ЭДС):

s158.wmf

где Е – абсолютное значение вектора , замкнутого в форме окружности с радиусом r. В общем случае, для замкнутого контура длиной l произвольной формы

Размерность ЭДС та же, что у потенциала и напряжения (вольты).

При этом установлено, что электродвижущая сила индукции (εi) определяется равенством:

s159.wmf

(1.8)

s160.wmf

где – скорость изменения магнитного потока Ф через площадь S,

α – угол между вектором магнитной индукции и нормалью (перпендикуляром) к плоскости S. Единицей магнитного потока является вебер, 1 Вб ≡ 1 Tл∙1 м2.

индуцированное вихревое электрическое поле совершает работу, противоположную по знаку работе, совершаемой переменным магнитным полем – вектор индукционного тока противоположен направлению изменения вектора магнитной индукции переменного магнитного поля;

2.psd

направление вектора напряжённости определяется против правила буравчика, то есть по правилу левого винта.

Если скорость изменения магнитного потока на измеряемом отрезке времени ∆t – постоянна, то равенство (1.8) может быть записано в интегральной форме:

s162.wmf

Сила индукционного тока (I), измеряемая в амперах (А), определяется равенством:

s163.wmf

где R – сопротивление проводящего контура, [R] = Ом.

Примеры решения задач

Определить ЭДС индукции в контуре проводника, если за три секунды магнитный поток в этом контуре равномерно уменьшился на 0,6 мВб.

s164.wmf
s165.wmf

s166.wmf

Ответ:

s167.wmf

– ?

Магнитный поток, пронизывающий контур проводника равномерно увеличился с 1,4 мВб до 2 мВб и при этом ЭДС индукции оказалась равной – 1,2 мВ. Найти время изменения магнитного потока и силу индукционного тока, если сопротивление проводника 0,24 Ом.

s168.wmf

s169.wmf

следовательно

s170.wmf
s171.wmf
s172.wmf

Ответ: ∆t = 0,5 с; I = 5 А

Задачи для самостоятельного решения

1. На сколько изменился магнитный поток за 5 секунд, если в течение этого времени электродвижущая сила равнялась –0,9 В? Увеличивался магнитный поток или уменьшался?

2. Магнитный поток, пронизывающий контур проводника, равномерно уменьшался с 3 Вб до 0,5 Вб, и при этом ЭДС индукции оказалась равной 2 В. Найти время изменения магнитного потока и сопротивление проводящего контура, в котором сила индукционного тока оказалась равной 0,05 А.

1. Сформулируйте правило левого винта.

2. Что такое индукция?

3. Как можно доказать экспериментально возникновение индуцированного электрического поля?

Читайте также: