Что такое тканевое дыхание кратко

Обновлено: 04.07.2024

Вопрос 1. Что такое легочное дыхание и тканевое дыхание?
Легочное дыхание обеспечивает газообмен между воздухом и кровью. Тканевое дыхание осуществляет газообмен между кровью и клетками тканей. Существует клеточное дыхание, которое обеспечивает использование кислорода клетками на окисление органических веществ с освобождением энергии, используемой для их жизнедеятельности.

Вопрос 2. Каковы преимущества носового дыхания перед дыханием через рот?
У человека воздух попадает сначала в носовую полость, которой состоит из извилистых носовых ходов, имеющих большую площадь и выстланных мерцательным эпителием для выноса инородных частичек, попавших в нос с воздухом.
При дыхании носом воздух, проходя через носовую полость, прогревается, очищается от пыли и частично обеззараживается, чего не происходит при дыхании ртом.

Вопрос 3. Как действуют защитные барьеры, преграждающие вход инфекции в легкие?
Причиной болезней органов дыхания являются микроорганизмы (бактерии и вирусы), а также бытовая пыль, проникающие в органы дыхания и вызывающие различные заболевания. Путь воздуха в легкие начинается с носовой полости. Мерцательный эпителий, которым выстлана внутренняя поверхность носовой полости, выделяет слизь, которая увлажняет поступающий воздух и задерживает пыль. В слизи содержатся вещества, пагубно влияющие на микроорганизмы. На верхней стенке носовой полости много фагоцитов и лимфоцитов, а также антител. Реснички мерцательного эпителия изгоняют слизь из носовой полости.
Миндалины, находящиеся у входа в гортань, также содержат множество лимфоцитов и фагоцитов, уничтожающих микроорганизмы.

Вопрос 4. Где находятся рецепторы, воспринимающие запахи?
Обонятельные клетки, которые воспринимают запахи, находятся в задней части носовой полости наверху.

Вопрос 5. Что относится к верхним и что — к нижним дыхательным путям человека?
К верхним дыхательным путям относятся носовая и ротовая полости, носоглотка, глотка. К нижним дыхательным путям — гортань, трахея, бронхи.

Вопрос 8. Каковы симптомы дифтерии? Чем она опасна для организма?
Симптомы дифтерии:
• постепенное повышение температуры, вялость, снижение аппетита, на миндалинах появляется серовато-белый налет;
• шея опухает из-за воспаления лимфатических желез;
• влажный кашель в начале заболевания, постепенно переходящий в грубый, лающий, а затем в беззвучный;
• охриплость голоса, появляющаяся впервые сутки, затем развивается потеря голоса;
• дыхание шумное, затрудненное на вдохе;
• нарастающая дыхательная недостаточность, бледность кожных покровов, цианоз носогубного треугольника;
• резкое беспокойство, холодный пот;
• потеря сознания, резкая бледность кожных покровов предшествуют летальному исходу.
Токсин, который является продуктом жизнедеятельности дифтерийной палочки, поражает проводящую систему сердца и сердечную мышцу, что может быть причиной тяжелого и опасного заболевания сердца — миокардита.
Вопрос 9. Что вводят в организм при лечении антидифтерийной сывороткой, а что — при вакцинации против этой болезни?
В состав антидифтерийной сыворотки входят специфические антитела, полученные от лошадей. При вакцинации вводят небольшое количество антигена.

Лёгочное дыхание – это газообмен между кровью лёгочных капилляров и воздухом, в результате которого происходит обогащение кислородом крови.

Тканевое дыхание или клеточное дыхание – это комплекс биохимических реакций, которые происходят в клетках живых организмов. В процессе таких реакций осуществляется окисление липидов, углеводов и аминокислот до углекислого газа и воды.

№ 2. Объясните, почему носовое дыхание для организма гораздо выгоднее, чем дыхание через рот.

Носовое дыхание помогает замедлить дыхательный цикл, создает почти на 50 % больше сопротивления воздушному потоку по сравнению с дыханием через рот. Кроме того, воздух, проходя через носовую полость, очищается, согревается и увлажняется.

№ 3. Как действуют защитные барьеры, преграждающие вход инфекции в лёгкие?

Путь вдыхаемого воздуха лежит через носовую полость, на поверхности которой есть мерцательный эпителий. Этот эпителий беспрерывно выделяет слизь, которая не только увлажняет вдыхаемый воздух, но и фильтрует его, удерживая пыль и уничтожая вредоносные микроорганизмы. С помощью мелких ресничек мерцательного эпителия слизь с пылью и микробами выводится из носовой полости.

№ 4. Где находятся рецепторы, воспринимающие запахи?

Рецепторы, которые воспринимают запахи, расположены сверху в задней части носовой полости.

№ 5. Что относится к верхним и что к нижним дыхательным путям человека?

Верхние дыхательные пути: носоглотка, глотка, носовая и ротовая полости.

Нижние дыхательные пути: трахея, гортань, бронхи.

№ 6. Как проявляются гайморит и фронтит? От каких слов происходят названия этих болезней?

Симптомами гаймориты и фронтита являются: заложенность носовых пазух, отек, слизистые выделения из носа (иногда с гноем), повышение температуры, головные боли, сонливость и слабость.

№ 7. Какие признаки позволяют заподозрить разрастание аденоидов у ребёнка?

Ребенок начинает дышать ртом, носовое дыхание затрудняется за счет разрастания аденоидов. Появляется храп ночью, неприятный запах изо рта и носа у ребенка.

№ 8. Каковы симптомы дифтерии? Чем она опасна для организма?

Явный симптом дифтерии – схожесть с обычной ангиной: красное горло, высокая температура тела, наличие серовато-белых точек и бляшек на миндалинах, воспаление лимфатических узлов, отсутствие аппетита, охриплость голоса.

Дифтерия опасна для организма тем, что в организме выделяется дифтерийный токсин – продукт жизнедеятельности дифтерийной палочки. Он поражает сердечную мышцу и проводящую систему сердца, что чревато появление осложнения в виде миокардита.

№ 9. Что вводят в организм при лечении антидифтерийной сывороткой, а что — при вакцинации против этой болезни?

Для лечения дифтерии используется противодифтерийная сыворотка, которая содержит специфические антитела. Для профилактики в качестве вакцины используют небольшие дозы антигена данной болезни.

Процесс дыхания, поступление кислорода в организм при вдохе и удаление из него углекислого газа и паров воды при выдохе. Строение респираторной системы. Ритмичность и различные типы дыхательного процесса. Регуляция дыхания. Разные способы дыхания.

Для нормального протекания обменных процессов в организме человека и животных в равной мере необходим как постоянный приток кислорода, так и непрерывное удаление углекислого газа, накапливающегося в ходе обмена веществ. Такой процесс называется внешним дыханием.

Дыхание – это совокупность процессов, обеспечивающих потребление организмом кислорода и выделение углекислого газа.

Таким образом, дыхание – одна из важнейших функций регулирования жизнедеятельности человеческого организма. В организме человека функцию дыхания обеспечивает дыхательная (респираторная система).

В дыхательную систему входят легкие и респираторный тракт (дыхательные пути), который, в свою очередь, включает носовые ходы, гортань, трахею, бронхи, мелкие бронхи и альвеолы (смотри рисунок 1.5.3). Бронхи разветвляются, распространяясь по всему объему легких, и напоминают крону дерева. Поэтому часто трахею и бронхи со всеми ответвлениями называют бронхиальным деревом.

Кислород в составе воздуха через носовые ходы, гортань, трахею и бронхи попадает в легкие. Концы самых мелких бронхов заканчиваются множеством тонкостенных легочных пузырьков – альвеол (смотри рисунок 1.5.3).

Альвеолы – это 500 миллионов пузырьков диаметром 0,2 мм, где происходит переход кислородом в кровь, удаление углекислого газа из крови.

Здесь и происходит газообмен. Кислород из легочных пузырьков проникает в кровь, а углекислый газ из крови – в легочные пузырьки (рисунок 1.5.4).

Рисунок 1.5.4. Легочный пузырек. Газообмен в легких

Важнейший механизм газообмена – это диффузия, при которой молекулы перемещаются из области их высокого скопления в область низкого содержания без затраты энергии (пассивный транспорт). Перенос кислорода из окружающей среды к клеткам производится путем транспорта кислорода в альвеолы, далее в кровь. Таким образом, венозная кровь обогащается кислородом и превращается в артериальную. Поэтому состав выдыхаемого воздуха отличается от состава наружного воздуха: в нем содержится меньше кислорода и больше углекислого газа, чем в наружном, и много водяных паров (смотри рисунок 1.5.4). Кислород связывается с гемоглобином, который содержится в эритроцитах, насыщенная кислородом кровь поступает в сердце и выталкивается в большой круг кровообращения. По нему кровь разносит кислород по всем тканям организма. Поступление кислорода в ткани обеспечивает их оптимальное функционирование, при недостаточном же поступлении наблюдается процесс кислородного голодания (гипоксии).

Недостаточное поступление кислорода может быть обусловлено несколькими причинами как внешними (уменьшение содержания кислорода во вдыхаемом воздухе), так и внутренними (состояние организма в данный момент времени). Пониженное содержание кислорода во вдыхаемом воздухе, так же как и увеличение содержания углекислого газа и других вредных токсических веществ наблюдается в связи с ухудшением экологической обстановки и загрязнением атмосферного воздуха. По данным экологов только 15% горожан проживают на территории с допустимым уровнем загрязнения воздуха, в большинстве же районов содержание углекислого газа увеличено в несколько раз.

При очень многих физиологических состояниях организма (подъем в гору, интенсивная мышечная нагрузка), так же как и при различных патологических процессах (заболевания сердечно-сосудистой, дыхательной и других систем) в организме также может наблюдаться гипоксия.

Природа выработала множество способов, с помощью которых организм приспосабливается к различным условиям существования, в том числе к гипоксии. Так компенсаторной реакцией организма, направленной на дополнительное поступление кислорода и скорейшее выведение избыточного количества углекислого газа из организма является углубление и учащение дыхания. Чем глубже дыхание, тем лучше вентилируются легкие и тем больше кислорода поступает к клеткам тканей.

К примеру, во время мышечной работы усиление вентиляции легких обеспечивает возрастающие потребности организма в кислороде. Если в покое глубина дыхания (объем воздуха, вдыхаемого или выдыхаемого за один вдох или выдох) составляет 0,5 л, то во время напряженной мышечной работы она увеличивается до 2-4 л в 1 минуту. Расширяются кровеносные сосуды легких и дыхательных путей (а также дыхательных мышц), увеличивается скорость тока крови по сосудам внутренних органов. Активируется работа дыхательных нейронов. Кроме того, в мышечной ткани есть особый белок (миоглобин), способный обратимо связывать кислород. 1 г миоглобина может связать примерно до 1,34 мл кислорода. Запасы кислорода в сердце составляют около 0,005 мл кислорода на 1 г ткани и этого количества в условиях полного прекращения доставки кислорода к миокарду может хватить для того, чтобы поддерживать окислительные процессы лишь в течение примерно 3-4 с.

Миоглобин играет роль кратковременного депо кислорода. В миокарде кислород, связанный с миоглобином, обеспечивает окислительные процессы в тех участках, кровоснабжение которых на короткий срок нарушается.

В начальном периоде интенсивной мышечной нагрузки увеличенные потребности скелетных мышц в кислороде частично удовлетворяются за счет кислорода, высвобождающегося миоглобином. В дальнейшем возрастает мышечный кровоток, и поступление кислорода к мышцам вновь становится адекватным.

Все эти факторы, включая усиление вентиляции легких, компенсируют кислородный “долг”, который наблюдается при физической работе. Естественно, увеличению доставки кислорода к работающим мышцам и удалению углекислого газа способствует согласованное увеличение кровообращения в других системах организма.

Саморегуляция дыхания. Организм осуществляет тонкое регулирование содержания кислорода и углекислого газа в крови, которое остается относительно постоянным, несмотря на колебания количества поступающего кислорода и потребности в нем. Во всех случаях регуляция интенсивности дыхания направлена на конечный приспособительный результат – оптимизацию газового состава внутренней среды организма.

Частота и глубина дыхания регулируются нервной системой – ее центральными (дыхательный центр) и периферическими (вегетативными) звеньями. В дыхательном центре, расположенном в головном мозге, имеются центр вдоха и центр выдоха.

Дыхательный центр представляет совокупность нейронов, расположенных в продолговатом мозге центральной нервной системы.

При нормальном дыхании центр вдоха посылает ритмические сигналы к мышцам груди и диафрагме, стимулируя их сокращение. Ритмические сигналы образуются в результате спонтанного образования электрических импульсов нейронами дыхательного центра.

Сокращение дыхательных мышц приводит к увеличению объема грудной полости, в результате чего воздух входит в легкие. По мере увеличения объема легких возбуждаются рецепторы растяжения, расположенные в стенках легких; они посылают сигналы в мозг – в центр выдоха. Этот центр подавляет активность центра вдоха, и поток импульсных сигналов к дыхательным мышцам прекращается. Мышцы расслабляются, объем грудной полости уменьшается, и воздух из легких вытесняется наружу (смотри рисунок 1.5.5).

Рисунок 1.5.5. Регуляция дыхания

Процесс дыхания, как уже отмечалось, состоит из легочного (внешнего) дыхания, а также транспорта газа кровью и тканевого (внутреннего) дыхания. Если клетки организма начинают интенсивно использовать кислород и выделять много углекислого газа, то в крови повышается концентрация угольной кислоты. Кроме того, увеличивается содержание молочной кислоты в крови за счет усиленного образования ее в мышцах. Данные кислоты стимулируют дыхательный центр, и частота и глубина дыхания увеличиваются. Это еще один уровень регуляции. В стенках крупных сосудов, отходящих от сердца, имеются специальные рецепторы, реагирующие на понижение уровня кислорода в крови. Эти рецепторы также стимулируют дыхательный центр, повышая интенсивность дыхания. Данный принцип автоматической регуляции дыхания лежит в основе бессознательного управления дыханием, что позволяет сохранить правильную работу всех органов и систем независимо от условий, в которых находится организм человека.

Ритмичность дыхательного процесса, различные типы дыхания. В норме дыхание представлено равномерными дыхательными циклами “вдох – выдох” до 12-16 дыхательных движений в минуту. В среднем такой акт дыхания совершается за 4-6 с. Акт вдоха проходит несколько быстрее, чем акт выдоха (соотношение длительности вдоха и выдоха в норме составляет 1:1,1 или 1:1,4). Такой тип дыхания называется эйпноэ (дословно – хорошее дыхание). При разговоре, приеме пищи ритм дыхания временно меняется: периодически могут наступать задержки дыхания на вдохе или на выходе (апноэ). Во время сна также возможно изменение ритма дыхания: в период медленного сна дыхание становится поверхностным и редким, а в период быстрого – углубляется и учащается. При физической нагрузке за счет повышенной потребности в кислороде возрастает частота и глубина дыхания, и, в зависимости от интенсивности работы, частота дыхательных движений может достигать 40 в минуту.

При смехе, вздохе, кашле, разговоре, пении происходят определенные изменения ритма дыхания по сравнению с так называемым нормальным автоматическим дыханием. Из этого следует, что способ и ритм дыхания можно целенаправленно регулировать с помощью сознательного изменения ритма дыхания.

Человек рождается уже с умением использовать лучший способ дыхания. Если проследить как дышит ребенок, становится заметным, что его передняя брюшная стенка постоянно поднимается и опускается, а грудная клетка остается практически неподвижной. Он “дышит” животом – это так называемый диафрагмальный тип дыхания.

Диафрагма – это мышца, разделяющая грудную и брюшную полости.Сокращения данной мышцы способствуют осуществлению дыхательных движений: вдоха и выдоха.

В повседневной жизни человек не задумывается о дыхании и вспоминает о нем, когда по каким-то причинам становится трудно дышать. Например, в течение жизни напряжение мышц спины, верхнего плечевого пояса, неправильная осанка приводят к тому, что человек начинает “дышать” преимущественно только верхними отделами грудной клетки, при этом объем легких задействуется всего лишь на 20%. Попробуйте положить руку на живот и сделать вдох. Заметили, что рука на животе практически не изменила своего положения, а грудная клетка поднялась. При таком типе дыхания человек задействует преимущественно мышцы грудной клетки (грудной тип дыхания) или области ключиц (ключичное дыхание). Однако как при грудном, так и при ключичном дыхании организм снабжается кислородом в недостаточной степени.

Недостаток поступления кислорода может возникнуть также при изменении ритмичности дыхательных движений, то есть изменении процессов смены вдоха и выдоха.

В состоянии покоя кислород относительно интенсивно поглощается миокардом, серым веществом головного мозга (в частности, корой головного мозга), клетками печени и корковым веществом почек; клетки скелетной мускулатуры, селезенка и белое вещество головного мозга потребляют в состоянии покоя меньший объем кислорода, то при физической нагрузке потребление кислорода миокардом увеличивается в 3-4 раза, а работающими скелетными мышцами – более чем в 20-50 раз по сравнению с покоем.

Интенсивное дыхание, состоящее в увеличении скорости дыхания или его глубины (процесс называется гипервентиляцией), приводит к увеличению поступления кислорода через воздухоносные пути. Однако частая гипервентиляция способна обеднить ткани организма кислородом. Частое и глубокое дыхание приводит к уменьшению количества углекислоты в крови (гипокапнии) и защелачиванию крови – респираторному алкалозу.

Подобный эффект прослеживается, если нетренированный человек осуществляет частые и глубокие дыхательные движения в течение короткого времени. Наблюдаются изменения со стороны как центральной нервной системы (возможно появление головокружения, зевоты, мелькания “мушек” перед глазами и даже потери сознания), так и сердечно-сосудистой системы (появляется одышка, боль в сердце и другие признаки). В основе данных клинических проявлений гипервентиляционного синдрома лежат гипокапнические нарушения, приводящие к уменьшению кровоснабжения головного мозга. В норме у спортсменов в покое после гипервентиляции наступает состояние сна.

Следует отметить, что эффекты, возникающие при гипервентиляции, остаются в то же время физиологичными для организма – ведь на любое физическое и психоэмоциональное напряжение организм человека в первую очередь реагирует изменением характера дыхания.

При глубоком, медленном дыхании (брадипноэ) наблюдается гиповентиляционный эффект. Гиповентиляция – поверхностное и замедленное дыхание, в результате которого в крови отмечается понижение содержание кислорода и резкое увеличение содержания углекислого газа (гиперкапния).

Количество кислорода, которое клетки используют для окислительных процессов, зависит от насыщенности крови кислородом и степени проникновения кислорода из капилляров в ткани.Снижение поступления кислорода приводит к кислородному голоданию и к замедлению окислительных процессов в тканях.

В 1931 году доктор Отто Варбург получил Нобелевскую премию в области медицины, открыв одну из возможных причин возникновения рака. Он установил, что возможной причиной этого заболевания является недостаточный доступ кислорода к клетке.

Используя простые рекомендации, а также различные физические упражнения, можно повысить доступ кислорода к тканям.

  • Правильное дыхание, при котором воздух, проходящий через воздухоносные пути, в достаточной степени согревается, увлажняется и очищается – это спокойное, ровное, ритмичное, достаточной глубины.
  • Во время ходьбы или выполнения физических упражнений следует не только сохранять ритмичность дыхания, но и правильно сочетать ее с ритмом движения (вдох на 2-3 шага, выдох на 3-4 шага).
  • Важно помнить, что потеря ритмичности дыхания приводит к нарушению газообмена в легких, утомлению и развитию других клинических признаков недостатка кислорода.
  • При нарушении акта дыхания уменьшается приток крови к тканям и понижается насыщение ее кислородом.

Необходимо помнить, что физические упражнения способствуют укреплению дыхательной мускулатуры и усиливают вентиляцию легких. Таким образом, от правильного дыхания в значительной мере зависит здоровье человека.

Дается определение тканевого дыхания — аэробного ресинтеза АТФ в мышечных волокнах. Описаны количественные критерии тканевого дыхания: максимальная мощность, время развертывания, время работы с максимальной мощностью. Дается характеристика достоинствам и недостаткам тканевого дыхания.

Тканевое дыхание

Тканевое дыхание в мышечных волокнах (аэробный путь ресинтеза АТФ, аэробное фосфорилирование, окислительное фосфорилирование)

Определение

Тканевое дыхание (аэробный путь ресинтеза АТФ, аэробное фосфорилирование, окислительное фосфорилирование) – основной, базовый способ образования АТФ, протекающий в митохондриях мышечных волокон.

Общая характеристика

Источниками энергии для аэробного ресинтеза АТФ являются углеводы, жиры и аминокислоты. В итоге тканевого дыхания вещество окисляется до углекислого газа и воды.

Тканевое дыхание – основной механизм энергообеспечения при работе умеренной мощности длительностью более 30 минут.

Виды спорта базирующиеся на тканевом дыхании

Виды спорта, в которых тканевое дыхание является основным механизмом обеспечения являются: спортивная ходьба на 20 и 50 км, марафонский бег; лыжные гонки на 20 и 50 км; шоссейные велогонки, плавание на 10 км в открытой воде.

Ферменты тканевого дыхания

Ферменты аэробного ресинтеза АТФ (цитратсинтетаза, аконитаза, изоцитратдегидрогеназа, α-Кетоглутаратдегидрогеназа, сукцинаттиокиназа, сукцинатдегидрогеназа, фумараза, малатдегидрогеназа) располагаются в мембране митохондрий. Эти ферменты активирует АДФ (аденозиндифосфат). В покое АДФ мало, поэтому тканевое дыхание протекает с очень низкой скоростью. При выполнении физической нагрузки в организме интенсивно используется АТФ, поэтому в мышечных волокнах накапливается АДФ. В этом случае имеет место реакция гидролиза АТФ:

Избыток АДФ ускоряет тканевое дыхание, и оно может достигнуть максимальной скорости. Тканевое дыхание характеризуется высокой экономичностью. Например, при аэробном окислении гликогена до воды и углекислого газа образуется 39 молекул АТФ в расчете на один остаток глюкозы.

Тканевое дыхание активно протекает в мышечных волокнах типа I и типа IIA.

Количественные критерии тканевого дыхания

Максимальная мощность

Максимальная мощность тканевого дыхания составляет 350-450 кал/мин кг. По сравнению с анаэробными путями ресинтеза АТФ тканевое дыхание обладает самой низкой величиной максимальной мощности. Это обусловлено возможностями доставки кислорода в митохондрии, количеством и размерами митохондрий в мышечных волокнах.

Время развертывания тканевого дыхания

Время развертывания тканевого дыхания составляет от 3 до 4 минут. Однако у хорошо тренированных спортсменов этот показатель может составлять всего 1 минуту (С.С. Михайлов, 2009). Достаточно большое время развертывания тканевого дыхания объясняется тем, что для обеспечения максимальной скорости протекания тканевого дыхания необходима перестройка всех систем организма, участвующих в доставке кислорода в митохондрии мышц.

Время работы с максимальной мощностью

Время работы с максимальной мощностью тканевого дыхания составляет десятки минут. Это связано с тем, что, для аэробного ресинтеза АТФ используются разнообразные источники энергии (аминокислоты, углеводы, жирные кислоты и др.), содержащиеся как в мышечных волокнах, так и в крови, доставляемой к мышцам. Поэтому тканевое дыхание может функционировать длительное время.

Достоинства тканевого дыхания

  1. Высокая экономичность;
  2. Универсальность в использовании субстратов окисления.
  3. Большая продолжительность работы.

Недостатки тканевого дыхания.

  1. Необходимость в кислороде.
  2. Все ферменты тканевого дыхания встроены во внутреннюю мембрану митохондрий. Любые факторы, повреждающие внутреннюю мембрану, нарушают протекание тканевого дыхания.
  3. Большое время развертывания (3-4 мин.)
  4. Небольшая максимальная мощность.

Литература

  1. Волков Н.И., Несен Э.Н., Осипенко А.А., Корсун С.Н. Биохимия мышечной деятельности.- Киев: Олимпийская литература, 2000.- 504 с.
  2. Михайлов С.С. Спортивная биохимия. – М.: Советский спорт, 2009.– 348 с.

Похожие записи:

Тест времени реакции на сигнал

Представлена программа расчета времени реакции на сигнал, предназначенная для использования в учебных целях, например на занятиях по…

Саркоплазматическая гипертрофия мышц

Дано определение и описаны механизмы саркоплазматической гипертрофии скелетных мышц. Показано, что этот вид гипертрофии мышц широко…

Классификация типов конституции человека М.В. Черноруцкого

Рассмотрена классификация типов конституции человека, разработанная выдающимся терапевтом М.В. Черноруцким в 1925 году. Классификация типов конституции человека М.В.

Типы гипертрофии скелетных мышц человека

В статье дается классификация различных видов гипертрофии скелетных мышц человека на основе ряда классификационных признаков: времени проявления…

Миомейкер: Мембранный активатор слияния миобластов и образования мышц

Ученые установили, что для образования мышечных волокон необходимо слияние клеток-предшественников, которые называются миобластами. Эти клетки имеют только…

Читайте также: