Что такое оловянная чума кратко

Обновлено: 06.07.2024

Олово – лёгкий и пластичный металл серебристого цвета, который обладает одной интересной особенностью, известной как оловянная чума. И да, она заразна!

Что такое оловянная чума и почему она заразна

Оловянная чума – довольно опасная штука, из-за которой даже гибли люди и, говорят, потерпел поражение Наполеон

Олово относится к группе лёгких металлов. При нормальных условиях это пластичный, ковкий и легкоплавкий блестящий металл серебристого цвета. Известны также четыре аллотропические модификации олова: ниже +13,2 градусов — α-олово (серое олово) с кубической решёткой типа алмаза, выше +13,2 градусов — β-олово (белое олово) с тетрагональной кристаллической решёткой, а при высоких давлениях — γ-олово и σ-олово.

Простое олово полиморфно: в обычных условиях оно существует в виде β-модификации, устойчивой выше +13,2 градусов. При охлаждении белое олово переходит в α-модификацию – причём чем ниже температура окружающей среды, тем быстрее. При -33 градусах скорость превращения становится максимальной. Белое олово также превращается в серое под действием ионизирующего излучения.


Дорогая, любимая. Мне непросто писать из-за холода — 70 градусов ниже ноля и только палатка защищает… Мы оказались в тупике, и я не уверен, что мы справимся. Во время короткого завтрака я пользуюсь небольшой толикой тепла, чтобы написать письма, готовясь к возможной кончине. Если с мной что-то случится, я бы хотел, чтобы ты знала, как много ты значила для меня. Заинтересуй сына естественными науками, если сможешь. О, моя дорогая, моя дорогая, как я мечтал о его будущем. И все же, моя девочка, я знаю, что ты справишься. Ваши портреты найдут у меня на груди. Я мог бы многое рассказать тебе об этом путешествии. Какие истории ты смогла бы поведать нашему мальчику, но, ох, какой ценой. Лишиться возможности увидеть твое милое, милое лицо. Я думаю, что шансов нет. Мы решили не убивать себя, и бороться до конца, чтобы добраться до лагеря. Смерть в борьбе безболезненна, так что не волнуйся за меня.

Аллотропия

Рассмотрим три характерных примера аллотропной модификации:

Озон и кислород


Обе этих молекулы состоят из атомов кислорода, но плотность озона в 1,5 раза больше, чем у кислорода, и химическая активность также выше. Например, возможна прямая реакция озона с серебром, которая между кислородом и серебром происходить не будет:

Кислород жизненно необходим для человека, а озон в больших концентрациях вреден, хотя, в малых полезен. Озон обладает сильным приятным запахом, а кислород нет.

Графит и алмаз


Как известно, алмаз имеет максимальную твердость по шкале Мооса (10), а графит минимальную (1). Из иллюстрации понятно, что связи между атомами углерода в горизонтальных слоях графита остаются сильными, а в вертикальном разрезе очень слабые, благодаря чему графит снимается послойно, и им удобно писать.

Белый и красный фосфор



Температура плавления красного фосфора составляет 600 °C, тогда как температура плавления белого – всего 44 °C. При этом красный фосфор не воспламеняется до 250 °C, а белый фосфор воспламеняется уже при 45 °C, а при трении – и при более низких температурах.

Таким образом, поразительные отличия разных аллотропных модификаций у фосфора и углерода связаны с тем, что кристаллическая решетка этих элементов может упорядочиваться принципиально разным образом. Фосфор и углерод находятся в центральной части своих периодов в таблице Менделеева, однако являются полноценными неметаллами, будучи расположены в правом верхнем углу таблицы, где сосредоточены элементы с неметаллическими свойствами:


Здесь желтым цветом обозначены неметаллы, зеленым – переходные металлы, розово-желтым – полуметаллы. И также есть олово, которое, в отличие от сурьмы и германия, правильнее считать полноценным металлом. Но оно находится на три периода ниже углерода, поэтому тоже проявляет ярко выраженные аллотропные свойства.

Оловянная чума

Белое олово – это типичный металл, напоминающий свинец, но легче и тверже. Олово известно с глубокой древности и входит в состав бронзы – одного из первых сплавов, изобретенным человеком (олово + медь). Как олово, так и медь – достаточно мягкие и легкоплавкие металлы, а бронза гораздо прочнее, благодаря чему отлично подошла для изготовления оружия, посуды и инструментов, дав начало Бронзовому Веку. Тем не менее, белое олово существует в достаточно узком температурном режиме, между 161 и 13,2 °C. При более низких температурах олово начинает спонтанно переходить в серую аллотропную форму, напоминающую порошок или даже пыль. Максимальной интенсивности этот процесс достигает примерно при -39 °C, и от металлического олова ничего не остается.


Наиболее опасной чертой такой аллотропной модификации олова является заразность. Серое олово при контакте превращает белое олово в серое, если температура остается достаточно низкой. Так, принесенная с мороза оловянная миска, поставленная в шкаф в неотапливаемом помещении, может заразить всю остальную оловянную посуду.

Очень странно, что Роберт Скотт не учел этого обстоятельства – ведь оловянная чума известна давно; есть даже предположение, что именно из-за оловянной чумы, поразившей пуговицы наполеоновской армии в ходе отступления из Москвы, французы оказались в особенно незавидном положении.

Поразительно, но в недавнем прошлом для оловянной чумы нашлось практическое применение, связанное с очисткой лабораторной и промышленной оптики от капелек олова. Капельки чистейшего олова используются в качестве мишеней для плазмы, которая применяется для получения глубокого ультрафиолета, а глубокий ультрафиолет – для вытравливания микросхем. При этом для сборки ультрафиолета в действующий луч используется тончайшая оптика, которая быстро тускнеет, так как на ней конденсируется олово. Оказалось, что именно обработка оптики серым оловом позволяет полностью очистить стекло, не оставив на нем ни малейших царапин. В результате срок службы такого собирающего зеркала значительно увеличивается.


Но оловянная чума – лишь наиболее известная аллотропная болезнь металла. Есть и значительно более экзотические и не менее опасные метаморфозы, о которых я также хочу здесь рассказать.

Цинковая чума


Чума, подобная оловянной, поражает такой сплав не просто при изменении физических условий, но и, по-видимому, неизбежно, если доли металлов в ЦАМ отмерены неправильно. Цинковая чума начинается с характерных вздутий на поверхности металла.


Затем микроструктурные изменения проникают в глубину металла, и он крошится.

Прямая аналогия таких повреждений с оловянной чумой не доказана, хотя, по данным частных экспериментов, прочность металлических моделей после замораживания действительно падает в разы. Согласно другой версии (изложенной здесь, где показаны фотографии с последовательной деградацией модели), ЦАМ заболевает чумой, если в его составе оказывается хотя бы минимальное количество олова или свинца. Если бы эта версия подтвердилась, то означала бы, что оловянная чума заразна даже для цинка, являющегося переходным металлом.

Чаще цинковую чуму связывают с технологическим браком при производстве. Например, в сплаве может быть слишком велика доля алюминия, как в китайских моделях, либо в него могут попадать примеси никеля или сурьмы. То есть, такой сплав уже нельзя считать ЦАМ.

Пурпурная чума


Опять же, эта болезнь устраняется достаточно легко: проводник нужно легировать, достаточно 1% платины или палладия.

Вместо заключения


Чтобы продлить жизнь этих скульптур, их пришлось искусственно покрывать очень тонким слоем закиси меди, имитирующей благородную патину. Возможно, она позволит продлить жизнь этим красавцам.

Вышеизложенный экскурс при всей пестроте приведенных примеров был подготовлен, чтобы продемонстрировать, насколько больно бывает учиться на ошибках. Я не симпатизирую Скотту, который при всей отваге и силе духа последовательно действовал как карьерист и увел с собой в могилу еще нескольких людей, при этом вдохновив своим примером целое поколение полярников. Но мне кажется очень странной гримасой судьбы, что смерть Скотта, напрасная с точки зрения географического подвижничества, могла настолько подстегнуть развитие металлургии и химии металлов, именно в силу своей нелепости и неизбежности.


Рука об руку с рассказами о Генерале Морозе, сгубившем французскую армию, ходит миф о пуговицах Наполеона. Сколько правды в этой истории — разобрался WARHEAD.SU.

Рука об руку с рассказами о Генерале Морозе, сгубившем французскую армию, ходит миф о пуговицах Наполеона. Сколько правды в этой истории — разобрался WARHEAD.SU.

Из книги в книгу, из статьи в статью кочует старая байка. В 1812 году во время отступления из Москвы войско императора Наполеона столкнулось со страшными русскими морозами. И всё бы ничего — ведь военные мундиры делались из толстого шерстяного сукна, которое может согреть солдата даже в изрядные холода, — но произошло неожиданное несчастье.

Оловянные пуговицы, которые во множестве пришивались к тогдашней форме, не выдержали испытания морозами и рассыпались в серую пыль.

К сожалению, обе эти красивые истории — не что иное, как типичные городские легенды. Порождение времени, когда научные знания уже широко распространялись в народе, но были недостаточны, чтобы сделать из них обоснованные выводы.

Из чего пуговицы?

image

Казалось бы, вот факт — от холода металл действительно распадается. А следовательно, могли погибнуть все французские пуговицы, оставив несчастных солдат без одежды.

' title=>Наполеоновской армии это касалось в первую очередь. Лишь очень небольшое число полков, преимущественно кавалерийских, имели на форме белые пуговицы. Почти вся пехота — главная сила Великой армии — ходила в мундирах, застёгнутых на медные пуговицы, совершенно безразличные к холоду.

Хорошо, предположим, что беда настигла лишь некоторые военные части, которым был присвоен белый металл.

Правда ли? Оловянная чума погубила Великую армию Наполеона

Олово, да не то

image

Но и тут исторические факты не сходятся. Пуговицы из чистого олова — крайне редкое явление. Этот металл не только дорогой, но и крайне непрочный. Такая застёжка легко помнётся от малейшей нагрузки, а ножка, за которую пуговицу пришивают к мундиру, рискует сломаться ещё во время одевания. Ведь по моде первой половины XIX века военная форма шилась очень узкой, а в туго застёгнутом мундире нагрузка на эти самые пуговицы очень велика. Поэтому и пришивали их самой прочной нитью, и ножку старались сделать как можно прочнее и массивнее.

Вы можете взять любую пуговицу белого металла, сделанную в XVIII или XIX столетиях, и хоть несколько месяцев держать её в морозильной камере — с ней ничего не случится. Подобные эксперименты даже проводились некоторыми коллекционерами военной атрибутики.

Время и сильный холод

Правда ли? Оловянная чума погубила Великую армию Наполеона

image

– "Императорско-королевская армия была единственной силой в государстве, на которую пока еще можно было полагаться" ( Й. Ротт)

Процесс распада олова, проявление эффекта

Процесс распада олова, проявление эффекта "оловянная чума"

История явления для лучшего понимания процесса

Итак, прежде чем приступить к описанию самого процесса немного рассмотрим историю олова. Так вот, про олово человечество знает уже не одну тысячу лет, и в свое время являлся даже стратегически важным металлом.

Так как металл достаточно пластичен, то в свое время его активно применяли, например, при производстве пуговиц, для украшений и т. п.

Так в 1910 году полярный исследователь Р. Скотт организовал и лично возглавил полярную экспедицию на Южный полюс с одной целью – покорение. Так путешествие растянулось на несколько месяцев, и проходящая экспедиция на своем пути делала небольшие схроны с необходимым провиантом и топливом в канистрах, которые были запечатаны пробками, выполненными из олова.

Полярная экспедиция

Полярная экспедиция

Экспедиция в 1912 году все-таки добралась до полюса, но они были не первыми (их опередил Р. Амундсен). Но не это оказалось важным. Так направившаяся в обратный путь группа шла по своему же пути, но их ждал неприятный сюрприз. Канистры с топливом в ближайшем схроне были вскрыты и, естественно, пусты. Такая же картина ждала путешественников и в следующем запаснике.

К сожалению, экспедиция так и не добралась обратно и замерзла, не сумев согреться.

Еще больше фактов про олово

Так в конце 19-го века из Голландии в тогда еще Российскую империю был отправлен целый состав, который был загружен оловом в слитках. Но вот по пришествию в Москву при осмотре состава в вагонах был найден только порошок серого цвета.

Примерно в это же время была собрана экспедиция для изучения Сибирских просторов. Но при первом же серьезном сибирском морозе случилось неожиданное явление: вся посуда из олова, которая была с членами экспедиции, так же распалась на серый порошок.

В начале 20-го века было зафиксировано ЧП: со всех мундиров пропали оловянные пуговицы и на их месте был найден только серый порошок. После изучения состава порошка было сделано заключение, что металл был поражен оловянной чумой.


Так что же такое оловянная чума

На протяжении долгого времени ученые не могли найти объяснение, что же такое оловянная чума. И только после гибели экспедиции и тщательного расследования был разгадан секрет.

Металл и его структура

Только благодаря использованию рентгеновских аппаратов ученым удалось, наконец, рассмотреть кристаллическую решетку металлов. И уже на основании этого было дано научное объяснение феномену.

Было установлено, что олово обладает достаточно пластичной и вязкой структурой при температуре равной и выше комнатной. Но как только температура металла опускается до -13 градусов по Цельсию кристаллическая структура олова начинает преобразовываться.

При этом атомы начинают располагаться в пространстве на большем расстоянии, и формируется следующая модификация металла – серое олово.

При этом металл полностью теряет свои первоначальные свойства и превращается в полупроводник. Внутри металла растет внутреннее напряжение и это приводит к тому, что олово буквально начинает распадаться и превращается в порошок. Именно так и протекает так называемая оловянная чума.

Скорость течения данной трансформации напрямую зависит от температуры. И наиболее скоротечен процесс распада при температуре в -33 градуса по Цельсию. Так вот именно этот эффект и послужил основной причиной гибели экспедиции, уничтожил целый состав олова и разрушил множество экспонатов и т. п.

Как избавились от оловянной чумы

Научное сообщество работало над решением проблемы оловянной чумы достаточно продолжительное время, и вот спустя время решение было найдено британской ассоциацией производителей.


Это все, что я хотел вам рассказать про такое явление, как оловянная чума. Понравился материал? Тогда оцените его и не забудьте подписаться на канал. Спасибо за ваше внимание!

Читайте также: