Что такое линейный элемент в электрической цепи кратко

Обновлено: 04.07.2024

Электромагнитное устройство с осуществляемыми в нем, а также в окружающем его пространстве физическими процессами, в теории электрических цепей заменяет определенный расчетный эквивалент, называемый электроцепью.

Линейная электрическая цепь

Электрические цепи с постоянными параметрами считаются в физике такими цепями, в которых сопротивления резисторов $R$, индуктивность катушек $L$ и емкость конденсаторов $С$ будут постоянными и не зависимы от действующих в цепи напряжений, токов и напряжений (линейные элементы).

При условии независимости сопротивления резистора $R$ от тока, линейная зависимость между током и падением напряжения выражается на основании закона Ома, то есть:

Вольтамперная характеристика резистора при этом представляет собой прямую линию.

При независимости индуктивности катушки от величины тока, протекающего в ней, потокосцепление самоиндукции катушки $ф$ оказывается прямо пропорциональным этому току:

При условии независимости емкости конденсатора С от приложенного к обкладкам напряжения $uc$, накопленный на пластинах заряд $q$ и напряжение $uc$ оказываются связанными между собой через линейную зависимость.

При этом линейность сопротивления, индуктивности, а также емкости носит сугубо условный характер поскольку в действительности все реальные элементы электроцепи не линейны. При прохождении через резистор тока он будет нагреваться с изменением сопротивления.

При этом в нормальном рабочем режиме элементов подобные изменения обычно настолько несущественны, что при расчетах не берутся во внимание (такие элементы считаются в электрической цепи линейными).

Транзисторы, функционирующие в режимах, когда применяются прямолинейные участки их вольтамперных характеристик, условно также могут рассматриваться в формате линейных устройств.

Готовые работы на аналогичную тему

Электрическая цепь, которая будет состоять из линейных элементов, называется линейной. Такие цепи характеризуют линейные уравнения для токов и напряжений и заменяются линейными схемами замещения.

Нелинейная электрическая цепь

Нелинейной электрической цепью считается та, которая содержит один или несколько нелинейных элементов.

Нелинейный элемент в электроцепи имеет параметры, зависимые от определяющих их величин. Нелинейная электрическая цепь имеет ряд важных отличий от линейной и в ней зачастую возникают специфические явления.

Нелинейные элементы характеризуют статические $R_$, $L_$, и $C_$ и дифференциальные $(R_д, L_д, C_д)$ параметры. Статические параметры нелинейного элемента определяются в виде отношения ординаты избранной точки характеристики к ее абсциссе:

Дифференциальные параметры нелинейного элемента определяются в форме отношения малого приращения ординаты выбранной точки характеристики к малому приращению ее абсциссы:

Методы расчета нелинейных цепей

Нелинейность параметров элементов усложняется расчетом цепи, поэтому рабочим участком выбирается или линейный, или близкий к нему участок характеристики. При этом рассматривается с допустимой точностью элемент как линейный. При невозможности этого применяются специальные методы расчета, такие, как:

  • графический метод;
  • метод аппроксимации.

Идея графического метода ориентирована на построение характеристик элементов цепи (вольт–амперной $u(i)$, вебер–амперной $ф(i)$ или кулон–вольтной $q(u)$) и их последующем графическом преобразовании с целью получения соответствующей характеристики для всей цепи или какого-то из ее участков.

Графический метод расчета считается наиболее простым и наглядным в использовании, обеспечивающим необходимую точность. В то же время, его применяют при незначительном количестве нелинейных элементов в цепи, поскольку он требует максимальной аккуратности при проведении графических построений.

Идея метода аппроксимации направлена на замену аналитическим выражением экспериментально полученной характеристики нелинейного элемента. Различают такие виды:

  • аналитическая аппроксимация (при которой характеристика элемента заменяется на аналитическую функцию);
  • кусочно–линейная (при ней характеристика элемента заменяется комплексом прямолинейных отрезков).

Точность аналитической аппроксимации определяет правильность выбора аппроксимирующей функции и подбор соответствующих коэффициентов. Преимуществом кусочно–линейной аппроксимации выступает простота при применении и возможность рассматривать элемент в формате линейного.

Более того, в ограниченном диапазоне изменений сигнала, где его, благодаря трансформациям, можно считать линейным (режим малого сигнала), нелинейный элемент (с допустимой точностью) можно заменить эквивалентным линейным активным двухполюсником:

где $R_$ –дифференциальное сопротивление нелинейного элемента на линеаризуемом участке.

Линейный элемент имеет однозначное соответствие между входными и выходными величинами и подлежат аналитическому расчету. Активные, индуктивные и емкостные сопротивления являются линейными элементами в электрической сети

Электрическая цепь состоит из отдельных частей (объектов) , выполняющих определенные функции и называемых элементами цепи. Все элементы электрической цепи условно можно разделить на активные и пассивные. К основным характеристикам элементов цепи относятся их вольт-амперные, вебер-амперные и кулон-вольтные характеристики, описываемые дифференциальными или (и) алгебраическими уравнениями. Если элементы описываются линейными дифференциальными или алгебраическими уравнениями, то они называются ЛИНЕЙНЫМИ.

Все элементы электрической цепи условно можно разделить на активные и пассивные. Активным называется элемент, содержащий в своей структуре источник электрической энергии. К пассивным относятся элементы, в которых рассеивается (резисторы) или накапливается (катушка индуктивности и конденсаторы) энергия. К основным характеристикам элементов цепи относятся их вольт-амперные, вебер-амперные и кулон-вольтные характеристики, описываемые дифференциальными или (и) алгебраическими уравнениями. Если элементы описываются линейными дифференциальными или алгебраическими уравнениями, то они называются линейными, в противном случае они относятся к классу нелинейных. Строго говоря, все элементы являются нелинейными. Возможность рассмотрения их как линейных, что существенно упрощает математическое описание и анализ процессов, определяется границами изменения характеризующих их переменных и их частот. Коэффициенты, связывающие переменные, их производные и интегралы в этих уравнениях, называются параметрами элемента.

Электрическая цепь – это набор элементов, соединенных между собой, через которые проходит электрический сигнал (электрический ток). К набору элементов относятся: источники и приемники (потребители) электрической энергии, соединительные провода и измерительные приборы, такие как амперметр, измеряющий действующее значение электрического тока, вольтметр, измеряющий действующее значение напряжения и ваттметр, измеряющий активную мощность.

Рисунок 1 - Простейшая схема электрической цепи, состоящая из источника напряжения, резистора и измерительных приборов: (А) - амперметр, (V) - вольтметр, (W) - ваттметр

Рисунок 1 - Простейшая схема электрической цепи, состоящая из источника напряжения, резистора и измерительных приборов: (А) - амперметр, (V) - вольтметр, (W) - ваттметр

Приемники электрической энергии – это элементы цепи потребители (нагрузка), в которых электрическая энергия преобразуется в другие виды энергии).

Источники электрической энергии – это элементы цепи, в которых тепловая, механическая или химическая энергии преобразуются в электрическую.

Цепь постоянного тока – это электрическая цепь, в которой токи и напряжения в любой момент времени остаются неизменными по величине и направлению, и при неизменных токах и напряжениях происходит получение и преобразование электрической энергии.

Линейная электрическая цепь – это электрическая цепь, которая состоит только из линейных элементов. Если в цепи имеется нелинейный элемент, то цепь будет нелинейной.

Линейный элемент – это элемент, сопротивление которого не зависит от приложенного к его зажимам напряжения и протекающего через него тока.

Понятия, относящиеся к любой электрической цепи: ток I [A – Ампер], напряжение U [B – Вольт], потенциал φ [В – Вольт], сопротивление R [Ом], ЭДС E [В – Вольт], проводимость G [См – Сименс], емкость C [Ф – Фарад], индуктивность L [Гн – Генри].

Основная цель расчета электрических цепей – это определение токов в ветвях. Зная токи ветвей можно определить напряжения на участках цепи, мощности, генерируемые и потребляемые элементами, выполнить построение диаграмм и т. д.

В большинстве случаев для удобства расчета электрическую цепь заменяют эквивалентной схемой замещения (электрическая схема).

Электрическая схема – это графическое изображение электрической цепи, которая состоит из ветвей, узлов и контуров.

Ветвь – это участок цепи, образованный одним или несколькими последовательно включенными элементами цепи. Через все эти элементы ветви протекает один и тот же ток. То есть ветвь – это участок цепи с одним или несколькими элементами, расположенными между двумя узлами.

Узел – это точка соединения трех и более ветвей (рисунок 6 – а, б).

В узле 1 электрических цепей, изображенных на рисунке 6 сходятся четыре ветви, как на рисунке 6 а, так и на рисунке 6 б. Обе схемы по своему электрическому смыслу идентичны.

На рисунке 6 б между точками 1-2, 2-3 и 3-4 нет элементов, следовательно, данные участки цепи не являются ветвями. На этом рисунке только один узел, а остальные три точки называются фиктивными узлами.

Узел будет независимым , если содержит в себе хотя бы одну ветвь, которая ранее не входила в другие узлы. Независимых узлов в схеме всегда на единицу меньше общего количества узлов. Например, если общее количество узлов n, то количество независимых узлов будет n-1.

Контур – это любой замкнутый путь, проходящий по нескольким ветвям.

Наиболее важным понятием для расчета электрических цепей являются независимые контура.

Независимый контур – это контур, включающий в себя хотя бы одну ветвь, ранее не входившую в другие контура. Количество независимых контуров определяется по формуле: К = m- (n– 1), где m– количество ветвей, n– количество узлов.

В качестве примера рассмотрим схему цепи, изображенную на рисунке 7. Данная схема состоит из 4 ветвей, 6 контуров, 3 независимых контуров и 2 узлов. Участок провода, в котором отсутствуют элементы, не является ветвью. Так как между точками 2 и 2` отсутствует какой-либо элемент, то этот участок провода не является ветвью и узел 2` является фиктивным узлом.

В данной схеме цепи количество независимых узлов: n – 1 = 2 – 1 = 1, количество независимых контуров: m – (n – 1) = 4 – (2 – 1) = 3.

Таким образом, мы ознакомились с основными понятиями и определениями линейных электрических цепей.

Следующая тема, которую мы рассмотрим - ток, напряжение, мощность .

Если понравилась статья, подписывайтесь на канал и не пропускайте новые публикации.

линейный элемент
Элемент электрической цепи, у которого электрические напряжения и электрические токи или(и) электрические токи и магнитные потокосцепления, или(и) электрические заряды и электрические напряжения связаны друг с другом линейными зависимостями.
[ГОСТ Р 52002-2003]

Тематики

Синонимы

Справочник технического переводчика. – Интент . 2009-2013 .

Смотреть что такое "линейный элемент" в других словарях:

линейный элемент — tiesinis elementas statusas T sritis automatika atitikmenys: angl. linear element vok. lineares Element, n rus. линейный элемент, m pranc. élément linéaire, m … Automatikos terminų žodynas

линейный элемент — tiesinis elementas statusas T sritis fizika atitikmenys: angl. linear element vok. lineares Element, n rus. линейный элемент, m pranc. élément linéaire, m … Fizikos terminų žodynas

линейный элемент тела — Выделенный и целиком расположенный в твердом теле отрезок прямой. [Система неразрушающего контроля. Виды (методы) и технология неразрушающего контроля. Термины и определения (справочное пособие). Москва 2003 г.] Тематики виды (методы) и… … Справочник технического переводчика

Линейный (нелинейный) элемент электрической цепи — элемент электрической цепи, у которого электрические напряжения и электрические токи или (и) электрические токи и магнитные потокосцепления, или (и) электрические заряды и электрические напряжения связаны друг с другом линейными (нелинейными)… … Официальная терминология

Линейный ускоритель медицинский — Линейный ускоритель (англ. linac LINear ACcelerator) устройство для создания ионизирующего излучения (рентгеновского и/или электронного) высокой проникающей способности (20 МэВ и выше). Используется в промышленности для изготовления… … Википедия

ЛИНЕЙНЫЙ ОПЕРАТОР — А в векторном пространстве L отображение, сопоставляющее каждому вектору е век poro множества D (содержащегося в L и наз. областью определения Л. о.) др. вектор, обозначаемый Ае (и называемый значением Л. о. на векторе е). Выполнены след. условия … Физическая энциклопедия

линейный сателлит — Спутничный элемент вытянутой формы (при удаленном от теломеры положении вторичной перетяжки). [Арефьев В.А., Лисовенко Л.А. Англо русский толковый словарь генетических терминов 1995 407с.] Тематики генетика EN linear satellite … Справочник технического переводчика

Линейный двигатель — Лабораторный синхронный линейный двигатель. На заднем плане статор ряд индукционных катушек, на переднем плане подвижный вторичный элемент, содержащий постоянный магнит … Википедия

линейный — 92 линейный [нелинейный] элемент (электрической цепи) Элемент электрической цепи, у которого электрические напряжения и электрические токи или(и) электрические токи и магнитные потокосцепления, или(и) электрические заряды и электрические… … Словарь-справочник терминов нормативно-технической документации

Линейный поиск — Эту статью следует викифицировать. Пожалуйста, оформите её согласно правилам оформления статей. Линейный, последовательный поиск алгоритм нахождения заданного значения произвольной функции на некотором отрезке. Данный алгоритм являе … Википедия

Электромагнитные процессы, протекающие в электротехнических устройствах, как правило, достаточно сложны. Однако во многих случаях, их основные характеристики можно описать с помощью таких интегральных понятий, как: напряжение, ток, электродвижущая сила (ЭДС). При таком подходе совокупность электротехнических устройств, состоящую из соответствующим образом соединенных источников и приемников электрической энергии, предназначенных для генерации, передачи, распределения и преобразования электрической энергии и (или) информации, рассматривают как электрическую цепь. Электрическая цепь состоит из отдельных частей (объектов), выполняющих определенные функции и называемых элементами цепи. Основными элементами цепи являются источники и приемники электрической энергии (сигналов). Электротехнические устройства, производящие электрическую энергию, называются генераторами или источниками электрической энергии, а устройства, потребляющие ее – приемниками (потребителями) электрической энергии.

У каждого элемента цепи можно выделить определенное число зажимов (полюсов), с помощью которых он соединяется с другими элементами. Различают двух –и многополюсные элементы. Двухполюсники имеют два зажима. К ним относятся источники энергии (за исключением управляемых и многофазных), резисторы, катушки индуктивности, конденсаторы. Многополюсные элементы – это, например, триоды, трансформаторы, усилители и т.д.

Все элементы электрической цепи условно можно разделить на активные и пассивные. Активным называется элемент, содержащий в своей структуре источник электрической энергии. К пассивным относятся элементы, в которых рассеивается (резисторы) или накапливается (катушка индуктивности и конденсаторы) энергия. К основным характеристикам элементов цепи относятся их вольт-амперные, вебер-амперные и кулон-вольтные характеристики, описываемые дифференциальными или (и) алгебраическими уравнениями. Если элементы описываются линейными дифференциальными или алгебраическими уравнениями, то они называются линейными, в противном случае они относятся к классу нелинейных. Строго говоря, все элементы являются нелинейными. Возможность рассмотрения их как линейных, что существенно упрощает математическое описание и анализ процессов, определяется границами изменения характеризующих их переменных и их частот. Коэффициенты, связывающие переменные, их производные и интегралы в этих уравнениях, называются параметрами элемента.

Если параметры элемента не являются функциями пространственных координат, определяющих его геометрические размеры, то он называется элементом с сосредоточенными параметрами. Если элемент описывается уравнениями, в которые входят пространственные переменные, то он относится к классу элементов с распределенными параметрами. Классическим примером последних является линия передачи электроэнергии (длинная линия).

Цепи, содержащие только линейные элементы, называются линейными. Наличие в схеме хотя бы одного нелинейного элемента относит ее к классу нелинейных.

Рассмотрим пассивные элементы цепи, их основные характеристики и параметры.

1. Резистивный элемент (резистор)

Условное графическое изображение резистора приведено на рис. 1,а. Резистор – это пассивный элемент, характеризующийся резистивным сопротивлением. Последнее определяется геометрическими размерами тела и свойствами материала: удельным сопротивлением r (Ом ´ м) или обратной величиной – удельной проводимостью (См/м).

В простейшем случае проводника длиной и сечением S его сопротивление определяется выражением

В общем случае определение сопротивления связано с расчетом поля в проводящей среде, разделяющей два электрода.

Основной характеристикой резистивного элемента является зависимость (или ), называемая вольт-амперной характеристикой (ВАХ). Если зависимость представляет собой прямую линию, проходящую через начало координат (см.рис. 1,б), то резистор называется линейным и описывается соотношением

где - проводимость. При этом R=const.

Нелинейный резистивный элемент, ВАХ которого нелинейна (рис. 1,б), как будет показано в блоке лекций, посвященных нелинейным цепям, характеризуется несколькими параметрами. В частности безынерционному резистору ставятся в соответствие статическое и дифференциальное сопротивления.

2. Индуктивный элемент (катушка индуктивности)

Условное графическое изображение катушки индуктивности приведено на рис. 2,а. Катушка – это пассивный элемент, характеризующийся индуктивностью. Для расчета индуктивности катушки необходимо рассчитать созданное ею магнитное поле.

Индуктивность определяется отношением потокосцепления к току, протекающему по виткам катушки,

В свою очередь потокосцепление равно сумме произведений потока, пронизывающего витки, на число этих витков , где .

Основной характеристикой катушки индуктивности является зависимость , называемая вебер-амперной характеристикой. Для линейных катушек индуктивности зависимость представляет собой прямую линию, проходящую через начало координат (см. рис. 2,б); при этом

Нелинейные свойства катушки индуктивности (см. кривую на рис. 2,б) определяет наличие у нее сердечника из ферромагнитного материала, для которого зависимость магнитной индукции от напряженности поля нелинейна. Без учета явления магнитного гистерезиса нелинейная катушка характеризуется статической и дифференциальной индуктивностями.

3. Емкостный элемент (конденсатор)

Условное графическое изображение конденсатора приведено на рис. 3,а.

Конденсатор – это пассивный элемент, характеризующийся емкостью. Для расчета последней необходимо рассчитать электрическое поле в конденсаторе. Емкость определяется отношением заряда q на обкладках конденсатора к напряжению u между ними

и зависит от геометрии обкладок и свойств диэлектрика, находящегося между ними. Большинство диэлектриков, используемых на практике, линейны, т.е. у них относительная диэлектрическая проницаемость =const. В этом случае зависимость представляет собой прямую линию, проходящую через начало координат, (см. рис. 3,б) и

У нелинейных диэлектриков (сегнетоэлектриков) диэлектрическая проницаемость является функцией напряженности поля, что обусловливает нелинейность зависимости (рис. 3,б). В этом случае без учета явления электрического гистерезиса нелинейный конденсатор характеризуется статической и дифференциальной емкостями.

Схемы замещения источников электрической энергии

Свойства источника электрической энергии описываются ВАХ , называемой внешней характеристикой источника. Далее в этом разделе для упрощения анализа и математического описания будут рассматриваться источники постоянного напряжения (тока). Однако все полученные при этом закономерности, понятия и эквивалентные схемы в полной мере распространяются на источники переменного тока. ВАХ источника может быть определена экспериментально на основе схемы, представленной на рис. 4,а. Здесь вольтметр V измеряет напряжение на зажимах 1-2 источника И, а амперметр А – потребляемый от него ток I, величина которого может изменяться с помощью переменного нагрузочного резистора (реостата) RН.

В общем случае ВАХ источника является нелинейной (кривая 1 на рис. 4,б). Она имеет две характерные точки, которые соответствуют:

а – режиму холостого хода ;

б – режиму короткого замыкания .

Для большинства источников режим короткого замыкания (иногда холостого хода) является недопустимым. Токи и напряжения источника обычно могут изменяться в определенных пределах, ограниченных сверху значениями, соответствующими номинальному режиму (режиму, при котором изготовитель гарантирует наилучшие условия его эксплуатации в отношении экономичности и долговечности срока службы). Это позволяет в ряде случаев для упрощения расчетов аппроксимировать нелинейную ВАХ на рабочем участке m-n (см. рис. 4,б) прямой, положение которой определяется рабочими интервалами изменения напряжения и тока. Следует отметить, что многие источники (гальванические элементы, аккумуляторы) имеют линейные ВАХ.

Прямая 2 на рис. 4,б описывается линейным уравнением

где - напряжение на зажимах источника при отключенной нагрузке (разомкнутом ключе К в схеме на рис. 4,а); - внутреннее сопротивление источника.

Уравнение (1) позволяет составить последовательную схему замещения источника (см. рис. 5,а). На этой схеме символом Е обозначен элемент, называемый идеальным источником ЭДС. Напряжение на зажимах этого элемента не зависит от тока источника, следовательно, ему соответствует ВАХ на рис. 5,б. На основании (1) у такого источника . Отметим, что направления ЭДС и напряжения на зажимах источника противоположны.

Если ВАХ источника линейна, то для определения параметров его схемы замещения необходимо провести замеры напряжения и тока для двух любых режимов его работы.

Существует также параллельная схема замещения источника. Для ее описания разделим левую и правую части соотношения (1) на . В результате получим

где ; - внутренняя проводимость источника.

Уравнению (2) соответствует схема замещения источника на рис. 6,а.

На этой схеме символом J обозначен элемент, называемый идеальным источником тока. Ток в ветви с этим элементом равен и не зависит от напряжения на зажимах источника, следовательно, ему соответствует ВАХ на рис. 6,б. На этом основании с учетом (2) у такого источника , т.е. его внутреннее сопротивление .

Отметим, что в расчетном плане при выполнении условия последовательная и параллельная схемы замещения источника являются эквивалентными. Однако в энергетическом отношении они различны, поскольку в режиме холостого хода для последовательной схемы замещения мощность равна нулю, а для параллельной – нет.

Кроме отмеченных режимов функционирования источника, на практике важное значение имеет согласованный режим работы, при котором нагрузкой RН от источника потребляется максимальная мощность

Условие такого режима

В заключение отметим, что в соответствии с ВАХ на рис. 5,б и 6,б идеальные источники ЭДС и тока являются источниками бесконечно большой мощности.

  1. Основы теории цепей: Учеб. для вузов /Г.В.Зевеке, П.А.Ионкин, А.В.Нетушил, С.В.Страхов. –5-е изд., перераб. –М.: Энергоатомиздат, 1989. -528с.
  2. Бессонов Л.А. Теоретические основы электротехники: Электрические цепи. Учеб. для студентов электротехнических, энергетических и приборостроительных специальностей вузов. –7-е изд., перераб. и доп. –М.: Высш. шк., 1978. –528с.
  3. Теоретические основы электротехники. Учеб. для вузов. В трех т. Под общ. ред. К.М.Поливанова. Т.1. К.М.Поливанов. Линейные электрические цепи с сосредоточенными постоянными. –М.: Энергия, 1972. –240 с.
  4. Каплянский А.Е. и др. Теоретические основы электротехники. Изд. 2-е. Учеб. пособие для электротехнических и энергетических специальностей вузов. –М.: Высш. шк., 1972. –448 с.

Контрольные вопросы и задачи

  1. Может ли внешняя характеристик источника проходить через начало координат?
  2. Какой режим (холостой ход или короткое замыкание) является аварийным для источника тока?
  3. В чем заключаются эквивалентность и различие последовательной и параллельной схем замещения источника?
  4. Определить индуктивность L и энергию магнитного поля WМкатушки, если при токе в ней I=20А потокосцепление y =2 Вб.

Читайте также: