Что такое дискретизация кратко

Обновлено: 02.07.2024

Для того чтобы решить определенные задачи, человек вынужден преобразовывать имеющуюся информацию из одной формы, в которой она представлена, в другую. Например, при чтении книги вслух мы преобразовываем информацию из текстовой (дискретной) формы в звуковую (непрерывную). Тот, кто занимается транскрибацией, преобразовывает звуковую форму в текстовую — совершает обратный процесс.

Для того чтобы передавать, хранить, автоматически обрабатывать данные, гораздо удобнее использовать дискретную форму представления информации. В этом и состоит ее основное преимущество. Именно поэтому информатика — наука, на которой основана работа всей компьютерной техники, — много внимания уделяет дискретизации.

Дискретизация — процесс, с помощью которого непрерывная форма представления информации преобразуется в дискретную.иеие

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

В информатике под понятием дискретности подразумевают алгоритм решения задачи, разбивающий весь процесс на определенное количество простых шагов (этапов), выполняемых поочередно.

Другими словами, дискретность — это набор действий, имеющих строго определенную, предписанную им алгоритмом последовательность. Каждое следующее действие может быть исполнено только при полном завершении предыдущего этапа.

Формы представления дискретной информации

Итак, существуют две формы представления информации:

Они принципиально отличаются в зависимости от своей природы.

Любой объект или явление, существующие в нашем мире, можно представить с помощью определенных физических величин и характеристик. Такое природное явление, как циклон, можно описать с помощью скорости ветра, температуры воздуха, количества выпавших осадков и другими характерными для циклона величинами.

Характерные физические величины для описания человека:

  • возраст;
  • вес;
  • рост;
  • температура тела;
  • кровяное давление и пр.

Все вышеуказанные физические величины имеют собственные определенные диапазоны. Количество значений, которые способна принимать та или иная величина, может быть бесконечным.

Подобные величины и ту информацию, которую они передают, принято называть непрерывными. Между значениями таких величин не бывает скачкообразных разрывов. Такая непрерывная величина, как масса тела, например, может принимать любые значения от нуля до бесконечности, включая дробные.

Кроме непрерывных величин, существуют и такие, которые обозначают целое, а не дробное количество: например, число музыкантов в оркестре или число атомов в молекуле вещества.

Если объект изучения обладает характерным свойством в какие-то моменты принимать строго конкретные значения (знаковые или числовые), то это свойство называют дискретной информацией об объекте.

Особенность дискретной информации — ее прерывистость, возможность пронумеровать и представить в цифровом виде с использованием логических нуля и единицы.

Дискретными значениями являются:

  • количество зданий в городе;
  • геометрические фигуры;
  • буквы алфавита.

Для того чтобы обладать наиболее полными сведениями об объекте или явлении, чаще всего их описывают с помощью двух форм представления информации одновременно.

Геометрическую фигуру можно описать с помощью ее дискретного значения (квадрат) и непрерывного значения длины его стороны (15,25 см).

При использовании пружинных весов или весов со стрелкой измеряемая величина (масса) является сама по себе непрерывной. Но весы переводят этот показатель в дискретную форму в зависимости от того, к какому делению шкалы ближе окажется бегунок пружинных весов или стрелка.

В этом случае, чем более мелкие деления на шкале, тем более точной будет дискретное представление информации о массе взвешиваемого предмета.

Дискретную информацию принято представлять в символьном виде, с использованием знаков — натуральных чисел или букв. С помощью натуральных чисел можно представить деления на шкале измерительного прибора, нумерацию страниц книги или домов на улице города.

Цифровой вариант представления информации очень удобен для использования в ЭВМ.

В повседневной жизни для представления информации помимо цифр используют слова, составленные из букв какого-либо алфавита (русского, латинского, китайского и пр.). С помощью слов обозначают имена и свойства объектов, перечисляют действия.

Также широкое применение получили различные математические символы, знаки препинания.

  1. Из букв составляют слова, характеризующие свойства объектов.
  2. С помощью цифр можно передать информацию о числовых значениях величин.
  3. Одновременное использование букв, цифр и математических символов позволяет создавать формулы, указывать на соотношения между различными величинами.

Такой вид представления информации называется символьным, так как она имеет дискретную природу, заключенную в использовании последовательности различных символов.

В качестве примера поставим в соответствие каждой букве алфавита ее порядковый номер. В этом случае с помощью цифр от 0 до 9 можно записать текст целой книги.

Более того, ту же самую информацию можно закодировать с помощью двоичного кода, используя всего 2 символа — 0 и 1.

К дискретным формам представления информации относят также ее графическое изображение в виде различных чертежей, графиков, схем.

Информационные параметры сигнала

Дискретизация в системах обработки информации выглядит как обмен информацией, который происходит с помощью сигналов. Носителями таких сигналов выступают физические величины, которые могут быть представлены распределением сигналов в пространстве и времени.

Показатели соответствующих временных функций являются информационными параметрами сигнала. Среди таких показателей могут быть:

  • цвет изображения;
  • координаты точки изображения;
  • длительность импульсов;
  • продолжительность распределения импульсов в пространстве;
  • частота;
  • амплитуда;
  • фаза сигнала.

Как происходит дискретизация, основные этапы

По аналогии с видом представления информации сигналы классифицируют также на 2 типа:

В случае аналогового сигнала параметры внутри отдельных диапазонов могут принимать любые значения в любой момент времени.

В случае дискретного сигнала каждому установленному моменту времени соответствует определенное значение параметра. Дискретный сигнал описывает непрерывную информацию в виде точек графика, построенного в системе координат. В ней ось абсцисс представляет собой время сигнала в дискретном изображении, а ось ординат отражает дискретное представление уровня сигнала.

Преобразование аналогового сигнала в дискретный называется дискретизацией, которая происходит как по времени, так и по уровню сигнала.

Рассмотрим, как происходит дискретизация на примере самописцев атмосферного давления. Эти приборы работают на метеорологических станциях. Они в непрерывном режиме записывают изменение атмосферного давления на протяжении длительного времени в виде барограмм — кривых, вычерченных прибором в течение нескольких часов.

Одна из таких барограмм представлена ниже:

ur__3.jpg

Взяв график за основу, можно снять с него необходимую нам информацию. Например, показания самописца в начале измерения атмосферного давления и каждый последующий час. Полученные данные заносятся в таблицу:

ur__4.jpg

Таким образом, мы смогли преобразовать полученную в аналоговой (непрерывной) форме информацию в дискретный вид.

Если внимательно сравнить данные таблицы с данными графика, то можно заметить некоторую потерю точности. Так, самого большого значения давление достигло во время четвертого часа работы самописца, но в таблицу эта информация не попала.

Чтобы увеличить точность процесса дискретизации, следует брать меньшие временные интервалы. Например, снимать данные с барограммы не раз в час, а каждые полчаса или пятнадцать минут. В этом случае мы получим более точную картину изменения давления, представленную в дискретной форме.

Дискретные сигналы легче обрабатывать и хранить, чем аналоговые. Кроме того, на них практически не влияют помехи во время передачи на большие расстояния, что является их явным преимуществом. Поэтому использование дискретных сигналов получило более широкое распространение по сравнению с непрерывными.

Побочные эффекты дискретизации и квантования

Как мы уже выяснили, дискретизация происходит как по уровню (амплитуде) сигнала, так и по времени. При этом дискретизацию по уровню часто называют квантованием. В научной литературе могут встречаться оба термина, которые обозначают процесс оцифровки сигнала.

Поскольку все сигналы в природе имеют аналоговое происхождение, то для их хранения, обработки и передачи необходимо сначала оцифровывать сигналы — произвести с помощью аналого-цифровых приборов их дискретизацию и квантование по уровню.

После этого любой сигнал можно закодировать, провести его цифровую обработку, передать на расстоянии и хранить. При этом часто возникает необходимость преобразовать полученный цифровой сигнал обратно в аналоговый.

Подобным образом, например, происходит звуковое воспроизведение аудиозаписей с компакт-дисков. Цифровые сигналы, записанные в области высоких частот, преобразуются в низкочастотные звуковые.

Обратное преобразование сигнала происходит с определенной степенью точности, которая зависит от:

  • частоты дискретизации (чем выше частота, тем точнее воспроизведение сигнала);
  • числа уровней квантования для каждой выборки (чем больше уровень, тем точнее сигнал).

Следует учесть, что чем больше будет частота и число уровней, тем больше будет и цифровой информации, а значит, потребуется соответствующее количество ресурсов для ее передачи, хранения, обработки. Поэтому приходится соблюдать разумный компромисс между желаемой точностью воспроизведения сигнала и размерами обеспечивающих ее ресурсов.


— Самофалов К.Г., Романкевич А.М., Валуйский В.Н., Каневский Ю.С., Пиневич М.М. 1.3 Дискретизация информации // Прикладная теория цифровых автоматов. — К.: Вища школа, 1987. — 375 с.

Используется в гибридных вычислительных системах и цифровых устройствах при импульсно-кодовой модуляции сигналов в системах передачи данных. При передаче изображения используют для преобразования непрерывного аналогового сигнала в дискретный или дискретно-непрерывный сигнал.

Обратный процесс называется восстановлением. При дискретизации только по времени, непрерывный аналоговый сигнал заменяется последовательностью отсчётов, величина которых может быть равна значению сигнала в данный момент времени. Возможность точного воспроизведения такого представления зависит от интервала времени между отсчётами

Согласно теореме Котельникова:

Делаем Карту слов лучше вместе

Привет! Меня зовут Лампобот, я компьютерная программа, которая помогает делать Карту слов. Я отлично умею считать, но пока плохо понимаю, как устроен ваш мир. Помоги мне разобраться!

Спасибо! Я обязательно научусь отличать широко распространённые слова от узкоспециальных.

Насколько понятно значение слова щипковый (прилагательное):

В общем случае период времени от одной выборки до следующей может различаться для каждой пары соседних выборок, но обычно при обработке сигнала, выборки следуют через фиксированный и постоянный промежуток времени. Этот промежуток в таком случае называют периодом дискретизации или интервалом выборок и обычно обозначается буквой T . Величину обратную периоду дискретизации F s = 1 / T =1/T> называют частотой выборок или частотой дискретизации [1] .

Примерами аналогового сигнала могут служить аудио- или видеосигналы, сигналы различных измерительных датчиков и др. Для последующей цифровой обработки аналоговые непрерывные сигналы обязательно предварительно подвергаются дискретизации и квантованию по уровню с помощью аналого-цифровых преобразователей.

Обратный процесс получения непрерывного аналогового сигнала, заданного дискретной совокупностью его выборок, называется восстановлением. Восстановление производится цифро-аналоговыми преобразователями.

Дискретизация – переход от непрерывного сигнала к близкому (в определенном смысле) дискретному сигналу, описываемому разрывной функцией времени. Пример дискретного сигнала – последовательность коротких импульсов с изменяющейся амплитудой (последняя выступает в данном случае в качестве информативного параметра).

Обработка и передача дискретной информации имеет ряд преимуществ по сравнению с информацией, заданной в непрерывном виде. Дискретные сигналы в меньшей степени подвержены искажениям в процессе передачи и хранения, они легко преобразуются в двоичный цифровой код и обрабатываются с помощью цифровых вычислительных устройств.

Процесс дискретизации состоит обычно из двух этапов: дискретизации по времени и дискретизации (квантования) по уровню.

Дискретизация аналогового сигнала по времени – процесс формирования выборки аналогового сигнала в моменты времени, кратные периоду дискретизирующей последовательности ∆t.

Дискретизирующая последовательность – периодическая последовательность отсчетов времени, задающая сетку дискретного времени.

Период дискретизации ∆t – интервал времени между двумя последовательными отсчетами аналогового сигнала (шаг дискретизации по времени).

При выборе частоты дискретизации по времени можно воспользоваться теоремой В.А. Котельникова.

Теорема отсчетов (теорема Котельникова) – теорема, определяющая выбор периода дискретизации ∆t аналогового сигнала в соответствии с его спектральной характеристикой.

Согласно теореме, всякий непрерывный сигнал, имеющий ограниченный частотный спектр, полностью определяется своими дискретными значениями в моменты отсчета, отстоящие друг от друга на интервалы времени ∆t = l/(2Fmax), где Fmax – максимальная частота в спектре сигнала. Иначе, дискретизация по времени не связана с потерей информации, если частота дискретизации f дискр = 1/∆t в два раза выше указанной верхней частоты сигнала Fmax.

Согласно теореме Котельникова, нет необходимости передавать бесконечное множество всех значений непрерывного сигнала x(t), достаточно передавать лишь те его значения (рис. 3.52), которые отстоят друг от друга на расстоянии ∆t = l/(2Fmax). Для восстановления сигнала x(t) на вход идеального фильтра низких частот, имеющего полосу пропускания частот от 0 до Fmsx, необходимо подать последовательность узких импульсов с амплитудой, соответствующей дискретным отсчетам сигнала x(ti) в моменты времени ti = it.


Рис. 3.52. Дискретные отсчеты сигнала

Поскольку теорема отсчетов (теорема Котельникова) сформулирована для сигнала с ограниченным спектром, а реальные сигналы имеют неограниченную спектральную плотность, то при расчетах ∆t =1/(2Fmax) используют приближенное значение Fmax (например, активную ширину спектра, определенную по амплитудному критерию, по критерию 90%-ного содержания энергии или средней мощности сигнала). Кроме того, и идеальный фильтр низких частот, необходимый для восстановления сигнала в соответствии с теоремой, является физически нереализуемым, так как предъявляемые к нему требования (идеально прямоугольная форма амплитудно-частотной характеристики, отсутствие фазового сдвига в рассматриваемой полосе частот от 0 до Fmax) оказываются противоречивыми и могут выполняться лишь с определенной погрешностью. Учитывая сказанное, частоту дискретизации по времени обычно принимают в 1,5–2,5 раза больше значения, рассчитанного по теореме Котельникова.

Более полно учитывая свойства реальных сигналов (конечная длительность, неограниченность спектра), критерий Железнова тем не менее исходит из допущения о равенстве нулю корреляционной функции сигнала Кх(φ) вне интервала [-φ0; φ0], что на практике выполняется с определенной погрешностью.

В тех случаях, когда имеется более подробная информация о законе изменения сигнала, выбор частоты дискретизации можно осуществлять исходя из допустимой погрешности аппроксимации функции x(t) на каждом из интервалов дискретизации. На рис. 3.53 дан пример кусочно-линейной аппроксимации, когда соседние отсчеты функции x(t), взятые в дискретные моменты времени ti и ti+1, соединяются отрезками прямых.


Рис. 3.53. Кусочно-линейная аппроксимация

Дискретизация сигнала по уровню – процесс отображения бесконечного множества значений аналогового сигнала на некоторое конечное множество (определяемое числом уровней квантования).

Отличительной особенностью дискретизации по уровню является замена непрерывной шкалы уровней сигнала x(t) дискретной шкалой хi (i = 1, 2, . m), в которой различные значения сигнала отличаются между собой не менее чем на некоторое фиксированное (или выбираемое в процессе квантования) значение ∆t, называемое шагом квантования.

Шаг квантования – величина, равная интервалу между двумя соседними уровнями кванто-вания (определена только для случая равномерного квантования).

Необходимость квантования вызвана тем, что цифровые вычислительные устройства могут оперировать только с числами, имеющими конечное число разрядов. Таким образом, квантование представляет собой округление передаваемых значений с заданной точностью. При равномерном квантовании (∆x=const) число разрешенных дискретных уровней х составляет

m = (xmax – xmin)/∆x,

где xmax и xmin – соответственно верхняя и нижняя границы диапазона изменения сигнала.

Ошибка квантования – величина, определяемая как ξ(х) = ххдi, где х – кодируемая дискретная величина, хдi– дискретизированный сигнал.

Шум квантования – случайная функция времени, определяемая как зависимость ошибки квантования от времени.

Чем меньше значение ∆х, тем меньше получаемая ошибка. Если в результате квантования любое из значений сигнала x(t), попавшее в интервал (хдi - ∆х/2; хдi + хдi х/2), округляется до хд, то возникающая при этом ошибка ξ(х) не превышает половины шага квантования, т.е. mах|ξ(х)|=0,5∆х. На практике шаг квантования ∆х выбирают исходя из уровня помех, в той или иной форме присутствующих при измерении, передаче и обработке реальных сигналов.

Если функция x(t) заранее неизвестна, а шаг квантования ∆х достаточно мал по сравнению с диапазоном изменения сигнала (хmax – хmin), то принято считать ошибку квантования ξ(х) случайной величиной, подчиняющейся равномерному закону распределения. Тогда, как показано на рис. 3.54, плотность вероятности f1(ξ) для случайной величины ξ, принимает значение 1/(∆х) внутри интервала (-∆х/2; +∆х/2) и равна нулю вне этого интервала.


Рис. 3.54. Равномерный закон распределения ошибки квантования

При ∆x=const относительная погрешность квантования ∆х=ξ(х)/х существенно зависит от текущего значения сигнала x(t). В связи с этим при необходимости обработки и передачи сигналов, изменяющихся в широком диапазоне, нередко используется неравномерное (нелинейное) квантование, когда шаг ∆х принимается малым для сигналов низкого уровня и увеличивается с ростом соответствующих значений сигнала (например ∆х выбирают пропорционально логарифму значения |x(t)|). Выбор шага ∆хi =хдi – хдi-1 осуществляется еще и с учетом плотности распределения случайного сигнала (для более вероятных значений сигнала шаг квантования выбирают меньшим, для менее вероятных – большим). Таким образом удается обеспечить высокую точность преобразования при ограниченном (не слишком большом) числе разрешенных дискретных уровней сигнала x(t).

– можно воспользоваться двоичным (бинарным) представлением амплитуды сигнала с m = 2, но тогда потребуется комбинация длины n = 10 (210=1024, так что некоторые комбинации здесь не использованы).

Читайте также: