Что называют значением функции кратко

Обновлено: 07.07.2024

Что такое значение функции? Как найти значение функции?

Рассмотрим значение функции в математике на примере.

Значение функции в математике

Значение функции – это значение зависимой переменной.

Часто функцию в общем виде записывают как

здесь игрек представляет значение функции.

Примеры значений функции

Простой пример значения функции:

Что такое значение в этой функции?

Значение в этой функции представлено игреком.

Как узнать, что именно игрек, а не икс и не число пять, в этой функции покажет её значение?

Значение функции есть значение зависимой переменной.

Значение функции есть значение переменной, которое получается в результате математического действия.

В нашем случае к переменной икс прибавляется 5. Значит икс есть аргумент.

Значение же игрека получается в результате данного математического действия. Игрек и будет представлять значение функции.

Значение функции – это то, чему равна функция.

Пример. Пусть дана функция:

Функцией здесь является игрек. Чтоб найти значение функции, т.е. значение игрека, нужно подставить допустимое значение аргумента x. Так и сделаем. Пусть икс равен 4, тогда


Мы знаем, как соответствовать определенным чертам: быть вежливым, опрятным, инициативным. А как быть соответствиям между числовыми множествами — узнаем в этой статье про математические функции.

О чем эта статья:

7 класс, 11 класс, ЕГЭ/ОГЭ

Понятие функции

Определение функции можно сформулировать по-разному. Рассмотрим несколько вариантов, чтобы усвоить наверняка.

1. Функция — это взаимосвязь между величинами, то есть зависимость одной переменной величины от другой.

Знакомое обозначение y = f (x) как раз и выражает идею такой зависимости одной величины от другой. Величина у зависит от величины х по определенному закону, или правилу, которое обозначается f.

Вывод: меняя х (независимую переменную, или аргумент) — меняем значение у.

2. Функция — это определенное действие над переменной.

Значит, можно взять величину х, как-то над ней поколдовать — и получить соответствующую величину у.

В технической литературе можно встретить такие определения функции для устройств, в которых на вход подается х — на выходе получается у. Схематично это выглядит так:


пример функции

3. Функция — это соответствие между двумя множествами, причем каждому элементу первого множества соответствует один элемент второго множества. Это самое популярное определение в учебниках по математике.

Например, функция у = 2х каждому действительному числу x ставит в соответствие число y, которое в два раза больше, чем х.

Область определения — множество х, то есть область допустимых значений выражения, которое записано в формуле.

Например, для функции вида


вид Функции

область определения выглядит так:

И записать это можно так: D (y): х ≠ 0.

Область значений — множество у, то есть это значения, которые может принимать функция.

Например, естественная область значений функции y = x2 — это все числа больше либо равные нулю. Можно записать вот так: Е (у): у ≥ 0.

Для примера рассмотрим соответствие между двумя множествами — человек-владелец странички в инстаграм и сама страничка, у которой есть владелец. Такое соответствие можно назвать взаимно-однозначным — у человека есть страничка, и это можно проверить. И наоборот — по аккаунту в инстаграм можно проверить, кто им владеет.

В математике тоже есть такие взаимно-однозначные функции. Например, линейная функция у = 3х +2. Каждому значению х соответствует одно и только одно значение у. И наоборот — зная у, можно сразу найти х.

Определение функции

Определение функции, области задания и множества значений. Определения, связанные с обозначением функции. Определения сложной, числовой, действительной, монотонной и многозначной функции. Определения максимума, минимума, верхней и нижней граней для ограниченных функций. Сужение и продолжение функций.

Определение функции

Функцией y = f ( x ) называется закон (правило, отображение), согласно которому, каждому элементу x множества X ставится в соответствие один и только один элемент y множества Y . Область определения функции Множество X называется областью определения функции. Область определения иногда называют
множеством определения или множеством задания функции. Множество значений функции Множество элементов y ∈ Y , которые имеют прообразы во множестве X , называется множеством значений функции, или областью значений. Аргумент функции Элемент x ∈ X называют аргументом функции или независимой переменной. Значение функции Элемент y ∈ Y называют значением функции или зависимой переменной. Характеристика функции Само отображение f называется характеристикой функции.

Характеристика f обладает тем свойством, что если два элемента и из множества определения имеют равные значения: , то .

Символ, обозначающий характеристику, может совпадать с символом элемента значения функции. То есть можно записать так: . При этом стоит помнить, что y – это элемент из множества значений функции, а – это правило, по которому для элемента x ставится в соответствие элемент y .

Сам процесс вычисления функции состоит из трех шагов. На первом шаге мы выбираем элемент x из множества X . Далее, с помощью правила , элементу x ставится в соответствие элемент множества Y . На третьем шаге этот элемент присваивается переменной y .

Частным значением функции называют значение функции при выбранном (частном) значении ее аргумента.
Графиком функции f называется множество пар .

Сложные функции

Сложная функция Пусть заданы функции и . Причем область определения функции f содержит множество значений функции g . Тогда каждому элементу t из области определения функции g соответствует элемент x , а этому x соответствует y . Такое соответствие называют сложной функцией: . Сложную функцию также называют
композицией или суперпозицией функций и иногда обозначают так: .

В математическом анализе принято считать, что если характеристика функции обозначена одной буквой или символом, то она задает одно и то же соответствие. Однако, в других дисциплинах, встречается и другой способ обозначений, согласно которому отображения с одной характеристикой, но разными аргументами, считаются различными. То есть отображения и считаются различными. Приведем пример из физики. Допустим мы рассматриваем зависимость импульса от координаты . И пусть мы имеем зависимость координаты от времени . Тогда зависимость импульса от времени является сложной функцией . Но ее, для краткости, обозначают так: . При таком подходе и – это различные функции. При одинаковых значениях аргументов они могут давать различные значения. В математике такое обозначение не принято. Если требуется сокращение, то следует ввести новую характеристику. Например . Тогда явно видно, что и – это разные функции.

Действительные функции

Область определения функции и множество ее значений могут быть любыми множествами.
Например, числовые последовательности – это функции, областью определения которых является множество натуральных чисел, а множеством значений – вещественные или комплексные числа.
Векторное произведение тоже функция, поскольку для двух векторов и имеется только одно значение вектора . Здесь областью определения является множество всех возможных пар векторов . Множеством значений является множество всех векторов.
Логическое выражение является функцией. Ее область определения – это множество действительных чисел (или любое множество, в котором определена операция сравнения с элементом “0”). Множество значений состоит из двух элементов – “истина” и “ложь”.

В математическом анализе большую роль играют числовые функции.

Числовая функция – это функция, значениями которой являются действительные или комплексные числа.
Действительная или вещественная функция – это функция, значениями которой являются действительные числа.

Максимум и минимум

Действительные числа имеют операцию сравнения. Поэтому множество значений действительной функции может быть ограниченным и иметь наибольшее и наименьшее значения.

Ограниченная сверху (снизу) функция Действительная функция называется ограниченной сверху (снизу), если существует такое число M , что для всех выполняется неравенство:
. Ограниченная функция Числовая функция называется ограниченной, если существует такое число M , что для всех :
.
Максимумом M (минимумом m ) функции f , на некотором множестве X , называют значение функции при некотором значении ее аргумента , при котором для всех ,
.

Верхняя и нижняя грани

Верхняя грань (точная верхняя граница) функции Верхней гранью или точной верхней границей действительной, ограниченной сверху функции называют наименьшее из чисел, ограничивающее область ее значений сверху. То есть это такое число s , для которого:
1) для всех ;
2) для любого , найдется такой аргумент , значение функции от которого превосходит s′ : .
Верхняя грань функции может обозначаться так:
.
Верхней гранью неограниченной сверху функции является бесконечно удаленная точка . Нижняя грань (точная нижняя граница) функции Нижней гранью или точной нижней границей действительной, ограниченной снизу функции называют наибольшее из чисел, ограничивающее область ее значений снизу. То есть это такое число i , для которого:
1) для всех ;
2) для любого , найдется такой аргумент , значение функции от которого меньше чем i′ : .
Нижняя грань функции может обозначаться так:
.
Нижней гранью неограниченной снизу функции является бесконечно удаленная точка .

Таким образом, любая действительная функция, на не пустом множестве X , имеет верхнюю и нижнюю грани. Но не всякая функция имеет максимум и минимум.

В качестве примера рассмотрим функцию , заданную на открытом интервале .
Она ограничена, на этом интервале, сверху значением 1 и снизу – значением 0 :
для всех .
Эта функция имеет верхнюю и нижнюю грани:
.
Но она не имеет максимума и минимума.

Если мы рассмотрим туже функцию на отрезке , то она на этом множестве ограничена сверху и снизу, имеет верхнюю и нижнюю грани и имеет максимум и минимум:
для всех ;
;
.

Монотонные функции

Возрастающая (убывающая) функция Пусть функция определена на некотором множестве действительных чисел X . Функция называется строго возрастающей (строго убывающей), если для всех таких что выполняется неравенство:
.
Функция называется неубывающей (невозрастающей), если для всех таких что выполняется неравенство:
. Монотонная функция Функция называется монотонной, если она неубывающая или невозрастающая.

Многозначные функции

Многозначная функция

Как следует из определения функции, каждому элементу x из области определения, ставится в соответствие только один элемент из множества значений. Но существуют такие отображения, в которых элемент x имеет несколько или бесконечное число образов.

В качестве примера рассмотрим функцию арксинус: . Она является обратной к функции синус и определяется из уравнения:
(1) .
При заданном значении независимой переменной x , принадлежащему интервалу , этому уравнению удовлетворяет бесконечно много значений y (см. рисунок).

Наложим на решения уравнения (1) ограничение. Пусть
(2) .
При таком условии, заданному значению , соответствует только одно решение уравнения (1). То есть соответствие, определяемое уравнением (1) при условии (2) является функцией.

Вместо условия (2) можно наложить любое другое условие вида:
(2.n) ,
где n – целое. В результате, для каждого значения n , мы получим свою функцию, отличную от других. Множество подобных функций является многозначной функцией. А функция, определяемая из (1) при условии (2.n) является ветвью многозначной функции.

Многозначная функция – это совокупность функций, определенных на некотором множестве.
Ветвь многозначной функции – это одна из функций, входящих в многозначную функцию.
Однозначная функция – это функция.

Сужение и продолжение функции

Выше мы указали, что если область определения функции синус, , сузить до отрезка , то полученная в результате новая функция будет строго монотонной на этом отрезке и иметь обратную функцию. Такая операция называется сужением функции. В результате ее применения получается новая функция, которая в данном примере обозначается так: .

Сужение функции Пусть функция определена на множестве X . И пусть множество M является его подмножеством: . Определим функцию так, чтобы ее областью определения было множество M . И пусть на этом множестве она принимает те же значения, что и функция :
.
Тогда функция называется сужением функции f на множество M . Сужение функции обозначают так:
, или . Продолжение функции Пусть функция определена на множестве X , а функция – на множестве M , которое является подмножеством X : . И пусть функция является сужением функции на множество M . Тогда функция называется продолжением функции g на множество X .

Выполнить операцию сужения функции на заданное множество можно только одним способом. А вот выполнить продолжение можно бесконечным числом способов. Особую роль продолжение играет в теории функций комплексного переменного. Там показывается, что если функция является аналитической (то есть имеет производную) на некотором множестве M , то существует только единственное ее аналитическое продолжение на множество X .

Использованная литература:
О.И. Бесов. Лекции по математическому анализу. Часть 1. Москва, 2004.
Л.Д. Кудрявцев. Курс математического анализа. Том 1. Москва, 2003.
С.М. Никольский. Курс математического анализа. Том 1. Москва, 1983.

Что такое функция? Часть 1. Определение функции. Числовая функция

В жизни мы часто исследуем не только сами объекты, но и отношения между ними (Петя дружит с Васей; платок лежит на столе, платок лежит под столом и т.д.). Эти отношения можно изучать. Об одном из таких отношений – соответствии между множествами – мы и поговорим на этом уроке.

Такие соответствия, если они удовлетворяют определенным условиям, называются функциями. В математике основное внимание уделяется числовым функциям, то есть соответствиям между числовыми множествами. Мы поговорим об области определения и области значений функции, какие существуют способы задания функций, рассмотрим примеры различных функций.

Читайте также: