Что изучает неорганическая химия кратко

Обновлено: 05.07.2024

Неорганическая химия описывает свойства и поведение неорганических соединений, включая металлы, минералы и металлоорганические соединения. В то время как органическая химия изучает все углеродсодержащие соединения, к неорганической относятся оставшиеся подмножества других соединений. Существуют также вещества, которые изучаются сразу обоими разделами химии, например, металлоорганические соединения, которые содержат металл или металлоид, связанный с углеродом.

Неорганическую химию можно разделить на несколько подразделов:

  • области изучения неорганических соединений, например, солей или их ионных соединений;
  • геохимия – изучение химии окружающей природной среды Земли, что имеет большое значение для понимания планеты или управления ее ресурсами;
  • добыча неорганических веществ (металлические руды) для промышленности;
  • бионеорганическая химия – изучение отдельных элементов (природные ископаемые), которые необходимы для жизни и образуют важные биологические молекулы, участвующие в биологических системах, а также понимание химии токсических веществ;
  • синтетическая химия изучает вещества, которые могут быть получены или очищены без участия природы путем синтеза на промышленных заводах или лабораториях;
  • промышленная химия – это работа с веществами в различных масштабных процессах или научно-исследовательских областях.

Где применяется неорганическая химия?

Неорганические соединения используются в качестве катализаторов, пигментов, покрытий, поверхностно-активных веществ, лекарственных препаратов, топлива и прочих продуктов, которыми мы пользуемся каждый день. Они часто имеют высокие температуры плавления и конкретные высокие или низкие электрические свойства проводимости, которые делают их полезными для определенных целей.

  • аммиак является источником азота в удобрении, а также одним из основных неорганических химических веществ, используемых в производстве нейлона, волокон, пластмасс, полиуретанов (используются в жестких химически стойких покрытиях, клее, пенах), гидразина (используется в изготовлении ракетного топлива) и взрывчатых веществ;
  • хлор используется в производстве поливинилхлорида (для изготовления труб, одежды, мебели), агрохимикатов (удобрения, инсектициды), а также фармацевтических препаратов и химических веществ для очистки воды или стерилизации;
  • диоксид титана используется в виде белого порошка при изготовлении пигмента краски, покрытий, пластика, бумаги, чернил, волокон, продуктов питания и косметики. Диоксид титана также имеет хорошие свойства сопротивления ультрафиолетовому свету, поэтому применим в производстве фотокатализаторов.

Неорганическая химия является весьма практичной научно-бытовой отраслью. Особенно для экономики страны имеет значение производство серной кислоты, которая является одной из наиболее важных элементов, используемых в качестве промышленного сырья.

Что изучают в неорганической химии?

Специалисты в области неорганической химии имеют широкий спектр областей деятельности, от добычи сырья до создания микрочипов. Их работа основана на понимании поведения и поиска аналогов неорганических элементов. Главная задача узнать, как эти материалы могут быть изменены, разделены и использованы. Работа неорганических химиков включает в себя разработку методов для восстановления металлов из отходов и анализ добытых руд на молекулярном уровне. Общий акцент делается на освоение связей между физическими свойствами и функциями.

Индивидуальный подход к ценообразованию для каждого клиента!

НЕОРГАНИ́ЧЕСКАЯ ХИ́МИЯ, нау­ка о хи­мич. эле­мен­тах и об­ра­зуе­мых ими ве­ще­ст­вах (за ис­клю­че­ни­ем ор­га­ни­че­ских), важ­ней­шая об­ласть хи­мии. Осн. за­да­чи совр. Н. х.: изу­че­ние строе­ния, свойств и хи­мич. пре­вра­ще­ний ве­ществ, взаи­мо­свя­зи их строе­ния (для твёр­дых ве­ществ, кро­ме то­го, раз­ме­ра час­тиц) со свой­ст­ва­ми и ре­ак­ци­он­ной спо­соб­но­стью, раз­ра­бот­ка ме­то­дов син­те­за и очи­ст­ки ве­ществ, об­щих ме­то­дов по­лу­че­ния не­ор­га­нич. ма­те­риа­лов.




неорганическая химия это

Что это такое

Неорганическая химия - это наука, которая рассматривает принципы строения, основные свойства и реакционную способность всех элементов таблицы Менделеева. Важную роль в неорганике играет Периодический закон, который упорядочивает систематическую классификацию веществ по изменению их массы, номера и типа.

Курс охватывает и соединения, образуемые при взаимодействии элементов таблицы (исключение составляет только область углеводородов, рассматриваемая в главах органики). Задачи по неорганической химии позволяют отработать полученные теоретические знания на практике.

неорганическая химия это

Наука в историческом аспекте

Название "неорганика" появилось в соответствии с представлением, что она охватывает часть химического знания, которая не связана с деятельностью биологических организмов.

Во избежание путаницы с номенклатурой и классификацией типов исследований обеих наук программа школьного и университетского курсов следом за общей химией предполагает изучение неорганики в качестве фундаментальной дисциплины. В научном мире сохраняется аналогичная последовательность.

Классы неорганических веществ

Химия предусматривает такую подачу материала, при которой вводные главы неорганики рассматривают Периодический закон элементов. Это классификация особого типа, которая основана на предположении, что атомные заряды ядер оказывают влияние на свойства веществ, причем данные параметры изменяются циклически. Изначально таблица строилась как отражение увеличения атомных масс элементов, но вскоре данная последовательность была отвергнута ввиду ее несостоятельности в том аспекте, в котором требуют рассмотрения данного вопроса неорганические вещества.

Химия, помимо таблицы Менделеева, предполагает наличие около сотни фигур, кластеров и диаграмм, отражающих периодичность свойств.

В настоящее время популярен сводный вариант рассмотрения такого понятия, как классы неорганической химии. В столбцах таблицы указываются элементы в зависимости от физико-химических свойств, в строках – аналогичные друг другу периоды.

Простые вещества в неорганике

Знак в таблице Менделеева и простое вещество в свободном состоянии – чаще всего разные вещи. В первом случае отражается только конкретный вид атомов, во втором – тип соединения частиц и их взаимовлияние в стабильных формах.

Химическая связь в простых веществах обуславливает их деление на семейства. Так, можно выделить две обширные разновидности групп атомов – металлы и неметаллы. Первое семейство насчитывает 96 элементов из 118 изученных.

химия классы неорганических соединений

Металлы

Металлический тип предполагает наличие одноименной связи между частицами. Взаимодействие основано на обобществлении электронов решетки, которая характеризуется ненаправленностью и ненасыщаемостью. Именно поэтому металлы хорошо проводят тепло, заряды, обладают металлическим блеском, ковкостью и пластичностью.

Условно металлы находятся слева в таблице Менделеева при проведении прямой линии от бора к астату. Элементы, близкие по расположению к этой черте, чаще всего носят пограничный характер и проявляют двойственность свойств (например, германий).

Металлы в большинстве образуют основные соединения. Степени окисления таких веществ обычно не превышают двух. В группе металличность повышается, а в периоде уменьшается. Например, радиоактивный франций проявляет более основные свойства, чем натрий, а в семействе галогенов у йода даже появляется металлический блеск.

Иначе дело обстоит в периоде – завершают подуровни инертные газы, перед которыми находятся вещества с противоположными свойствами. В горизонтальном пространстве таблицы Менделеева проявляемая реакционная способность элементов меняется от основной через амфотерную к кислотной. Металлы – хорошие восстановители (принимают электроны при образовании связей).

Неметаллы

Данный вид атомов включают в основные классы неорганической химии. Неметаллы занимают правую часть таблицы Менделеева, проявляя типично кислотные свойства. Наиболее часто данные элементы встречаются в виде соединений друг с другом (например, бораты, сульфаты, вода). В свободном молекулярном состоянии известно существование серы, кислорода и азота. Существует также несколько двухатомных газов-неметаллов – помимо двух вышеупомянутых, к ним можно отнести водород, фтор, бром, хлор и йод.

курс неорганической химии

Являются наиболее распространенными веществами на земле – особенно часто встречаются кремний, водород кислород и углерод. Иод, селен и мышьяк распространены очень мало (сюда же можно отнести радиоактивные и неустойчивые конфигурации, которые расположены в последних периодах таблицы).

В соединениях неметаллы ведут себя преимущественно как кислоты. Являются мощными окислителями за счет возможности присоединения дополнительного числа электронов для завершения уровня.

Сложные вещества в неорганике

Помимо веществ, которые представлены одной группой атомов, различают соединения, включающие несколько различных конфигураций. Такие вещества могут быть бинарными (состоящими из двух разных частиц), трех-, четырехэлементными и так далее.

Двухэлементные вещества

Особенное значение бинарности связи в молекулах придает химия. Классы неорганических соединений также рассматриваются с точки зрения образованной между атомами связи. Она может быть ионной, металлической, ковалентной (полярной или неполярной) или смешанной. Обычно такие вещества четко проявляют основные (при наличии металла), амфортерные (двойственные – особенно характерно для алюминия) или кислотные (если есть элемент со степенью окисления от +4 и выше) качества.

Трехэлементные ассоциаты

Темы неорганической химии предусматривают рассмотрение и данного вида объединения атомов. Соединения, состоящие из более чем двух групп атомов (чаще всего неорганики имеют дело с трехэлементными видами), обычно образуются при участии компонентов, значительно отличающихся друг от друга по физико-химическим параметрам.

основная неорганическая химия

Возможные виды связи – ковалентный, ионный и смешанный. Обычно трехэлементные вещества по поведению похожи на бинарные за счет того, что одна из сил межатомного взаимодействия значительно прочнее другой: слабая формируется во вторую очередь и имеет возможность диссоциировать в растворе быстрее.

Классы неорганической химии

Подавляющее большинство изучаемых в курсе неорганики веществ можно рассмотреть по простой классификации в зависимости от их состава и свойств. Так, различают гидроксиды, кислоты, оксиды и соли. Рассмотрение их взаимосвязи лучше начать со знакомства с понятием окисленных форм, в которых могут оказаться почти любые неорганические вещества. Химия таких ассоциатов рассматривается в главах об оксидах.

задачи по неорганической химии

Оксиды

Окись представляет собой соединение любого химического элемента с кислородом в степени окисленности, равной -2 (в пероксидах -1 соответственно). Образование связи происходит за счет отдачи и присоединения электронов с восстановлением О2 (когда наиболее электроотрицательным элементом является кислород).

Могут проявлять и кислотные, и амфотерные, и основные свойства в зависимости от второй группы атомов. Если это металл, в оксиде он не превышает степени окисления +2, если неметалл – от +4 и выше. В образцах с двойственной природой параметров достигается значение +3.

Кислоты в неорганике

Кислотные соединения имеют реакцию среды меньше 7 за счет содержания катионов водорода, которые могут перейти в раствор и впоследствии замениться ионом металла. По классификации являются сложными веществами. Большинство кислот можно получить путем разбавления соответствующих оксидов водой, например, при образовании серной кислоты после гидратации SO3.

неорганическая химия это

Основная неорганическая химия

Свойства данного вида соединений обусловлены наличием гидроксильного радикала ОН, который дает реакцию среды выше 7. Растворимые основания называются щелочами, они являются наиболее сильными в этом классе веществ за счет полной диссоциации (распада на ионы в жидкости). Группа ОН при образовании солей может заменяться кислотными остатками.

Неорганическая химия – это двойственная наука, которая может описать вещества с разных точек зрения. В протолитической теории основания рассматриваются в качестве акцепторов катиона водорода. Такой подход расширяет понятие об этом классе веществ, называя щелочью любое вещество, способное принять протон.

Данный вид соединений находится межу основаниями и кислотами, так как является продуктом их взаимодействия. Так, в качестве катиона выступает обычно ион металла (иногда аммония, фосфония или гидроксония), а в качестве анионного вещества – кислотный остаток. При образовании соли водород замещается другим веществом.

В зависимости от соотношения количества реагентов и их силы по отношению друг к другу рационально рассматривать несколько видов продуктов взаимодействия:

  • основные соли получаются, если гидроксильные группы замещены не полностью (такие вещества имеют щелочную реакцию среды);
  • кислые соли образуются в противоположном случае – при недостатке реагирующего основания водород частично остается в соединении;
  • самыми известными и простыми для понимания являются средние (или нормальные) образцы - они являются продуктом полной нейтрализации реагентов с образованием воды и вещества только с катионом металла или его аналогом и кислотным остатком.

Неорганическая химия – это наука, предполагающая деление каждого из классов на фрагменты, которые рассматриваются в разное время: одни – раньше, другие – позже. При более углубленном изучении различают еще 4 вида солей:

  • Двойные содержат единственный анион при наличии двух катионов. Обычно такие вещества получаются в результате сливания двух солей с одинаковым кислотным остатком, но разными металлами.
  • Смешанный тип противоположен предыдущему: его основой является один катион с двумя разными анионами.
  • Кристаллогидраты – соли, в формуле которых есть вода в кристаллизованном состоянии.
  • Комплексы – вещества, в которых катион, анион или оба из них представлены в виде кластеров с образующим элементом. Такие соли можно получить преимущественно у элементов подгруппы В.

основные классы неорганической химии

В качестве других веществ, включенных в практикум по неорганической химии, которые можно классифицировать как соли или как отдельные главы знания, можно назвать гидриды, нитриды, карбиды и интерметаллиды (соединения нескольких металлов, сплавом не являющиеся).

Итоги

Неорганическая химия – это наука, которая представляет интерес для каждого специалиста данной сферы вне зависимости от его интересов. Она включает в себя первые главы, изучаемые в школе по данному предмету. Курс неорганической химии предусматривает систематизацию больших объемов информации в соответствии с понятной и простой классификацией.

На прошлом уроке мы узнали, что такое химия, что она делится на органическую и неорганическую и начали свое мысленное путешествие в увлекательный мир химии с того, что оглянулись вокруг. А нас окружает воздух. Как я уже сказал на прошлом уроке, воздух состоит, в основном из азота (примерно 80%) и кислорода (примерно 20%). Ну и немножко примесей, например, углекислый газ.

Раз уж мы заговорили о том, что воздух имеет некоторый состав, то пришло время изучить такие термины, как чистые вещества и смести. Чисто вещество – это такое вещество, которое состоит из молекул одного вида. А смесь – это когда несколько веществ смешаны, но они не соединяются между собой химическим путем. Если бы соединялись – то это была бы уже не смесь, а новое вещество. Например, смешаем кислоту (соляную к примеру), и какую-нибудь щелочь, ну пусть едкий натр. Они между собой прореагируют, и будет уже смесь новых веществ соли (поваренной, которую мы добавляем в суп) и воды.

Но вернемся к воздуху. Как я уже сказал, он в основном состоит из азота. Формула азота

Это значит, что его молекула состоит из двух атомов азота, соединенных между собой. Но почему они соединяются между собой? Чтобы понять это, давайте разберемся, как устроен атом.

И так, что представляет собой атом? А он представляет собой ядро, расположенное в центре атома, вокруг которого вращаются электроны. При этом не следует представлять, что они прямо такие летают вокруг ядра, аки спутники вокруг Земли или планеты вокруг Солнца. На самом деле, что электроны, что протоны, что другие элементарные частицы - это такая неведомая непонятная штуковина, с очень экзотическими свойствами, которая может одновременно находиться в разных местах. Поэтому электроны как бы "размазаны" по своим орбитам. И, такие электронные орбиты в атомах получили название орбитали .

Ядро состоит из нейтронов и протонов. Нейтроны, являются нейтрально заряженными частицами, протоны - положительно заряженными частицами, а электроны отрицательно заряженными. Поэтому между последними существуют силы электромагнитного притяжения, вследствие чего электроны обычно никуда не улетают из атомов. Да, именно обычно не улетают, потому что иногда случается, что электроны все таки отрываются от своих ядер. По какой причине? Например, если к куску вещества приложить электрическое поле, которое будет вырывать электроны из атомов (пойдет электрический ток). Или какая-нибудь элементарная частица типа фотона (кусочка света) может его выбить. Но обсуждение физики выходит за рамки данных уроков, тут у нас химия. Поэтому идем дальше.

Вот как вы думаете, может ли ядро притянуть электрон из соседнего атома? Почему нет? Между ними действуют такие силы электромагнитного взаимодействия. Правда, у другого атома тоже есть ядро, которое не даст электрону улететь. Но сила притяжения то никуда не девается. Как вы думаете, что произойдет с атомами, которые будут находиться достаточно близко друг к другу? Правильно, они будут как-то взаимодействовать. С одной стороны, ядра пытаются отобрать у соседа электроны, создавая силу притяжения, с другой стороны, электроны соседних атомов будут отталкиваться друг от друга. Таким образом, атомы будут смещать на такое расстояние, что бы эти силы уравновесить. Если все атомы одинаковые, то получиться кристаллическая решетка (если это твердое вещество), либо, допустим, для газов, образуются двухатомные молекулы. Как это происходит в случае азота или кислорода.

А если атомы разные? Тогда они могут образовывать между собой разные связки, которые принято называть химическими связями . Различают следующие типа химических связей:

1 . Ковалентная неполярная связь. Она обусловлена перекрытием так называемых электронных облаков двух атомов. Я уже говорил, что электрон в атоме не находиться в одном месте, а как бы размазан по своей орбите (орбитали). Этот "размазанный" по пространству электрон и есть электронное облако. Вот таки облака частично перекрывают друг друга при ковалентной неполярной связи. Такая связь свойственна простым молекула, например, H2 - водород, O2 - кислород.

2. Ковалентная полярная связь. Это, по сути, тоже самое, что и ковалентная неполярная связь, но один из атомов немного перетягивает на себя электрон другого атома.

3. Ионная связь. В случае такой связи один из атомов теряет электрон а другой "хапает" его себе. В результате оба из них становятся ионами с разноименным зарядами, которые, как известно, притягиваются.

4. Металлическая связь. Такой связью связаны все атомы в куске металла. Ее суть состоит в том, что атомы металла не могут удержать один из электронов и легко теряют его. Поэтому свободные электроны легко циркулируют между атомами.

5. Водородная связь. Это связь, образующаяся между атомом водорода одной молекулы и сильно электроотрицательным атомом другой молекулы. Электроотрицательность - это способность атомов оттягивать на себя электроны с других атомов. Наибольшая электроотрицательно у галогенов - фтора, хлора, а так же у сильных окислителей, например, у кислорода. Суть такой связи в том, что одна молекула, содержащая сильный электроотрицательный атом, притягивает к себе атом водорода из другой молекулы.

Может возникнуть вопрос: А почему такие связи образует именно водород?

Это объясняется тем, что атомный радиус водорода очень мал. Кроме того, при смещении или полной отдаче своего единственного электрона водород приобретает сравнительно высокий положительный заряд, за счет которого водород одной молекулы взаимодействует с атомами электроотрицательных элементов, имеющих частичный отрицательный заряд, выходящий в состав других молекул (HF, H2O, NH3).

Водородную связь обычно обозначают точками или пунктирной линией, потому что она представляет собой что-то среднее между химической связью (ковалентной, ионной) и обычной молекулярной связью: гораздо слабее первой но сильнее последней.

Теперь вернемся к воздуху. Несмотря на то, что мы этим воздухом дышим, что без находящегося в нем кислорода мы не можем жить, воздух, тем не менее, неорганическое вещество. Почему? Вспомним прошлый урок , где я говорил, что органические соединения – это соединения на основе углерода, многие из которых (но не все) так или иначе относятся к живой природе. Пластмасса, кстати, а так же различные нефтепродукты – это тоже органические соединения.

Но вернемся к неорганической химии и разберем такую тему, как классификация неорганических соединений. Самый первый классификационный признак, который мы разберем – это из скольки видов атомов состоят их молекулы. По этому признаку вещества делятся на простые и сложные. Простые состоят из атомов одного вида, например, кислород, азот, а сложные – из атомов разных видов, например, поваренная соль (NaCl). Они, в свою очередь делятся на группы:

· Металлы. Это такие вещества, которые имеют ярко выраженные металлические свойства, а именно: высокая тепло- и электропроводность и характерный металлический блеск, твердость.. К металлам относятся такие вещества как железо (Fe), медь (Cu), натрий (Na), калий (K), литий (Li), серебро (Ag), золото (Au) и другие. К химическим свойствам металлов относится то, что они легко отдают свой электрон с последних орбиталей.

· Неметаллы. Это вещества, имеющие типичные неметаллические свойства: плохая электропроводность, среди неметаллов присутствуют много веществ, которые при комнатной температуре находятся в газообразном состоянии, например, кислород (O2), азот (N2). Но среди неметаллов есть и твердые вещества, например, сера (S2), кремний (Si). К химическим свойствам неметаллов относиться то, что они легче забирают себе электроны, чем отдают.

· Инертные газы. Есть целая группа химических элементов, атомы которых ни с чем не взаимодействуют и не образуют ни каких соединений. При комнатной температуре такие вещества находятся в газообразном состоянии. Это гелий (He), неон (Ne), аргон (Ar) и другие. Такие газы получили название инертных газов .

Сложные вещества так же группируются:

· Оксиды. В этих веществам один из компонентов кислород.

· Гидроксилы. Один из компонентов таких соединений - гидроксильная группа (OH - кислород + водород). Чисто такие соединения имеют щелочные свойства.

· Кислоты. Соединение водорода с кислотной группой, такие вещества очень часто бывают химически активные, вступая в реакцию со многими веществами, в том числе, даже разъедают многие металлы.

· Соли. Если в кислоте атом водорода заменить на атом металла - то получиться соль. Например, формула соляной кислоты HCl. А форума полученной на основе нее поваренной соли NaCl.

· Бинарные соединения. Это соединения двух элементов, например, сероводород H2S (ядовитый и очень вонючий газ).

· Карбонаты. Соли и эфиры угольной кислоты (H2CO3)

· Карбиды. Соединения металлов и неметаллов с углеродом.

· Цианиды. Соли синильной кислоты (HCN).

· Оксиды углерода. Их выделили в отельную группу, потому что непонятно, то ли это оксид углерода, то ли карбид кислорода. но принято все таки считать, что соединение углерода с кислородом - это именно оксид углерода.

Читайте также: