Что характеризует внутреннее трение и от чего оно зависит кратко

Обновлено: 08.07.2024

Внутренним трением (вязкостью) называется явление возникновения сил, препятствующих относительному перемещению слоев жидкости или газа. Жидкость, обладающая внутренним трением, называется вязкой.

Основной закон вязкого течения был установлен Ньютоном:

где сила внутреннего трения F – тангенциальная (касательная) сила, направленная вдоль соприкасающихся слоев и вызывающая сдвиг слоев жидкости (газа) друг относительно друга; S – площадь соприкосновения движущихся слоев; - градиент скорости, равный изменению скорости движения слоев на единицу длины dx в направлении, перпендикулярном направлению движения слоев (характеризует быстроту изменения скорости от слоя к слою) (рис. 1).

Рис. 1. Распределение скоростей слоев вдоль сечения трубы медленно текущей вязкой жидкости Рис. 2. Силы, действующие на падающий в жидкости шарик

Величина η называется коэффициентом внутреннего трения или коэффициентом динамической вязкости и характеризует сопротивление жидкости (газа) смещению ее слоев. Коэффициент вязкости η есть физическая величина, численно равная силе внутреннего трения, действующей на единицу площади S соприкасающихся слоев при градиенте скорости, равном единице:

В системе СИ единица измерения коэффициента вязкости [η] = Па·с.

Величина φ = называется текучестью.

Внутреннее трение является одним из явлений переноса. Явления переноса состоят в возникновении направленного переноса физической величины: массы (диффузия), внутренней энергии (теплопроводность) или импульса (внутреннее трение) при наличии пространственных неоднородностей этой величины в системе. Перенос физической величины происходит в направлении, обратном его градиенту, что приближает систему к равновесному состоянию (при котором средние значения всех величин, характеризующих состояние, не зависят от времени).

Внутреннее трение в жидкостях и газах обусловлено переносом импульса молекул при тепловом движении из слоя, движущегося с большей скоростью, в слой, движущийся с меньшей скоростью, что приводит к замедлению быстрее движущегося слоя и ускорению медленнее движущегося слоя. Значения коэффициента вязкости жидкостей на несколько порядков больше, чем для газов из-за существенно больших сил взаимодействия между молекулами жидкости по сравнению с газами. Коэффициент вязкости жидкостей зависит от рода жидкости и уменьшается с повышением температуры и ростом давления. Коэффициент вязкости газов увеличивается при повышении температуры пропорционально и не зависит от давления.

Коэффициент вязкости может быть определен методом падающего шарика в вязкой среде - методом Стокса. Рассмотрим падение шарика в вязкой покоящейся жидкости. На шарик массой т и радиусом r, падающий со скоростью в жидкости с вязкостью h действуют три силы: сила тяжести , выталкивающая сила , сила сопротивления (рис. 2).

Сила тяжести равна , (3)

где ρш– плотность шарика; V – объем шарика; r – радиус шарика; g – ускорение силы тяжести.

Выталкивающая сила определяется по закону Архимеда: на тело, погруженное в жидкость (газ), действует со стороны этой жидкости (газа) выталкивающая сила, равная весу вытесненной телом жидкости (газа), направленная по вертикали вверх и приложенная к центру тяжести вытесненного объема:

, (4) где mж – масса вытесненной шариком жидкости; ρж - плотность жидкости.

Сила сопротивления движению, обусловленная силами внутреннего трения между слоями жидкости, зависит от скорости движения тела, его размеров и формы. Как установил Стокс, для тел шарообразной формы, движущихся с небольшой скоростью, модуль силы сопротивления жидкости Fс пропорционален скорости движения υ, радиусу шара r и коэффициенту вязкости жидкости h:

Подчеркнём, что здесь играет роль не трение шарика о жидкость, а трение отдельных слоев жидкости друг о друга, так как при соприкосновении твёрдого тела с жидкостью к поверхности тела тотчас же прилипают молекулы жидкости. Тело обволакивается слоями жидкости и связано с ними молекулярными силами. Непосредственно прилегающий к телу слой жидкости движется вместе с телом со скоростью движения тела. Этот слой увлекает в своём движении соседние слои жидкости, которые на некоторый период времени приходят в плавное движение.

Формула Стокса применима также и к случаю падения дождевых капель в атмосфере.

Уравнение динамики для движущегося в жидкости шарика имеет вид

а в проекции на ось у: ma= P-FA -FC .

Так как силы Р и FА постоянны, а сила FС возрастает с увеличением скорости движения шарика, то с некоторого момента времени эти силы уравновесят друг друга, т. е. равнодействующая всех сил станет равной нулю: P-FA -FC = 0, и, следовательно, с этого момента времени шарик будет двигаться равномерно. Тогда

Т.к. скорость равномерного движения шарика в жидкости определяется по формуле , где t – время, за которое шарик прошел расстояние l, а радиус шарика r равен половине его диаметра D, то получим окончательное выражение для коэффициента вязкости жидкости

Экспериментальная установка состоит из стеклянного цилиндра, наполненного исследуемой жидкостью (рис. 2). На цилиндре имеются две горизонтальные кольцевые метки, расположенные друг от друга на расстоянии l. В эксперименте определяется время прохождения шариком расстояния l между этими метками.

Вя́зкость (вну́треннее тре́ние) — одно из явлений переноса, свойство текучих тел (жидкостей и газов) оказывать сопротивление перемещению одной их части относительно другой. В результате происходит рассеяние в виде тепла работы, затрачиваемой на это перемещение.

Механизм внутреннего трения в жидкостях и газах заключается в том, что хаотически движущиеся молекулы переносят импульс из одного слоя в другой, что приводит к выравниванию скоростей — это описывается введением силы трения. Вязкость твёрдых тел обладает рядом специфических особенностей и рассматривается обычно отдельно.

Различают динамическую вязкость (единицы измерения: Па·с = 10 пуаз) и кинематическую вязкость (единицы измерения: стокс, м²/с, внесистемная единица — градус Энглера). Кинематическая вязкость может быть получена как отношение динамической вязкости к плотности вещества и своим происхождением обязана классическим методам измерения вязкости, таким как измерение времени вытекания заданного объёма через калиброванное отверстие под действием силы тяжести.

Переход вещества из жидкого состояния в стеклообразное обычно связывают с достижением вязкости порядка 10 11 −10 12 Па·с

Прибор для измерения вязкости называется вискозиметром.

Содержание

Сила вязкого трения

Сила вязкого трения F пропорциональна скорости относительного движения V тел, пропорциональна площади S и обратно пропорциональна расстоянию между плоскостями h:

\vec<F></p>
<p>\propto -\frac \cdot S>

Коэффициент пропорциональности, зависящий от сорта жидкости или газа, называют коэффициентом динамической вязкости.

Качественно существенное отличие сил вязкого трения от сухого трения, кроме прочего, то, что тело при наличии только вязкого трения и сколь угодно малой внешней силы обязательно придет в движение, то есть для вязкого трения не существует трения покоя, и наоборот — под действием только вязкого трения тело, вначале двигавшееся, никогда (в рамках макроскопического приближения, пренебрегающего броуновским движением) полностью не остановится, хотя движение и будет бесконечно замедляться.

Вторая вязкость

Вторая вязкость, или объёмная вязкость — внутреннее трение при переносе импульса в направлении движения. Влияет только при учёте сжимаемости и/или при учёте неоднородности коэффициента второй вязкости по пространству.

Если динамическая (и кинематическая) вязкость характеризует деформацию чистого сдвига, то вторая вязкость характеризует деформацию объёмного сжатия.

Объёмная вязкость играет большую роль в затухании звука и ударных волн, и экспериментально определяется путём измерения этого затухания.

Вязкость газов

В кинетической теории газов коэффициент внутреннего трения вычисляется по формуле

\eta=\frac<1></p>
<p>\langle u \rangle \langle\lambda \rangle \rho
,

где — средняя скорость теплового движения молекул, − средняя длина свободного пробега. Из этого выражения в частности следует, что вязкость не очень разреженных газов практически не зависит от давления, поскольку плотность прямо пропорциональна давлению, а — обратно пропорциональна. Такой же вывод следует и для других кинетических коэффициентов для газов, например, для коэффициента теплопроводности. Однако этот вывод справедлив только до тех пор, пока разрежение газа не становится столь малым, что отношение длины свободного пробега к линейным размерам сосуда (число Кнудсена) не становится по порядку величины равным единице; в частности, это имеет место в сосудах Дьюара (термосах).

С повышением температуры вязкость большинства газов увеличивается, это объясняется увеличением средней скорости молекул газа , растущей с температурой как " width="" height="" />

Влияние температуры на вязкость газов

В отличие от жидкостей, вязкость газов увеличивается с увеличением температуры (у жидкостей она уменьшается при увеличении температуры).

Формула Сазерленда может быть использована для определения вязкости идеального газа в зависимости от температуры: [1]

 <\mu></p>
<p> = <\mu>_0 \frac  \left (\frac  \right )^.

  • μ = динамическая вязкость в (Па·с) при заданной температуре T,
  • μ0 = контрольная вязкость в (Па·с) при некоторой контрольной температуре T0,
  • T = заданная температура в Кельвинах,
  • T0 = контрольная температура в Кельвинах,
  • C = постоянная Сазерленда для того газа, вязкость которого требуется определить.

Вязкость жидкостей

Динамический коэффициент вязкости

Внутреннее трение жидкостей, как и газов, возникает при движении жидкости вследствие переноса импульса в направлении, перпендикулярном к направлению движения. Справедлив общий закон внутреннего трения — закон Ньютона:

\tau = - \eta \frac<\partial v></p>
<p><\partial n>,

 \eta = C e^<w/kT></p>
<p>

V_<M></p>
<p>Иная формула, представляющая коэффициент вязкости, была предложена Бачинским. Как показано, коэффициент вязкости определяется межмолекулярными силами, зависящими от среднего расстояния между молекулами; последнее определяется молярным объёмом вещества
. Многочисленные эксперименты показали, что между молярным объёмом и коэффициентом вязкости существует соотношение

\eta = \frac<c></p>
<p>-b>,

где с и b — константы. Это эмпирическое соотношение называется формулой Бачинского.

Динамическая вязкость жидкостей уменьшается с увеличением температуры, и растёт с увеличением давления.

Кинематическая вязкость

В технике, в частности, при расчёте гидроприводов и в триботехнике, часто приходится иметь дело с величиной

\nu = \frac<\eta></p>
<p>,

и эта величина получила название кинематической вязкости. Здесь — плотность жидкости; — динамическая вязкость (см. выше).

Кинематическая вязкость в старых источниках часто указана в сантистоксах (сСт). В СИ эта величина переводится следующим образом:

1 сСт = 1мм 2 1c = 10 −6 м 2 c

Ньютоновские и неньютоновские жидкости

Ньютоновскими называют жидкости, для которых вязкость не зависит от скорости деформации. В уравнении Навье — Стокса для ньютоновской жидкости имеет место аналогичный вышеприведённому закон вязкости (по сути, обобщение закона Ньютона, или закон Навье):

 \sigma_<ij></p>
<p> = \eta \left( \frac<\partial v_i> <\partial x_j>+ \frac<\partial v_j> <\partial x_i>\right),

\sigma_<i,j></p>
<p>где
— тензор вязких напряжений.

Среди неньютоновских жидкостей, по зависимости вязкости от скорости деформации различают псевдопластики и дилатантные жидкости. Моделью с ненулевым напряжением сдвига (действие вязкости подобно сухому трению) является модель Бингама. Если вязкость меняется с течением времени, жидкость называется тиксотропной. Для неньютоновских жидкостей методика измерения вязкости получает первостепенное значение.

С повышением температуры вязкость многих жидкостей падает. Это объясняется тем, что кинетическая энергия каждой молекулы возрастает быстрее, чем потенциальная энергия взаимодействия между ними. Поэтому все смазки всегда стараются охладить, иначе это грозит простой утечкой через узлы.

Вязкость аморфных материалов

Вязкость аморфных материалов (например, стекла или расплавов) — это термически активизируемый процесс [4] :

\eta(T)=A\cdot\exp\left(\frac<Q></p>
<p>\right),

где — энергия активации вязкости (кДж/моль), — температура (К), — универсальная газовая постоянная (8,31 Дж/моль·К) и — некоторая постоянная.

Вязкое течение в аморфных материалах характеризуется отклонением от закона Аррениуса: энергия активации вязкости изменяется от большой величины при низких температурах (в стеклообразном состоянии) на малую величину при высоких температурах (в жидкообразном состоянии). В зависимости от этого изменения аморфные материалы классифицируются либо как сильные, когда , или ломкие, когда . Ломкость аморфных материалов численно характеризуется параметром ломкости Доримуса " width="" height="" />
: сильные материалы имеют , в то время как ломкие материалы имеют .

Вязкость аморфных материалов весьма точно аппроксимируется двуэкспоненциальным уравнением:

\eta(T)=A_1\cdot T\cdot \left[1+A_2\cdot\exp\frac<B></p>
<p>\right]\cdot\left[1+C\exp\frac\right]

с постоянными , , , и , связанными с термодинамическими параметрами соединительных связей аморфных материалов.

T_g

В узких температурных интервалах недалеко от температуры стеклования это уравнение аппроксимируется формулами типа VTF или сжатыми экспонентами Кольрауша.




Если температура существенно ниже температуры стеклования , двуэкспоненциальное уравнение вязкости сводится к уравнению типа Аррениуса

\eta(T)=A_LT\cdot\exp\left(\frac<Q_H></p>
<p>\right),

с высокой энергией активации , где — энтальпия разрыва соединительных связей, то есть создания конфигуронов, а — энтальпия их движения. Это связано с тем, что при аморфные материалы находятся в стеклообразном состоянии и имеют подавляющее большинство соединительных связей неразрушенными.

T\gg T_g

При двуэкспоненциальное уравнение вязкости также сводится к уравнению типа Аррениуса

\eta(T)=A_HT\cdot\exp\left(\frac<Q_L></p>
<p>\right),

но с низкой энергией активации . Это связано с тем, что при аморфные материалы находятся в расправленном состоянии и имеют подавляющее большинство соединительных связей разрушенными, что облегчает текучесть материала.

Относительная вязкость

В технических науках часто пользуются понятием относительной вязкости, под которой понимают отношение коэффициента динамической вязкости (см. выше) раствора к коэффициенту динамической вязкости чистого растворителя:

 \mu_r = \frac<\mu></p>
<p><\mu_0>,

где μ — динамическая вязкость раствора; μ0 — динамическая вязкость растворителя.

Вязкость некоторых веществ

Для авиастроения и судостроения наиболее важно знать вязкости воздуха и воды.

Вязкость воздуха


Вязкость воздуха зависит, в основном, от температуры. При 15.0 °C вязкость воздуха составляет 1.78·10 −5 кг/(м·с), 17.8 мкПа.с или 1.78·10 −5 Па.с.. Можно найти вязкость воздуха как функцию температуры с помощью Программы расчёта вязкостей газов

Вязкость воды



Зависимость динамической вязкости воды от температуры в жидком состоянии (Liquid Water) и в виде пара (Vapor)

Динамическая вязкость воды составляет 8,90 × 10 −4 Па·с при температуре около 25 °C.
Как функция температуры T (K): (Па·с) = A × 10 B/(TC)
где A=2.414 × 10 −5 Па·с; B = 247.8 K ; и C = 140 K.

Значения вязкостей жидкой воды при разных температурах вплоть до точки кипения приведена ниже.

Динамическая вязкость разных веществ

Ниже приведены значения коэффициента динамической вязкости некоторых ньютоновских жидкостей:

Определение силы трения

Трение — это взаимодействие, которое возникает в плоскости контакта поверхностей соприкасающихся тел.
Сила трения — это величина, которая характеризует это взаимодействие по величине и направлению.

Основная особенность: сила трения приложена к обоим телам, поверхности которых соприкасаются, и направлена в сторону, противоположную мгновенной скорости движения тел друг относительно друга. Поэтому тела, свободно скользящие по какой-либо горизонтальной поверхности, в конце концов остановятся. Чтобы тело двигалось по горизонтальной поверхности без торможения, к нему надо прикладывать усилие, противоположное и хотя бы равное силе трения. В этом заключается суть силы трения.

Откуда берётся трение

Трение возникает по двум причинам:

  1. Все тела имеют шероховатости. Даже у очень хорошо отшлифованных металлов в электронный микроскоп видны неровности. Абсолютно гладкие поверхности бывают только в идеальном мире задач, в которых трением можно пренебречь. Именно упругие и неупругие деформации неровностей при контакте трущихся поверхностей формируют силу трения.
  2. Между атомами и молекулами поверхностей тел действуют электромагнитные силы притяжения и отталкивания. Таким образом, сила трения имеет электромагнитную природу.

Виды силы трения

В зависимости от вида трущихся поверхностей, различают сухое и вязкое трение. В свою очередь, оба подразделяются на другие виды силы трения.

  1. Сухое трение возникает в области контакта поверхностей твёрдых тел в отсутствие жидкой или газообразной прослойки. Этот вид трения может возникать даже в состоянии покоя или в результате перекатывания одного тела по другому, поэтому здесь выделяют три вида силы трения:
  • трение скольжения,
  • трение покоя,
  • трение качения.

Виды силы трения

  1. Вязкое трение возникает при движении твёрдого тела в жидкости или газе. Оно препятствует движению лодки, которая скользит по реке, или воздействует на летящий самолёт со стороны воздуха. Интересная особенность вязкого трения в том, что отсутствует трение покоя. Попробуйте сдвинуть пальцем лежащий на земле деревянный брус и проделайте тот же эксперимент, опустив брус на воду. Чтобы сдвинуть брус с места в воде, будет достаточно сколь угодно малой силы. Однако по мере роста скорости силы вязкого трения сильно увеличиваются.

Сила трения покоя

Рассмотрим силу трения покоя подробнее.

Сила трения покоя

Обычная ситуация: на кухне имеется холодильник, его нужно переставить на другое место.

Когда никто не пытается двигать холодильник, стоящий на горизонтальном полу, трения между ним и полом нет. Но как только его начинают толкать, коварная сила трения покоя тут же возникает и полностью компенсирует усилие. Причина её возникновения — те самые неровности соприкасающихся поверхностей, которые деформируясь, препятствуют движению холодильника. Поднатужились, увеличили силу, приложенную к холодильнику, но он не поддался и остался на месте. Это означает, что сила трения покоя возрастает вместе с увеличением внешнего воздействия, оставаясь равной по модулю приложенной силе, ведь увеличиваются деформации неровностей.

Пока силы равны, холодильник остаётся на месте:


Сила трения, которая действует между поверхностями покоящихся тел и препятствует возникновению движения, называется силой трения покоя


Сила трения скольжения

Что же делать с холодильником и можно ли победить силу трения покоя? Не будет же она расти до бесконечности?

Зовём на помощь друга, и вдвоём уже удаётся передвинуть холодильник. Получается, чтобы тело двигалось, нужно приложить силу, большую, чем самая большая сила трения покоя:


Теперь на движущийся холодильник действует сила трения скольжения. Она возникает при относительном движении контактирующих твёрдых тел.

Итак, сила трения покоя может меняться от нуля до некоторого максимального значения — Fтр. пок. макс И если приложенная сила больше, чем Fтр. пок. макс, то у холодильника появляется шанс сдвинуться с места.

Теперь, после начала движения, можно прекратить наращивать усилие и ещё одного друга можно не звать. Чтобы холодильник продолжал двигаться равномерно, достаточно прикладывать силу, равную силе трения скольжения:


Сила трения скольжения

Как рассчитать и измерить силу трения

Чтобы понять, как измеряется сила трения, нужно понять, какие факторы влияют на величину силы трения. Почему так трудно двигать холодильник?

Самое очевидное — его масса играет первостепенную роль. Можно вытащить из него все продукты и тем самым уменьшить его массу, и, следовательно, силу давления холодильника на опору (пол). Пустой холодильник сдвинуть с места гораздо легче!
Следовательно, чем меньше сила нормального давления тела на поверхность опоры, тем меньше и сила трения. Опора действует на тело с точно такой же силой, что и тело на опору, только направленной в противоположную сторону.

Сила реакции опоры обозначается N. Можно сделать вывод


Второй фактор, влияющий на величину силы трения, — материал и степень обработки соприкасающихся поверхностей. Так, двигать холодильник по бетонному полу гораздо тяжелее, чем по ламинату. Зависимость силы трения от рода и качества обработки материала обеих соприкасающихся поверхностей выражают через коэффициент трения.


Он чаще всего попадает в интервал от нуля до единицы, не имеет размерности и определяется экспериментально.

Можно предположить, что сила трения зависит также от площади соприкасающихся поверхностей. Однако, положив холодильник набок, мы не облегчим себе задачу.

Ещё Леонардо да Винчи экспериментально доказал, что сила трения не зависит от площади соприкасающихся поверхностей при прочих равных условиях.

Сила трения скольжения, возникающая при контакте твёрдого тела с поверхностью другого твёрдого тела прямо пропорциональна силе нормального давления и не зависит от площади контакта.

Этот факт отражён в законе Амонтона-Кулона, который можно записать формулой:


где μ — коэффициент трения, N — сила нормальной реакции опоры.

Для тела, движущегося по горизонтальной поверхности, сила реакции опоры по модулю равна весу тела:


Сила трения качения

Сила трения качения

Ещё древние строители заметили, что если тяжёлый предмет водрузить на колёсики, то сдвинуть с места и затем катить его будет гораздо легче, чем тянуть волоком. Вот бы пригодилась эта древняя мудрость, когда мы тянули холодильник! Однако всё равно нужно толкать или тянуть тело, чтобы оно не остановилось. Значит, на него действует сила трения качения. Это сила сопротивления движению при перекатывании одного тела по поверхности другого.

Причина трения качения — деформация катка и опорной поверхности. Сила трения качения может быть в сотни раз меньше силы трения скольжения при той же силе давления на поверхность. Примерами уменьшения силы трения за счёт подмены трения скольжения на трение качения служат такие приспособления, как подшипники, колёсики у чемоданов и сумок, ролики на прокатных станах.

Направление силы трения

Сила трения скольжения всегда направлена противоположно скорости относительного движения соприкасающихся тел. Важно помнить, что на каждое из соприкасающихся тел действует своя сила трения.

Направление силы трения

Бывают ситуации, когда сила трения не препятствует движению, а совсем наоборот.

Представьте, что на ленте транспортёра лежит чемодан. Лента трогается с места, и чемодан движется вместе с ней. Сила трения между лентой и чемоданом оказалась достаточной, чтобы преодолеть инерцию чемодана, и эти тела движутся как одно целое. На чемодан действует сила трения покоя, возникающая при взаимодействии соприкасающихся поверхностей, которая направлена по ходу движения ленты транспортёра.

Сила трения покоя

Если бы лента была абсолютно гладкой, то чемодан начал бы скользить по ней, стремясь сохранить своё состояние покоя. Напомним, что это явление называется инерцией.

Направление силы трения

Сила трения покоя, помогающая нам ходить и бегать, также направлена не против движения, а вперёд по ходу перемещения. При повороте же автомобиля сила трения покоя и вовсе направлена к центру окружности.

Для того чтобы понять, как направлена сила трения покоя, нужно предположить, в каком направлении стало бы двигаться тело, будь поверхность идеально гладкой. Сила трения покоя в этом случае будет направлена как раз в противоположную сторону. Пример, лестница у стены.

Подведём итоги

  1. Сила трения покоя меняется от нуля до максимального значения 0


Ответ задачи зависит от того, сдвинется ли брусок под действием внешнего воздействия. Поэтому вначале узнаем значение силы, которую нужно приложить к бруску для скольжения. Это будет максимально возможная сила трения покоя, определяющаяся по формуле Fтр. = μ ⋅ N , где N = mg (при условии горизонтальной поверхности). Подставляя значения, получаем, что Fтр. = 35 Н. Данное значение больше прикладываемой силы, следовательно брусок не сдвинется с места. Тогда сила трения покоя будет равна внешней силе: Fтр. = F = 25 H .

Записали!
Скоро с вами свяжется консультант, расскажет об обучении в нашей онлайн-школе.
Проверьте вашу электронную почту — там письмо о том, что стоит сделать перед консультацией.

Записали!
Скоро с вами свяжется консультант, расскажет об обучении в нашей онлайн-школе.
Проверьте вашу электронную почту — там письмо о том, что стоит сделать перед консультацией.

Записали!
Скоро с вами свяжется консультант, расскажет об обучении в нашей онлайн-школе.
Проверьте вашу электронную почту — там письмо о том, что стоит сделать перед консультацией.


У нас вы сможете учиться в удобном темпе, делать упор на любимые предметы и общаться со сверстниками по всему миру.

Явление внутреннего трения (вязкости) связано с возникновением сил трения между двумя слоями газа или жидкости, перемещающимися параллельно друг относительно друга с различными скоростями. Причиной вязкости является перенос молекулами импульса из одного слоя газа в другой (поперек направления движения слоев) (рис.1).

Рис. 1

В потоке газа молекулы участвуют в двух движениях одновременно: тепловом (хаотическом) со средней скоростью $\left\langle \overrightarrow\right\rangle $ и упорядоченном со скоростью потока $\overrightarrow$. Скорость теплового движения гораздо больше, чем скорость потока.

В результате теплового движения молекулы перелетают из одного слоя вещества в другой, переносят при этом свой импульс. В неподвижном газе средний импульс молекулы равен 0. Молекула в потоке газа обладает отличным от нуля импульсом. В результате обмена молекулами импульс упорядоченного движения быстрее движущегося слоя уменьшается, а другого наоборот. Слой вещества, который движется быстрее, тормозится, а медленный ускоряется. Уравнение Ньютона для вязкости в одномерном случае $(v=v(x))$:

$dF$- сила внутреннего трения, действующая на площадку dS поверхностного слоя, $\frac$- проекция градиента скорости движения слоев на направление оси Ox, в направлении перпендикулярном к поверхности слоя, $\eta $- коэффициент вязкости. Сила трения $F_$, отнесенная к площади трущихся поверхностей равна потоку импульса упорядоченного движения частиц в перпендикулярном направлении к скорости. Используем основное уравнение для явлений переноса. В нашем случае $G=mv$, следовательно:

где $\eta =\fracn_0\left\langle v\right\rangle \left\langle \lambda \right\rangle m=\frac\rho \left\langle v\right\rangle \left\langle \lambda \right\rangle $ -- динамическая вязкость, $\rho =n_0m$ -- плотность газа. Знак $F_$ учитывает, что сила трения, действующая на более быстрые слои, направлена против скорости. Динамическая вязкость не зависит от давления и растет, в основном, пропорционально $\sqrt$. Более точные теоретические расчеты приводят к замене множителя $\frac$ на коэффициент, который зависит от характера взаимодействия молекул. Для молекул, сталкивающихся, как гладкие шары, он равен 0,499. Вообще этот коэффициент зависит о температуры.

Готовые работы на аналогичную тему

Кинематическая вязкость

Наряду с динамической вязкостью используют и кинематическую вязкость:

Согласно кинетической теории газов между коэффициентами переноса существует связь:

где $c_V$- удельная теплоемкость газа при изохорном процессе. На практике используется более точное соотношение коэффициентов переноса:

где $\alpha $- множитель, зависящий от числа степеней свободы молекулы газа. Так для одноатомной молекулы газа $\alpha =2,5$, двухатомного $\alpha =1,9$, трехатомного $\alpha =1,5-1,75.$

Задание: Определить коэффициент вязкости газа с молярной массой $\mu $ при температуре T. Эффективный диаметр молекулы газа принять равным d.

Запишем формулу для определения коэффициента вязкости:

\[\eta =\frac\rho \left\langle v\right\rangle \left\langle \lambda \right\rangle \ \left(1.1\right).\]

Плотность газа определим из уравнения Менделеева -- Клайперона:

\[pV=\frac<\mu >RT\to \rho =\frac=\frac\left(1.2\right)\] \[\left\langle v\right\rangle =\sqrt<\pi \mu >>\left(1.2\right)\] \[\left\langle \lambda \right\rangle =\frac\pi d^2n>,\ p=nkT\to \left\langle \lambda \right\rangle =\frac\pi d^2p>\left(1.3\right)\]

Подставим (1.2), (1.3) в (1.1), получим:

Ответ: Вязкости газа заданных параметров $\eta =\frac<<3\pi N>_Ad^2>\sqrt<4RT\mu >$.

Задание: Газ заполняет пространство между двумя длинными коаксиальными цилиндрами, радиусы которых R1 и R2, причем R1$

Рис. 2

C другой стороны при длине цилиндра равной l по условию задачи:

Кроме того из условия задачи имеем:

Разделим переменные в уравнении (2.4), получим:

Проинтегрируем обе части уравнения по соответствующим переменным:

Ответ: Коэффициент вязкости газа будет $\eta =\frac<4\pi w_c>\left(\frac^2>-\frac^2>\right).$

Читайте также: