Чем можно объяснить более высокую возбудимость нервных волокон по сравнению с мышцей кратко

Обновлено: 04.07.2024

При возникновении возбуждения в нерве нервно-мышечного препарата произойдет сокращение мышцы.

Что произойдет с возбудимой клеткой, если на неё подействовать веществом, блокирующим работу дыхательных ферментов?

Дыхательные ферменты участвуют в окислительных процессах, сопровождающихся образованием энергии, необходимой для работы калий-натриевого насоса, обеспечивающего поддержание градиента концентраций ионов по обе стороны мембраны. А так как функционирование возбудимой клетки связано с поляризацией её мембраны, обусловленной движением ионов по градиенту концентраций, то прекращение работы калий-натриевого насоса приведет к выравниванию концентраций ионов и прекращению их диффузии, что вызовет снижение потенциала до нуля и прекращение функции клетки

Что можно ожидать от мембранного потенциала при абсолютной непроницаемости клеточной мембраны для ионов?

Главным механизмом формирования мембранного потенциала является диффузия ионов калия из клетки в межклеточное пространство. Если бы мембрана была абсолютно непроницаема для ионов, то мембранный потенциал возникнуть не мог бы (равнялся бы нулю).

При измерении величины потенциала покоя микроэлектродным методом со временем наблюдается снижение потенциала. Чем это можно объяснить?

При микроэлектродном методе электрод вводится внутрь клетки, прокалывая мембрану. В поврежденном участке появляется отверстие, через которое происходит утечка ионов, что ведет к снижению потенциала.

Как повлияет на возникновение потенциала действия повышение концентрации ионов натрия внутри клетки?

Потенциал действия возникает благодаря движению ионов натрия в клетку по градиенту концентраций. Повышение концентрации натрия в клетке снижает этот градиент, что вызывает уменьшение или прекращение диффузии натрия, а следовательно, уменьшение потенциала действия или его отсутствие.

После воздействия на мышцу токсического препарата её возбудимость стала прогрессивно снижаться. Как это удалось установить?

Мерой возбудимости является порог раздражения. Если величина порога увеличивается, это говорит о том, что возбудимость прогрессивно снижается.

Чем можно объяснить более высокую возбудимость нервных волокон по сравнению с мышцей?

Возбудимость- это способность отвечать на раздражение процессом возбуждения, то есть возникновением потенциала действия. Потенциал действия возникает при сдвиге исходного (мембранного) потенциала к критическому уровню деполяризации, который в нервных и мышечных волокнах примерно одинаков (50 мВ), а величина мембранного потенциала - разная: в нервном волокне-70 мВ, в мышечном- (90 мВ). Следовательно, порог деполяризации (разница между исходным потенциалом и критическим уровнем) в нерве-20 мВ, в мыщце-40 мВ. Чем ниже порог деполяризации, тем выше возбудимость.

С помощью хронаксиметра определяли состояние возбудимых систем у водителей. После 12-часовой смены у большинства водителей наблюдалось удлинение хронаксии в 2 раза. О чем это свидетельствует?

Увеличение хронаксии свидетельствует о снижении возбудимости тканей в результате развития утомления.

У работников часового завода определяли функциональное состояние зрительного анализатора по пороговой силе светового раздражителя. После 3-х часов работы порог раздражителя увеличился. Что можно сказать о возбудимости фоторецепторов?

Увеличение порога свидетельствует о снижении возбудимости, что в данном случае является результатом утомления и повышения критического уровня деполяризации мембраны.

У работницы рыбокомбината, работающей в холодном цехе, периодически стали появляться резкие боли в пояснице, отдающие в ягодичную область и бедро, особенно при движении. В качестве одного из методов врач назначил физиопроцедуры с применением постоянного тока. Какой электрод надо приложить к больному месту для снятия болевого синдрома? Обоснуйте.

При кратковременном действии тока нужно прикладывать анод, т.к. под анодом возбудимость снижается (в результате гиперполяризации). При длительном действии тока - катод, т.к. в этом случае развивается катодическая депрессия (стойкая деполяризация мембраны, не достигающая критического уровня). В обоих случаях возбудимость проводников снижается, передача возбуждения в ЦНС блокируется, ощущение исчезает

При нанесении сильного раздражения мышца не сократилась. О чем это свидетельствует?

Это свидетельствует о том, что в данный момент возбудимость мышцы или полностью отсутствует, или резко понижена.

Мышца состоит из волокон, волокна из миофибрилл, а последние из миофиламентов. Какие из перечисленных структур укорачиваются во время сокращения?

На мышцу наносили частые раздражения, что привело к возникновению гладкого тетануса. Как изменится сокращение мышцы, если уменьшить частоту раздражений?

Гладкий тетанус возникает , когда новое раздражение застаёт мышцу в период укорочения. При снижении частоты раздражения мышца успеет укоротиться, и если новое раздражение застанет мышцу в период расслабления, то возникнет зубчатый тетанус, а если наносить ещё более редкие раздражения, мышца успеет укоротиться и расслабиться, тогда суммации сокращений не будет, а будет наблюдаться череда одиночных мышечных сокращений.

После воздействия на мышцу токсического вещества её возбудимость стала прогрессивно снижаться. Как это удалось установить?

Мерой возбудимости является порог раздражения. Если величина порога увеличивается, это свидетельствует о снижении возбудимости

При нанесении раздражения на мышцу меняют частоту раздражения. Как будет меняться сокращение мышцы при нанесении раздражения через 0,2 сек., 0,07 сек., 0,04 сек и через 0,01 сек.?

При нанесении раздражений через 0,2 сек. будут наблюдаться одиночные мышечные сокращения, через 0,07 сек.- зубчатый тетанус, через 0,04 сек.-гладкий тетанус(раздражения застают мышцу в период укорочения), а при частоте через 0,01 сек.- сокращений не будет, т.к. в это время мышца находится в латентном периоде сокращения, когда возбудимость нулевая.

Денервированная гладкая и поперечно-полосатая мышцы функционируют различно. Как объяснить явление?

Функция поперечно-полосатой мышцы полностью зависит от нервных влияний. При удалении нерва наступает паралич мышцы, проявляющийся в её обездвиженности, нарушении трофики. Денервированная гладкая мускулатура продолжает функционировать, так как она обладает автоматией.

Как определить изменения возбудимости изолированной мышцы в ходе её утомления, которое вызывают повторными ударами электрического тока?

Записав кривую сокращения мышцы, можно наблюдать уменьшение её амплитуды, что объясняется развитием утомления. Для решения задачи необходимо сопоставить величину возбудимости с той или иной стадией утомления. Мерой возбудимости является порог раздражения. Чтобы определить, как изменяется возбудимость мышцы, нужно измерить порог раздражения по мере развития утомления в паузах между сокращениями. По мере развития утомления возбудимость снижается, а порог раздражения повышается.

Чем можно объяснить большую силу мышц туловища по сравнению с мышцами плечевого пояса?

Сила мышцы зависит от физиологического поперечного сечения мышцы, являющегося суммой поперечных сечений входящих в неё миофибрилл, на эту величину влияет строение мышцы, т.е. расположение миофибрилл. Наиболее сильными являются мышцы с косым и перистым расположением миофибрилл, какими и являются мышцы туловища (межреберные, мышцы спины и др.)по сравнению с мышцами с продольным расположением миофибрилл (двуглавая мышца плеча).

Одна группа мышц удерживает груз на месте больший, чем другая группа мышц. Какая из групп мышц совершает большую работу?

В данном случае ни одна из групп мышц физической работы не совершает, так как при удержании груза на месте длина мышцы не меняется (изометрическое сокращение), а работа мышцы- это произведение груза на величину её укорочения.

У доярки после непрерывной работы в течение 2-х часов мышцы кистей рук не смогли расслабиться, фаланги пальцев находились в состоянии тонического сокращения. Как называется это явление? Чем оно вызвано?

Это явление называется контрактурой мышц. В данном случае в результате непрерывной работы истощаются запасы энергии АТФ в мышечных волокнах, необходимой для работы кальциевого насоса в период расслабления мышц.

При раздражении нерва нервно-мышечного препарата мышца доведена до утомления. Что произойдет, если в это время подключить прямое раздражение мышцы?

Мышца снова начнёт сокращаться, т.к. при раздражении нерва нервно-мышечного препарата утомление раньше всего наступает в синапсе

В несвежих продуктах (мясо, рыба, консервы) может содержаться микробный токсин ботулин. Он действует на нервно-мышечные синапсы подобно устранению ионов кальция. Почему отравление может оказаться смертельным?

Ионы кальция способствуют выделению медиатора в синаптическую щель. При отсутствии кальция медиатор не освобождается, и нарушается переход возбуждения с нерва на мышцу. Но прекращение работы скелетных мышц само по себе не является смертельны. Значит, дело в мышцах, обеспечивающих жизненно важные функции. Таковыми являются дыхательные мышцы. Прекращение их возбуждения приводит к остановке дыхания.

Какая из 3-х реакций может иметь место при действии кураре: 1) возникает ПКП и затем ПД; 2) ПКП есть, а ПД нет; 3) ПД есть, а ПКП нет?

Все 3 ответа не верны. Кураре блокирует холинорецепторы, поэтому не может возникнуть ПКП (потенциал концевой пластинки), а без него не будет развиваться ПД (потенциал действия)

Мышца сокращается тетанически. Как изменится ритм её сокращения, если в перфузируемый раствор ввести холинолитик?

Мышца расслабится, т.к. холинолитик блокирует передачу импульсов в холинергических синапсах

После длительной работы на морозе без перчаток у рабочего ремонтной бригады кончики пальцев ощущали только лёгкое прикосновение, а на довольно сильный укол иглой не реагировали. Как вы оцените состояние экстерорецепторов данной области? Чем характеризуется данное состояние ?

Экстерорецепторы находятся в парадоксальной фазе парабиоза, для которой характерно проявление более выраженной ответной реакции на слабый раздражитель (прикосновение), чем на сильный (укол иглой)

В эксперименте на животном вызывают два различных рефлекса. После этого животному вводят вещество, которое замедляет процесс освобождения медиатора. Время обоих рефлексов удлиняется, причем одного рефлекса значительно больше. чем другого. В чем причина этого различия?

При замедлении освобождения медиатора ВПСП достигает порогового уровня за более длительное время, что увеличивает время синаптической задержки. Чем больше синапсов в рефлекторной дуге, тем длительнее время рефлекса. В данном случае рефлексы включали разное количество синапсов, что сказалось на разном времени рефлекса.

Постсинаптическую мембрану химического синапса раздражают деполяризующим током. Возникнет ли возбуждение на постсинаптической мембране?

Возбуждения не будет, т.к. в химическом синапсе мембрана чувствительна к химическому веществу, а не к электрическом току. Возможна только пассивная деполяризация мембраны.

При ритмических раздражениях афферентного нерва ионы кальция, входящие в пресинапс при каждом возбуждении, не успевают выходить из него во время слишком коротких пауз между импульсами. К чему это приведет?

Ионы кальция способствуют освобождению медиатора из синаптических пузырьков. При накоплении ионов в пресинапсе будет выделяться повышенное количество медиатора

Тут вы можете оставить комментарий к выбранному абзацу или сообщить об ошибке.

Рефрактерный период и повышение порога возбудимости. Оценка потенциала действия

В возбудимой ткани невозможно вызвать новый потенциал действия, пока мембрана возбужденного волокна остается деполяризованной в связи с развитием предыдущего потенциала действия. Это связано с тем, что вскоре после возникновения потенциала действия натриевые каналы (или кальциевые каналы, или оба типа каналов) инактивируются, и возбуждающий сигнал любой силы, действующий на ткань в этот момент, не может открыть инактивационные ворота. Единственным условием для их повторного открытия является возврат мембранного потенциала к исходному или близкому к исходному уровню. Затем в течение небольшой доли секунды инактивационные ворота каналов открываются, и становится возможным развитие нового потенциала действия.

Период, в течение которого нельзя вызвать второй потенциал действия даже сильным стимулом, называют абсолютным рефрактерным периодом. Для крупных миелинизированных нервных волокон этот период составляет примерно 1/2500 сек. Легко рассчитать, что такое волокно может максимально передавать около 2500 имп/сек.

Кроме факторов, повышающих возбудимость нервного волокна, существуют так называемые мембраностабилизирующие факторы, способные снижать возбудимость. Например, высокая концентрация ионов кальция во внеклеточной жидкости уменьшает проницаемость мембраны для ионов натрия, снижая возбудимость. В связи с этим ионы кальция называют стабилизатором.

Местные анестетики. К наиболее важным стабилизаторам относят многие вещества, используемые в клинике в качестве местных анестетиков, в состав которых входят прокаин и тетракаин. Большинство из них действуют непосредственно на активационные ворота натриевых каналов, затрудняя их открытие, что сопровождается снижением возбудимости мембран. После снижения возбудимости до уровня, при котором отношение амплитуды потенциала действия к порогу возбуждения (называемое фактором надежности) опускается ниже 1,0, импульсы по анестезированному нерву не проходят.

Рефрактерный период и повышение порога возбудимости. Оценка потенциала действия

Катодно-лучевой осциллоскоп для регистрации быстрых потенциалов действия.

Катодный осциллограф. Ранее в этой главе мы отмечали, что изменения мембранного потенциала во время генерации потенциала действия происходят чрезвычайно быстро. Действительно, развитие большей части комплекса потенциала действия в крупных нервных волокнах занимает менее 1/1000 сек. На некоторых рисунках данной главы показан электроизмерительный прибор, регистрирующий эти изменения потенциалов. Однако ясно, что реакции любого прибора, способного регистрировать потенциалы действия, должны быть чрезвычайно быстрыми. Для практических целей единственным широко используемым прибором, способным точно реагировать на быстрые изменения мембранного потенциала, является катодно-лучевой осциллоскоп.

Кроме электронной пушки и флюоресцентной поверхности, катодно-лучевая трубка снабжена двумя парами электрически заряженных пластин. Одна пара расположена с обеих сторон от электронного луча, а другая — сверху и снизу. Соответствующие электронные усилители изменяют напряжение на этих пластинах таким образом, что электронный луч отклоняется вверх или вниз в ответ на электрические сигналы, приходящие от регистрирующих электродов. Под влиянием внутреннего электронного блока осциллоскопа луч электронов перемещается по экрану горизонтально с постоянной скоростью. При этом регистрируется кривая, которую видно на экране катодно-лучевой трубки рисунка, с временной разверткой по горизонтали и изменениями потенциалов, регистрируемых отводящими электродами, по вертикали.

На левом конце кривой виден небольшой артефакт стимула, связанный с электрическим стимулом, который используется для вызова потенциала действия, справа на кривой — сам потенциал действия.

Видео физиология возбуждения тканей (потенциал покоя, потенциал действия) - профессор, д.м.н. П.Е. Умрюхин

Редактор: Искандер Милевски. Дата обновления публикации: 18.3.2021

Физиология нервно-мышечной ткани

Известно, что под влиянием раздражителя живые клетки и ткани из состояния физиологического покоя переходят в состояние активности. Наибольшая ответная реакция среди тканей на раздражение наблюдается со стороны нервной и мышечной ткани. Основными свойствами нервной и мышечной ткани являются возбудимость, возбуждение, проводимость, рефрактерность и сократимость.

Возбудимость — это способность живой ткани отвечать на действие раздражителя изменением физиологических свойств и возникновением процесса возбуждения. Возбуждение — это активный физиологический процесс, который возникает в ткани под влиянием раздражителей и характеризуется изменением уровня обменных процессов в тканях, выделением энергии, сокращением мышечной ткани, выделением секрета, генерацией нервного импульса.

Проводимостью называют способность живой ткани проводить волны возбуждения (биопотенциалы). Рефрактерность — это временное снижение возбудимости ткани, которое возникает в результате возбуждения. Лабильность — это зависимость ткани от особенностей обменных процессов, которая может возбуждаться определенное количество раз за единицу времени.

Различают электрические, химические, механические и температурные раз- дражители, которые способны вызвать ответную реакцию со стороны возбудимых тканей. По биологическим признакам раздражители могут быть адекватными и неадекватными, а по силе — подпороговымя, пороговыми и надпороговыми.

Решающее значение для появления возбуждения принадлежит силе раздражителя (закон раздражения). Существует определенная зависимость между силой раздражения и ответной реакцией. Чем больше сила раздражителя, тем выше, до соответствующего уровня, ответная реакция со стороны возбудимой ткани.

Большое значение имеет и продолжительность действия раздражителя. Зависимость между силой раздражителя и продолжительностью его действия, необходимого для появления минимальной ответной реакции, определяется кривой силы — времени. Минимальная сила тока (напряжения), способная вызвать возбуждение, называется реобазой (отрезок ординаты (ОА). Кроме реобазы, важным параметром кривой силы является хроноксия.

Физиология нервно-мышечной ткани

Последняя отражает наименьший промежуток времени, во время которого ток, равный по силе удвоенной реобазе (отрезок абсциссы OF), вызывает в ткани возбуждение. По величине хроноксии судят о скорости появления возбуждения в ткани: чем меньше хроноксия, тем быстрее возникает возбуждение.

Приспособление возбудимой ткани к медленному нарастанию силы раздражителя получило название аккомодации. Последняя обусловлена тем, что за время нарастания силы раздражителя в ткани происходят активные изменения, которые повышают порог раздражения и препятствуют развитию возбуждения. Таким образом, скорость нарастания раздражения во времени называют градиентом раздражения.

Закон градиента раздражения — это реакция на раздражитель, которая за- висит от срочности или крутизны нарастания раздражителя за определенное время: чем выше градиент раздражения, тем сильнее (до определенных пределов) ответная реакция возбудимого объекта.

Потенциал покоя (мембранный потенциал) — это разность потенциалов между наружной поверхностью клетки и ее внутренним содержимым; он составляет около 60—90 мВ в зависимости от особенности той или иной клетки.

Потенциал действия (потенциал возбуждения) возникает при воздействии на участок нервного или мышечного волокна раздражителя достаточной силы и продолжительности. Проявлением возникшего возбуждения является быстрое колебание мембранного потенциала. При этом возбужденный участок имеет электроотрицательный заряд по отношению к невозбужденному.

В потенциале действия различают местные колебания мембранного потенциала, пик потенциала действия и следовые потенциалы — отрицательный и положительный. Пик потенциала действия представляет собой кратковременное изменение внутреннего потенциала и имеет очень быструю восходящую фазу и несколько замедленный спад.

Вслед за пиком потенциала действия регистрируются более слабые и продолжительные отрицательные, а затем положительные следовые потенциалы. Продолжительность потенциала действия в нервных и мышечных волокнах составляет 0,1—5,0 мс. В развитии потенциала покоя и потенциала действия роль играет система проникающих каналов для ионов Na+, К+, С1-, Са2+. В нервной мембране присутствуют специфические натриевые, калиевые, хлорные и кальциевые каналы, которые пропускают только вышеназванные ионы.

Физиология нервно-мышечной ткани

Эти каналы обладают воротными механизмами и могут быть открытыми и закрытыми. Определение состояния ионных каналов мембраны очень важно для образования потенциала покоя, где ведущая роль принадлежит неравномерному распределению ионов калия. В образовании потенциала действия основную роль играют ионы натрия. Проведение возбуждения — специализированная функция нервных волокон.

Скорость возбуждения по ним зависит в основном от диаметра и гистологических особенностей строения нервных волокон. Чем больше диаметр нервного волокна, тем выше в нем скорость распространения возбуждения. Например, по нервному волокну диаметром 12— 22 мкм скорость распространения возбуждения составляет 70—120 м/с, а по нервному волокну диаметром 8—12 мкм — только 40—70 м/с.

По гистологическому строению нервные волокна делят на миелиновые и безмиелиновые. Миелиновое волокно состоит из осевого цилиндра и покрывающей его миелиновой, или шванновской, оболочкой. В ее состав входят жировидные вещества, которые обладают высоким удельным сопротивлением и выполняют изолирующую роль. Через равные промежутки миелиновая оболочка прерывается и оставляет открытые участки осевого цилиндра шириной около 1 мкм (перехват Ранвье).

Поверхность осевого цилиндра представлена плазматической мембраной, а его содержимое — аксоплазмой. Безмиелиновые волокна не имеют миелиновой оболочки, а покрыты только шванновскими клетками. Пространство между шванновскими клетками и осевым цилиндром заполнено межклеточной жидкостью, что дает возможность поверхностной мембране осевого цилиндра сообщаться с окружающей нервное волокно средой.

Передача возбуждения по миелиновым и безмиелиновым волокнам имеет свои особенности. Так, передача потенциала действия по миелиновому волокну происходит скачкообразно от одного перехвата Ранвье к другому, что дает возможность возбуждению распространяться без угасания.

Скорость распространения по миелиновым волокнам значительно выше, чем по безмиелиновым. Если скорость возбуждения по двигательным нервным волокнам (покрытым миелиновой оболочкой) составляет 80—120 м/с, то по волокнам, которые не имеют миелиновых волокон, — только 0,5—2,0 м/с. Распространение возбуждения по нервному волокну при нанесении возбуждения подчиняется соответствующим законам.

Закон физиологической целостности — проведение возбуждения по нерв- ному волокну возможно только в том случае, если сохраняется не только его ана- томическая, но и физиологическая целостность (непрерывность).

Закон двухстороннего проведения возбуждения — передача возбуждения происходит в двух направлениях — центростремительном и центробежном.

Закон изолированного проведения возбуждения — при нанесении раздражения возбуждение проводится только по одному нервному волокну и не охватывает соседние волокна, что обусловливает строгую координацию рефлекторной деятельности. Нервные волокна мало устают. Это объясняется низкими энергетическими затратами и быстрыми восстановительными процессами.

Синапс — это специализированная структура, которая обеспечивает переда- чу нервного импульса из нервного волокна на эффекторную клетку — мышечное волокно, нейрон или секреторную клетку.

Синапсы классифицируют по анатомо-гистологическому принципу (нейро- секреторные, нервно-мышечные, межнейронные); нейрохимическому принципу (адренергические — медиатор норадреналин и холинергические — медиатор ацетилхолин); функциональному (возбуждающие и тормозные). Нервно-мышечный синапс состоит из трех основных структур: пресинаптической мембраны, синаптической щели и постсинаптической мембраны.

Физиология нервно-мышечной ткани

Пресинаптическая мембрана покрывает нервное окончание, а постсинаптическая — эффекторную клетку. Между ними находится синаптическая щель. Постсинаптическая мембрана отличается от пресинаптической тем, что имеет белковые хеморецепторы, чувствительные не только к медиаторам, гормонам, но и к лекарственным и токсическим веществам. Строение нервно-мышечного синапса обусловливает его физиологические свойства:

  • односторонее проведение возбуждения (от пре- к постсинаптической мембране) при наличии чувствительных к медиатору рецепторов только в постсинаптической мембране;
  • синаптическая задержка проведения возбуждения, связанная с малой скоростью диффузии медиатора в сравнении со скоростью нервного импульса;
  • низкая лабильность и высокая усталость синапса;
  • высокая избирательная чувствительность синапса к химическим веществам.

Передача возбуждения в синапсе представляет собой сложный физиологический процесс, который проходит несколько стадий:

  • синтез медиатора;
  • секреция медиатора;
  • взаимодействие медиатора с рецепторами постсинаптической мембраны;
  • инактивация (полная утрата активности) медиатора.

Известно, что некоторые химические вещества, в том числе и лекарственные, могут существенно влиять на возбуждение в синапсе. Это явление нашло применение в клинической практике.

Нейромоторная единица — это анатомическая и функциональная единица скелетных мышц, которая состоит из аксона (длинного отростка мотонейрона спинного мозга) и иннервируемых им определенного количества мышечных волокон. В состав нейромоторной единицы может входить разное количество мышечных волокон (от единиц до нескольких тысяч), которое зависит от специализации мышцы. Двигательная единица работает как единое целое. Импульсы, выработанные мотонейроном, приводят в действие все образующие ее мышечные волокна.

Основной функцией скелетных мышц является сокращение, которое выражено различными движениями человека. Скелетные мышцы выполняют также рецепторную, обменную и терморегулирующую функции. Они образуются большим количеством многоядерных мышечных волокон.

Сократительной частью мышечного волокна являются длинные мышечные нити — миофибриллы, которые про- ходят внутри волокна от одного конца к другому и имеют поперечную очерченность. Последняя образована чередованием темных (анизотропных) А-дисков и светлых (изотропных) 1-дисков. Через середину 1-диска проходит Z- линия; две соседние Z-линии ограничивают саркомер, структурно-фунциональную единицу. При электронной микроскопии волокон видно, что в составе А-диска есть более светлый участок (Н-зона), а в центре этот диск пересекает темная поло- са — М-линия.

Темный диск образован толстыми нитями белка миозина, а свет- лый 1-диск — тонкими нитями белка актина. В мышечном волокне содержатся также фибриллярный палочковидный белок — тропомиозин и глобулярный белок — тропонин. Механизм сокращения состоит в перемещении (перетягивании) тонких нитей вдоль толстых к центру саркомера за счет поперечных актиномиозино- вых мостиков. Основным источником энергии, необходимой для мышечного со- кращения, служат аденозинтрифосфорная кислота (АТФ) и присутствие ионов Са2+ и Mg2+ .

Преобразование химической энергии в механическую происходит в мышце как без кислорода, так и с его участием. Анаэробная (бескислородная) фаза характеризуется рядом последовательных реакций, которые приводят к распаду АТФ и креатинфосфата, и их восстановлением. Выделенная при этом энергия используется для сокращения мышц и восстановления (ресинтеза) этих веществ. Аэробная (кислородная) фаза химических преобразований связана с процессами окисления молочной кислоты до углекислого газа и воды. Возникшая энергия используется для дальнейшего преобразования остатков молочной кислоты в глюкозу, а затем в гликоген.

Деятельность скелетной мускулатуры регулируется ЦНС — корой головно- го мозга, через чувствительные, двигательные и симпатические нервные волокна. Скелетные мышцы обладают следующими физиологическими свойствами: возбудимостью, проводимостью, рефрактерностью, лабильностью и сокращением. Возбудимость, скорость распространения возбуждения, лабильность мышечной ткани ниже, чем в нервной, а рефракторный период продолжительнее нервного.

Скелетные мышцы могут выполнять работу в режиме изотонического, изометрического и ауксото-ничного сокращения. При первом сокращении в основном происходит укорочение мышечного волокна, но напряжение остается постоянным, а при втором — длина мышечных волокон остается неизменной, но изменяются длина и напряжение. Характер сокращения скелетных мышц зависит от частоты раздражения (частоты поступления нервных импульсов).

Раздражение одиночным импульсом ведет к одиночному мышечному со- кращению, а следующих один за другим нервных импульсов — к тетаническому сокращению, или тетанусу.

Физиологические свойства гладких мышц связаны с особенностью их строения, уровнем обменных процессов и значительно отличаются от особенностей скелетных мышц. Гладкие мышцы менее возбудимы, чем поперечнополосатые. Сокращение гладкой мускулатуры происходит медленнее и продолжительнее. Рефракторный период у гладких мышц более удлиненный, чем у скелетных (до нескольких секунд).

Характерная особенность гладких мышц — их способность к автоматической деятельности, которая обеспечивается нервными элементами. Гладкие мышцы иннервируются симпатическими и парасимпатическими вегетативными нервами, обладают высокой чувствительностью к некоторым биологически активным веществам (ацетилхолин, адреналин, норадреналин, серотонин и др.).

Читайте также: