Таблица косинусов и синусов для школы

Обновлено: 05.07.2024

Таблица Брадиса - это таблица, помогающая при вычислениях в решении задач как в школе (на математике, алгебре, геометрии и физике в старших классах), так и в вузах.

Таблица Брадиса - это таблица, помогающая при вычислениях в решении задач как в школе (на математике, алгебре, геометрии и физике в старших классах), так и в вузах.

Здесь четырехзначные математические онлайн таблицы для таких тригонометрических функций как: синусы, косинусы, кроме того вы на нашем сайте вы сможете найти подобные таблицы для тангенсов и котангенсов.

Как пользоваться таблицей Брадиса.

На некоторых примерах рассмотрим, как пользоваться таблицей Брадиса.

sin 7° = 0.1219 (косинусы находятся внизу) cos 82° = 0.1392.

sin 3°42′ = 0.0645 (ниже на изображении отмечено красным) cos 80°24′ = 0.1668.

Обратите внимание, все тоже самое верно и при определении значений тангенса и котангенса.

Далее рассмотрим вариант посложнее, когда угол, который представлен в таблице не указан, значит, нужно выбирать более близкое к нему значение (из значений, которые указаны в таблице синусов и косинусов), а на разницу, которая может составлять 1′,2′,3′, берем поправку из минут (желтая графа), как видно на примере:

sin 3°45′=sin 3°42′+3′=0.0645+0.0009=0.0654 либо

sin 3°45′=sin 3°48′−3′=0.0663−0.0009=0.0654

Кроме того, нужно помнить правило: для синуса у поправки неотрицательный знак, а у косинуса неположительный.

В статье, мы полностью разберемся, как выглядит таблица тригонометрических значений, синуса, косинуса, тангенса и котангенса . Рассмотрим основное значение тригонометрических функций, от угла в 0,30,45,60,90. 360 градусов. И посмотрим как пользоваться данными таблицами в вычислении значения тригонометрических функций.
Первой рассмотрим таблицу косинуса, синуса, тангенса и котангенса от угла в 0, 30, 45, 60, 90. градусов. Определение данных величин дают определить значение функций углов в 0 и 90 градусов:

sin 0 0 =0, cos 0 0 = 1. tg 0 0 = 0, котангенс от 0 0 будет неопределенным
sin 90 0 = 1, cos 90 0 =0, ctg90 0 = 0,тангенс от 90 0 будет неопределенным

Если взять прямоугольные треугольники углы которых от 30 до 90 градусов. Получим:

sin 30 0 = 1/2, cos 30 0 = √3/2, tg 30 0 = √3/3, ctg 30 0 = √3
sin 45 0 = √2/2, cos 45 0 = √2/2, tg 45 0 = 1, ctg 45 0 = 1
sin 60 0 = √3/2, cos 60 0 = 1/2, tg 60 0 =√3 , ctg 60 0 = √3/3

Изобразим все полученные значения в виде тригонометрической таблицы:

Таблица синусов, косинусов, тангенсов и котангенсов!

тригонометрия - таблица синусов, косинусов, тангенсов и котангенсов основных углов

Если использовать формулу приведения, наша таблица увеличится, добавятся значения для углов до 360 градусов. Выглядеть она будет как:

таблица тригонометрических функций 360 градусов

Так же исходя из свойств периодичности таблицу можно увеличить, если заменим углы на 0 0 +360 0 *z . 330 0 +360 0 *z, в котором z является целым числом. В данной таблице возможно вычислить значение всех углов, соответствующими точками в единой окружности.

расширенная таблица косинусов, синусов, котантенсов и тангенсов

Разберем наглядно как использовать таблицу в решении.
Все очень прост. Так как нужное нам значение лежит в точке пересечения нужных нам ячеек. К примеру возьмем cos угла 60 градусов, в таблице это будет выглядеть как:

пример работы с тригонометрической таблицей

В итоговой таблице основных значений тригонометрических функций, действуем так же. Но в данной таблице возможно узнать сколько составит тангенс от угла в 1020 градусов, он = -√3 Проверим 1020 0 = 300 0 +360 0 *2. Найдем по таблице.

находим тангенс по таблице

Для более поиска тригонометрических значений углов с точностью до минут используются таблицы Брадиса. Подробная инструкция как ими пользоваться на странице по ссылке.

Таблица Брадиса. Для синуса, косинуса, тангенса и котангенса.

Таблицы Брадиса поделены на несколько частей, состоят из таблиц косинуса и синуса, тангенса и котангенса - которая поделена на две части (tg угла до 90 градусов и ctg малых углов).

Синус и косинус

Таблица Брадиса: синусы и косинусы

tg угла начиная с 0 0 заканчивая 76 0 , ctg угла начиная с 14 0 заканчивая 90 0 .

Таблица Брадиса: тангенсы - котангенсы

tg до 90 0 и ctg малых углов.

расширенная таблица тангенсов

Разберемся как пользоваться таблицами Брадиса в решении задач.

Найдем обозначение sin (обозначение в столбце с левого края) 42 минут (обозначение находится на верхней строчке). Путем пересечения ищем обозначение, оно = 0,3040.

Величины минут указаны с промежутком в шесть минут, как быть если нужное нам значение попадет именно в этот промежуток. Возьмем 44 минуты, а в таблице есть только 42. Берем за основу 42 и воспользуемся добавочными столбцами в правой стороне, берем 2 поправку и добавляем к 0,3040 + 0,0006 получаем 0,3046.

При sin 47 мин, берем за основу 48 мин и отнимаем от нее 1 поправку, т.е 0,3057 - 0,0003 = 0,3054

При вычислении cos работаем аналогично sin только за основу берем нижнюю строку таблицы. К примеру cos 20 0 = 0.9397

Значения tg угла до 90 0 и cot малого угла, верны и поправок в них нет. К примеру, найти tg 78 0 37мин = 4,967

а ctg 20 0 13мин = 25,83

Ну вот мы и рассмотрели основные тригонометрические таблицы. Надеемся это информация была для вас крайне полезной. Свои вопросы по таблицам, если они появились, обязательно пишите в комментариях!

Смотрите бесплатные видео-уроки по теме “Тригонометрия” на канале Ёжику Понятно.

Ёжику Понятно

Видео-уроки на канале Ёжику Понятно. Подпишись!

Содержание страницы:

Рассмотрим прямоугольный треугольник. Для каждого из острых углов найдем прилежащий к нему катет и противолежащий.

Тригонометрические функции в прямоугольном треугольнике

Синус угла – отношение противолежащего катета к гипотенузе.

sin α = Противолежащий катет гипотенуза

Косинус угла – отношение прилежащего катета к гипотенузе.

cos α = Прилежащий катет гипотенуза

Тангенс угла – отношение противолежащего катета к прилежащему (или отношение синуса к косинусу).

tg α = Противолежащий катет Прилежащий катет

Котангенс угла – отношение прилежащего катета к противолежащему (или отношение косинуса к синусу).

ctg α = Прилежащий катет Противолежащий катет

Рассмотрим прямоугольный треугольник A B C , угол C равен 90 °:

sin ∠ A = C B A B

cos ∠ A = A C A B

tg ∠ A = sin ∠ A cos ∠ A = C B A C

ctg ∠ A = cos ∠ A sin ∠ A = A C C B

sin ∠ B = A C A B

cos ∠ B = B C A B

tg ∠ B = sin ∠ B cos ∠ B = A C C B

ctg ∠ B = cos ∠ B sin ∠ B = C B A C

Тригонометрия на окружности – это довольно интересная абстракция в математике. Если понять основной концепт так называемого “тригонометрического круга”, то вся тригонометрия будет вам подвластна. В описании к видео есть динамическая модель тригонометрического круга.

Тригонометрический круг – это окружность единичного радиуса с центром в начале координат.

Такая окружность пересекает ось х в точках ( − 1 ; 0 ) и ( 1 ; 0 ) , ось y в точках ( 0 ; − 1 ) и ( 0 ; 1 )

На данной окружности будет три шкалы отсчета – ось x , ось y и сама окружность, на которой мы будем откладывать углы.

Углы на тригонометрической окружности откладываются от точки с координатами ( 1 ; 0 ) , – то есть от положительного направления оси x , против часовой стрелки. Пусть эта точка будет называться S (от слова start). Отметим на окружности точку A . Рассмотрим ∠ S O A , обозначим его за α . Это центральный угол, его градусная мера равна дуге, на которую он опирается, то есть ∠ S O A = α = ∪ S A .

Давайте найдем синус и косинус этого угла. До этого синус и косинус мы искали в прямоугольном треугольнике, сейчас будем делать то же самое. Для этого опустим перпендикуляры из точки A на ось x (точка B ) и на ось игрек (точка C ) .

Отрезок O B является проекцией отрезка O A на ось x , отрезок O C является проекцией отрезка O A на ось y .

Рассмотрим прямоугольный треугольник A O B :

cos α = O B O A = O B 1 = O B

sin α = A B O A = A B 1 = A B

Поскольку O C A B – прямоугольник, A B = C O .

Итак, косинус угла – координата точки A по оси x (ось абсцисс), синус угла – координата точки A по оси y (ось ординат).

Давайте рассмотрим еще один случай, когда угол α – тупой, то есть больше 90 ° :

Опускаем из точки A перпендикуляры к осям x и y . Точка B в этом случае будет иметь отрицательную координату по оси x . Косинус тупого угла отрицательный .

Можно дальше крутить точку A по окружности, расположить ее в III или даже в IV четверти, но мы пока не будем этим заниматься, поскольку в курсе 9 класса рассматриваются углы от 0 ° до 180 ° . Поэтому мы будем использовать только ту часть окружности, которая лежит над осью x . (Если вас интересует тригонометрия на полной окружности, смотрите видео на канале). Отметим на этой окружности углы 0 ° , 30 ° , 45 ° , 60 ° , 90 ° , 120 ° , 135 ° , 150 ° , 180 ° . Из каждой точки на окружности, соответствующей углу, опустим перпендикуляры на ось x и на ось y .

Координата по оси x – косинус угла , координата по оси y – синус угла .

Ещё одно замечание.

Синус тупого угла – положительная величина, а косинус – отрицательная.

Тангенс – это отношение синуса к косинусу. При делении положительной величины на отрицательную результат отрицательный. Тангенс тупого угла отрицательный .

Котангенс – отношение косинуса к синусу. При делении отрицательной величины на положительную результат отрицательный. Котангенс тупого угла отрицательный .

sin 2 α + cos 2 α = 1

Данное тождество – теорема Пифагора в прямоугольном треугольнике O A B :

A B 2 + O B 2 = O A 2

sin 2 α + cos 2 α = R 2

sin 2 α + cos 2 α = 1

Как перевести градусы в радианы, а радианы в градусы? Как и когда возникла градусная мера угла? Что такое радианы и радианная мера угла? Ищите ответы в этом видео!

Тригонометрия на окружности имеет некоторые закономерности. Если внимательно рассмотреть данный рисунок,

можно заметить, что:

sin 180 ° = sin ( 180 ° − 0 ° ) = sin 0 °

sin 150 ° = sin ( 180 ° − 30 ° ) = sin 30 °

sin 135 ° = sin ( 180 ° − 45 ° ) = sin 45 °

sin 120 ° = sin ( 180 ° − 60 ° ) = sin 60 °

cos 180 ° = cos ( 180 ° − 0 ° ) = − cos 0 °

cos 150 ° = cos ( 180 ° − 30 ° ) = − cos 30 °

cos 135 ° = cos ( 180 ° − 45 ° ) = − cos 45 °

cos 120 ° = cos ( 180 ° − 60 ° ) = − cos 60 °

Рассмотрим тупой угол β :

Для произвольного тупого угла β = 180 ° − α всегда будут справедливы следующие равенства:

sin ( 180 ° − α ) = sin α

cos ( 180 ° − α ) = − cos α

tg ( 180 ° − α ) = − tg α

ctg ( 180 ° − α ) = − ctg α

В произвольном треугольнике стороны пропорциональны синусам противолежащих углов.

a sin ∠ A = b sin ∠ B = c sin ∠ C

Отношение стороны к синусу противолежащего угла равно двум радиусам описанной вокруг данного треугольника окружности.

a sin ∠ A = b sin ∠ B = c sin ∠ C = 2 R

Квадрат стороны треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними.

Таблицы Брадиса представляют собой самый полный сборник всех значений синусов, косинусов, тангенсов, котангенсов и пр. Эти таблицы отличаются высокой точностью, которая доходит до четырех знаков после запятой, что позволяет использовать их как при решении школьных задач по алгебре, геометрии, физике, так и для вычисления сложных технических расчетов.

Правила пользования таблицами: таблицы дают значения синусов (косинусов) любого острого угла, содержащего целое число градусов и десятых долей градуса, на пересечении строки, имеющей в заголовке слева (справа) соответствующее число градусов, и столбца, имеющего в заголовке сверху (снизу) соответствующее число минут.

Тригонометрические функции sin x и cos x от аргумента в градусах




Таблица Брадиса тригонометрические функции tg x, ctg x от аргумента в градусах



Таблица Брадиса – тангенсы углов, близких к 90°, котангенсы малых углов



Тригонометрические функции от аргумента в радианах




Примеры решения задач

Задание Найти значение \sin <<46>^>3
Решение В таблице значений синусов и косинусов в первом столбце находим <<46>^>
, а в первой строке 3
. На пересечении соответствующих строки и столбца находится искомое значение, равное .
Ответ \sin <<46>^>3
Задание Найти значение \cos <<76>^>1
Решение В таблице значений синусов и косинусов в столбце углов с заголовком находим <<76>^>
, а в нижней строке 1
. На пересечении соответствующих строки и столбца находится искомое значение, равное .
Ответ \cos <<76>^>1

Если же нужно найти значение угла, которого нет в таблице, то выбирается наиболее близкое к нему значение, а на разницу берется поправочное значение из столбца поправок справа (возможная разница – 1′, 2′, 3′).

Задание Найти значение \sin <<16>^>3
Решение Для того, чтобы посчитать значение \sin <<16>^>3
в таблице найдем значение синуса угла, наиболее близкого к искомому. Это \sin <<16>^>3
. Так как <<16>^>3
, то в столбце поправок выбираем
и видим, что на пересечении со строкой <<16>^>
стоит 0,0006, то есть

\[ \sin <<16></p>
<p>^>3

Задание Найти значение \sin <<22>^>1
Решение Для того, чтобы посчитать значение \sin <<16>^>3
в таблице найдем значение синуса угла, наиболее близкого к искомому. Это \sin <<22>^>1
. Так как <<22>^>1
, то в столбце поправок выбираем
и видим, что на пересечении со строкой <<22>^>
стоит 0,0005, то есть

\[ \sin <<22></p>
<p>^>1

Замечание. Для косинусов поправка имеет отрицательный знак.

Задание Найти значение \cos <<50>^>3
Решение Для того, чтобы посчитать значение \cos <<50>^>3
в таблице найдем значение косинуса угла, наиболее близкого к искомому. Это \cos <<50>^>3
. Так как <<50>^>3
, то в столбце поправок выбираем
и видим, что на пересечении со строкой <<50>^>
стоит 0,0007, то есть

\[ \cos <<50></p>
<p>^>3

Эти правила справедливы и для нахождения значений тангенсов и котангенсов углов.

Читайте также: