Железобактерии сообщение по биологии

Обновлено: 02.07.2024

Известно значительное число микроорганизмов, прямо или косвенно участвующих в окислении железа. Некоторые из них были открыты еще в середине прошлого века, но до сих пор в виде чистых культур удалось получить лишь немногие. Поэтому сведения о биологии большинства таких форм весьма ограничены и основаны па изучении либо только природного материала, либо накопительных культур.

На основании имеющихся данных можно, однако, заключить, что многие из них являются гетеротрофами. К числу таковых принадлежат микроорганизмы, окисляющие комплексные органические соединения железа. В результате этого железо в виде гидрата окиси откладывается на поверхности клеток. Такие микроорганизмы встречаются и в водоемах, и в почве. К числу водных форм относятся Siderocapsa, Blastocaulis, Neumanniella, Ochrobium и некоторые другие. В почве в разложении гуматов железа, видимо, участвуют почкующиеся бактерии родов Hyphomicrobium, Pasteuria и Seliberia stellata. Описаны также разнообразные по морфологии микроорганизмы, которые, судя по ряду данных, могут окислять неорганические соединения железа в болотах, ручьях, железистых источниках, дренажных трубах, в озерах и других водоемах с образованием охристых осадков. Некоторые встречаются и в почве. Именно такие формы были названы железобактериями. К ним принадлежат представители нитчатых бактерий (Leptothrix, Тохоthrix, Crenothrix), а также GaUionella, Siderococcus, Methallogenium. Наиболее широко распространены нитчатые бактерии, называемые Leptothrix ochracea. По описаниям палочковидные клетки этой бактерии собраны в цепочки и окружены влагалищем, где откладывается гидрат окиси железа. Благодаря наличию жгутиков клетки способны к движению и могут покидать влагалище. Обычно встречается в ручьях, у выхода железистых источников на болотах, образуя скопления в виде ржавых пятен.

Хотя еще С. Н. Виноградский (1888) показал, что L. ochracea превращает закисное железо в окисное, способность этих бактерий к автотрофному образу жизни не доказана и все данные о биологии основаны, по существу, на исследовании природного материала. Окончательно не решено даже, является Leptothrix самостоятельным родом или это представители Sphaerotilus, гетеротрофной нитчатой бактерии, которая способна откладывать вокруг клеток окислы железа. Кроме L. ochracea, описан ряд других видов Leptothrix, но сведения о них также весьма ограничены.

Сведения о других микроорганизмах, перечисленных выше, еще более ограничены. Есть основания полагать, что в число железобактерий попало немало микроорганизмов, для которых процесс окисления железа не имеет какоголибо физиологического значения, но они могут концентрировать железо в слизи, окружающей клетки, когда в результате изменения условий оно окисляется химическим путем и переходит в нерастворимую форму. Такая способность обнаружена у многих нитчатых бактерий и сине-зеленых водорослей. Описаны также случаи отложения окислов железа на водной растительности.

Однако известны действительно хемоавтотрофные микроорганизмы, которые получают энергию в результате окисления закисного железа. Таковым является Thiobacillus ferrooxidans. Как уже указывалось выше, по своей морфологии и физиологическим свойствам этот микроорганизм, несомненно, принадлежит к к тионовым бактериям. Th. ferrooxidans в отличие от других представителей тиобацилл способен окислять соединения не только серы, но и двухвалентного железа. Клетки этой грамотрицательной бактерии имеют вид коротких палочек (0,3—0,4 X 0,7—1,7 мкм) с одним полярным жгутиком. Размножаются поперечным делением. Оптимальное значение рН для роста

Поскольку реакция сопровождается малым выходом энергии (46,2 • 103 дж/г окисленного железа), то для поддержания роста бактериям приходится окислять весьма большие количества железа. Так, при образовании 1 г сырой биомассы происходит окисление 500 г сернокислого железа. Образование Т. ferrooxidans АТФ сопряжено с функционированием электрон-транспортной дыхательной цепи, которая, как и у ряда других хемоавтотрофов, укорочена. Это связано с тем, что Fe2+ имеет весьма высокий положительный потенциал (Е'0 = 0,77 В). Полагают, что сначала железо образует с фосфатом комплексное соединение, имеющее более низкий окислительно-восстановительный потенциал (Е'0 = 0В), и лишь затем передает электрон в дыхательную цепь (рис. 141) на уровне либо убихинона, либо цитохрома. Поэтому образование восстановленного НАД Т. ferrooxidans происходит в результате действия системы обратного переноса электрона с затратой энергии.

Железобактерии

Имеющиеся данные позволяют заключить, что автотрофные и некоторые гетеротрофные микроорганизмы принимают участие в превращениях железа в природе, в частности в образовании железистых отложений, из которых формируются осадочпые железные руды в болотах, озерах и других водоемах.

Весьма существенное значение имеет также деятельность Т. ferrooxidans в месторождениях сульфидных руд. Способность Т. ferrooxidans окислять практически все известные сульфидные минералы находит практическое применение в гидрометаллургии.

Железобактерии

В заключение следует отметить, что некоторые микроорганизмы способны окислять и концентрировать вокруг себя не только железо, но и марганец (Мn+2 -> Мn+4). Таким свойством обладает ряд нитчатых бактерий, а именно: некоторые представители Leptothrix (например, L. discophora), Crenothrix polyspora, Lieskeela discophora, а также Naumannilla, Kuznezovia polymorpha, Blastocaulis, Siderocapsa и Hyphomicrobium. Известны формы, окисляющие только марганец. К числу таковых принадлежат некоторые почкующиеся бактерии из родов Hyphomicrobium и Metallogenium. Один из них, Metallogenium symbioticum, выделенный Г. А. Заварзиным, растет в симбиозе с грибом и, как установлено Г. А. Дубининой, относится к микоплазмам. К этому организму, видимо, близок Caulococcus manganifer, также окисляющий марганец. Кроме того, показано, что окислять марганец могут разные почвенные грибы и ряд бактерий таких родов, как Bacillus, Pseudomonas, Achromobacter, Flavobacterium, Corynebacterium, Sarcina, Escherichia и др.

По всем данным микробиологические процессы имеют большое значение в превращениях марганца и в почве и в разных водоемах, где нередко происходит отложение марганца и образование железомарганцевых конкреций. Однако ни для одного марганецокисляющих микроорганизмов не показана способность к росту в автотрофных условиях. И хотя предположения о возможности получения ими энергии при окислении марганца

Железобактерии

Жизнь растений: в 6-ти томах. — М.: Просвещение. Под редакцией А. Л. Тахтаджяна, главный редактор чл.-кор. АН СССР, проф. А.А. Федоров . 1974 .

ЖЕЛЕЗОБАКТЕРИИ, сборная группа микроорганизмов, способных как окислять соединения двухвалентного железа в трёхвалентное, так и осаждать на поверхности и внутри клеток гидроксиды железа. Относятся к хемосинтезирующим бактериям. Посреди железобактерий имеются как автотрофы (галлионелла, некие тиобациллы), так и гетеротрофы (некие бактерии рода лепто-трикс, магнитные бактерии). Галлионеллы подвижные бактерии (имеют по одному полярному жгутику) бобовидной формы, на вогнутой стороне которых образуются нити гидроокислов железа; обитают в минеральных железосодержащих источниках, дренажных трубах, неких озёрах, меднорудных отвалах и др. Тиобациллы подвижные палочковидные бактерии; встречаются в кислых серных источниках, неких озёрах, в дренажных водах угольных шахт и др. Употребляются в бактериально-хим выщелачивании ряда металлов из бедных руд в целях увеличения добычи (напр., для получения меди и урана). Отрицательное деяние усиление коррозии трубопроводов и металлического оборудования в шахтах, разрушение каменных строений и железобетонных сооружений.

Гетеротрофные железобактерии распространены в водоёмах с нейтральной либо слабощелочной реакцией среды. Участвуют в образовании заржавелых осадков (охры) в железистых источниках, дренажных группах, болотах (болотные руды) и заболоченных почвах. Отрицательное деяние засорение и закупорка трубопроводов.

Известно значительное число микроорганизмов, прямо или косвенно участвующих в окислении железа. Некоторые из них были открыты еще в середине прошлого века, но до сих пор в виде чистых культур удалось получить лишь немногие. Поэтому сведения о биологии большинства таких форм весьма ограничены и основаны па изучении либо только природного материала, либо накопительных культур.

На основании имеющихся данных можно, однако, заключить, что многие из них являются гетеротрофами. К числу таковых принадлежат микроорганизмы, окисляющие комплексные органические соединения железа. В результате этого железо в виде гидрата окиси откладывается на поверхности клеток. Такие микроорганизмы встречаются и в водоемах, и в почве. К числу водных форм относятся Siderocapsa, Blastocaulis, Neumanniella, Ochrobium и некоторые другие. В почве в разложении гуматов железа, видимо, участвуют почкующиеся бактерии родов Hyphomicrobium, Pasteuria и Seliberia stellata. Описаны также разнообразные по морфологии микроорганизмы, которые, судя по ряду данных, могут окислять неорганические соединения железа в болотах, ручьях, железистых источниках, дренажных трубах, в озерах и других водоемах с образованием охристых осадков. Некоторые встречаются и в почве. Именно такие формы были названы железобактериями. К ним принадлежат представители нитчатых бактерий (Leptothrix, Тохоthrix, Crenothrix), а также GaUionella, Siderococcus, Methallogenium. Наиболее широко распространены нитчатые бактерии, называемые Leptothrix ochracea. По описаниям палочковидные клетки этой бактерии собраны в цепочки и окружены влагалищем, где откладывается гидрат окиси железа. Благодаря наличию жгутиков клетки способны к движению и могут покидать влагалище. Обычно встречается в ручьях, у выхода железистых источников на болотах, образуя скопления в виде ржавых пятен.

Хотя еще С. Н. Виноградский (1888) показал, что L. ochracea превращает закисное железо в окисное, способность этих бактерий к автотрофному образу жизни не доказана и все данные о биологии основаны, по существу, на исследовании природного материала. Окончательно не решено даже, является Leptothrix самостоятельным родом или это представители Sphaerotilus, гетеротрофной нитчатой бактерии, которая способна откладывать вокруг клеток окислы железа. Кроме L. ochracea, описан ряд других видов Leptothrix, но сведения о них также весьма ограничены.

Для окончательных выводов необходимы дальнейшие исследования.

Сведения о других микроорганизмах, перечисленных выше, еще более ограничены. Есть основания полагать, что в число железобактерий попало немало микроорганизмов, для которых процесс окисления железа не имеет какоголибо физиологического значения, но они могут концентрировать железо в слизи, окружающей клетки, когда в результате изменения условий оно окисляется химическим путем и переходит в нерастворимую форму. Такая способность обнаружена у многих нитчатых бактерий и сине-зеленых водорослей. Описаны также случаи отложения окислов железа на водной растительности.

Однако известны действительно хемоавтотрофные микроорганизмы, которые получают энергию в результате окисления закисного железа. Таковым является Thiobacillus ferrooxidans. Как уже указывалось выше, по своей морфологии и физиологическим свойствам этот микроорганизм, несомненно, принадлежит к к тионовым бактериям. Th. ferrooxidans в отличие от других представителей тиобацилл способен окислять соединения не только серы, но и двухвалентного железа. Клетки этой грамотрицательной бактерии имеют вид коротких палочек (0,3—0,4 X 0,7—1,7 мкм) с одним полярным жгутиком. Размножаются поперечным делением. Оптимальное значение рН для роста

Поскольку реакция сопровождается малым выходом энергии (46,2 • 103 дж/г окисленного железа), то для поддержания роста бактериям приходится окислять весьма большие количества железа. Так, при образовании 1 г сырой биомассы происходит окисление 500 г сернокислого железа. Образование Т. ferrooxidans АТФ сопряжено с функционированием электрон-транспортной дыхательной цепи, которая, как и у ряда других хемоавтотрофов, укорочена. Это связано с тем, что Fe2+ имеет весьма высокий положительный потенциал (Е'0 = 0,77 В). Полагают, что сначала железо образует с фосфатом комплексное соединение, имеющее более низкий окислительно-восстановительный потенциал (Е'0 = 0В), и лишь затем передает электрон в дыхательную цепь (рис. 141) на уровне либо убихинона, либо цитохрома. Поэтому образование восстановленного НАД Т. ferrooxidans происходит в результате действия системы обратного переноса электрона с затратой энергии.

Имеющиеся данные позволяют заключить, что автотрофные и некоторые гетеротрофные микроорганизмы принимают участие в превращениях железа в природе, в частности в образовании железистых отложений, из которых формируются осадочпые железные руды в болотах, озерах и других водоемах.

Весьма существенное значение имеет также деятельность Т. ferrooxidans в месторождениях сульфидных руд. Способность Т. ferrooxidans окислять практически все известные сульфидные минералы находит практическое применение в гидрометаллургии.

Тионовые бактерии принимают также активное участие в круговороте серы (рис. 142).

В заключение следует отметить, что некоторые микроорганизмы способны окислять и концентрировать вокруг себя не только железо, но и марганец (Мn+2 -> Мn+4). Таким свойством обладает ряд нитчатых бактерий, а именно: некоторые представители Leptothrix (например, L. discophora), Crenothrix polyspora, Lieskeela discophora, а также Naumannilla, Kuznezovia polymorpha, Blastocaulis, Siderocapsa и Hyphomicrobium. Известны формы, окисляющие только марганец. К числу таковых принадлежат некоторые почкующиеся бактерии из родов Hyphomicrobium и Metallogenium. Один из них, Metallogenium symbioticum, выделенный Г. А. Заварзиным, растет в симбиозе с грибом и, как установлено Г. А. Дубининой, относится к микоплазмам. К этому организму, видимо, близок Caulococcus manganifer, также окисляющий марганец. Кроме того, показано, что окислять марганец могут разные почвенные грибы и ряд бактерий таких родов, как Bacillus, Pseudomonas, Achromobacter, Flavobacterium, Corynebacterium, Sarcina, Escherichia и др.

Часто, однако, окисление марганца происходит только в смешанных или симбиотических культурах.

По всем данным микробиологические процессы имеют большое значение в превращениях марганца и в почве и в разных водоемах, где нередко происходит отложение марганца и образование железомарганцевых конкреций. Однако ни для одного марганецокисляющих микроорганизмов не показана способность к росту в автотрофных условиях. И хотя предположения о возможности получения ими энергии при окислении марганца

Железобактерии участвуют в окислении железа и марганца – это факт, достоверно известный науке. Остальные данные про эти загадочные организмы до конца не изучены, так как все исследования проводились лишь на основе природного материала или других накопительных культур.

Железная руда - это результат жизнедеятельности бактерий

Кто такие железобактерии?

С.Н. Виноградский впервые выделил и описал микробов, живущих в водной среде и почве и использующих для осуществления питания энергию света. Для этого они используют способ окисления неорганических соединений железа.

И хоть это не доказано экспериментальным путем, но некоторые виды железобактерий являются хемотрофами и фотосинтезирующими, окисляют двухвалентное железо до трехвалентного. Все же ученые склоняются к тому, что большинство железобактерий относятся к гетеротрофам, использующим для питания углерод, освобожденный после окисления соединений закиси железа. Железо откладывается на поверхности самих клеток в виде окиси гидрата.

Эти микроорганизмы, обитая в природе, являются жителями почвы, пресных, соленых или кислых источников, болот.

Железобактерии условно можно разделить на две группы:

  1. Не использующие энергию, выделенную при окислении железа, для жизни. Это нитчатые железобактерии и свободноживущие одноклеточные микоплазмы.
  2. Получающие энергию в результате окисления железа ацидофильные железобактерии.

Бактерии, окисляющие железо

Нитчатые микроорганизмы (Sphaerotilus, Leptothrix)

Особенностью нитчатых железобактерий является наличие слизистой оболочки, называемой влагалищем. В ней собирается окись железа или марганца. Они могут свободно покидать цилиндрическую оболочку, после чего создают новую. Оболочки – это скопления ржавых пятен, вторично загрязняющие поверхность воды, почву. Отмершие бактерии образуют большие залежи руд на дне болот.

Могут прикрепляться к субстрату и таким способом путешествовать, плавая по водоему. Особенно большое количество железобактерий наблюдается в водах, куда производятся выбросы химических производств, содержащие закиси солей железа. Очень часто поселяются в трубах водопровода, являясь виновниками их закупорки.

Окисляющие железо микоплазмы (Gallionella)

Этот вид железобактерий состоит из бобовидных клеток, которые на своей вогнутой стороне откладывают гидроокись железа. Не имеют клеточной стенки, зато у них есть фибриллы (длинные белковые выросты, напоминающие жгутики). Микоплазмы ведут колониальный образ жизни, по способу питания они сапротрофы, то есть разрушают отмершие останки других организмов.

Бактерии Galionella и Nevskia

Ацидофильные железобактерии (Thiobacillus ferrooxidan, Leptospirillum ferooxidans)

Thiobacillus ferrooxidan относится к тионобактериям, может также окислять восстановленные соединения серы, является одновременно и серобактерией, в отличие от железобактерии Leptospirillum ferooxidans.

Бактерии широко распространены в природе: в почве, в месторождениях сульфида, в источниках и кислых озерах с высоким содержанием закиси железа. Обитают в местах залежей угля и золотых руд. Для людей совершенно безвредны, устойчивы к низким температурам.

Способны окислять оксиды металлов, используя углекислый газ в качестве источника углерода. В средах с содержанием кислорода процесс выщелачивания металлов ускоряется. Поэтому для искусственного обогащения руд применяют способ орошения отвалов руды специальными серными растворами, содержащими двухвалентное железо, а также дополнительную подачу воздуха.

Подобным способом в мире обогащают около 5% общей добытой меди и получают уран.

Загрязнение труб

Железобактерии, прикрепляясь к стенкам труб, образуют на них пленку, которая загрязняет воду, поступающую в дома. Также они могут закупоривать душевые разбрызгиватели, сетчатые смесители кранов, фильтры водонагревателей, системы туалетных бачков.

Загрязнение трубы

Железобактерии – типичные жители почвы, поэтому содержание их в скважинах питьевой воды неизбежно. Но высокая концентрация железа достигается после контакта ионов железа с кислородом, поэтому верхняя часть скважины должна быть герметичной. Наличие воздухонепроницаемой мембраны в резервуаре также не дает воздуху соприкасаться с водой.

Для обработки воды используют специальное устройство – фосфатный дозатор, который очищает ее аналогично хлорированию. Фосфат не дает окислиться ионам железа.

Железобактерии являются одновременно как помощниками человека, образуя залежи полезных марганцевых и железных руд на дне водоемов и болот, используемых в металлургической промышленности, так и вредителями, виновниками плохого качества воды, загрязняющими почву, водопроводную систему и канализацию.

Работаю врачом ветеринарной медицины. Увлекаюсь бальными танцами, спортом и йогой. В приоритет ставлю личностное развитие и освоение духовных практик. Любимые темы: ветеринария, биология, строительство, ремонт, путешествия. Табу: юриспруденция, политика, IT-технологии и компьютерные игры.

Читайте также: