Тригонометрия в геодезии сообщение

Обновлено: 21.07.2024

Тригонометрическое нивелирование или Геодезическое нивелирование — метод определения разностей высот точек (превышений) на какой либо поверхности основанный на простой связи угла наклона визирного луча и расстоянием между точками [1] .

Другими словами Тригонометрическое нивелирование — метод определения превышений по измеренному углу наклона и длине наклонной линии или её проекции на горизонтальную плоскость [2] .

Тригонометрическое нивелирование называют также геодезическим или нивелированием наклонным лучом [2] .

Метод тригонометрического нивелирования является неотъемлемой частью ряда технических процессов при производстве тахеометрических съемок. Однако такой способ считается мало точным и не пригоден для более сложных задач. Применяется при перепадах высот местности, где геометрическое нивелирование не рекомендовано и/или экономически не целесообразно. Тригонометрическое нивелирование дает особенно уверенные результаты, когда визирный луч проходит высоко над поверхностью земли при работах в горных (с углами наклона более 6°) и резко всхолмленных или пересеченных (4-6°) районах. Для более точных работ в равнинных районах (с углами наклона до 2°) визирный луч должен быть поднят не менее чем на 2 метра над подстилающей поверхностью. В южных районах могут содержатся значительные ошибки даже при большей высоте визирного луча. Для измерении используют периоды достаточно четких и спокойных изображений, исключая время близкое к восходу и заходу солнца в пределах 2 часов [3] [4] .

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

МБОУ Целинная СОШ

Доклад Тригонометрия в реальной жизни

Подготовила и провела

п. Целинный март 2014г.

2.История создания тригонометрии:

Из истории развития сферической геометрии.

3.Тригонометрия и реальная жизнь:

Применение тригонометрии в навигации.

Тригонометрия в алгебре.

Тригонометрия в физике.

Тригонометрия в медицине и биологии.

Тригонометрия в музыке.

Тригонометрия в информатике

Тригонометрия в строительстве и геодезии.

4. Заключение .

5. Список литературы.

Издавна в математике установилась такая практика, что при систематическом изучении математики нам – ученикам приходится встречаться с тригонометрией трижды. Соответственно её содержание представляется состоящим из трёх частей. Эти части при обучении отделены друг от друга по времени и не похожи друг на друга как по смыслу, вкладываемому в объяснения основных понятий, так и по развиваемому аппарату и по служебным функциям (приложениям).

Однако прошло некоторое время и в 9-м классе мы снова вернулись к тригонометрии. Но эта тригонометрия не похожа на ту, что изучали ранее. Её соотношения определяются теперь с помощью окружности (единичной полуокружности), а не прямоугольного треугольника. Хотя они по-прежнему определяются как функции углов, но эти углы уже произвольно велики.

Узнав об исторических причинах возникновения тригонометрии, и изучив, как плоды деятельности великих ученых оказали влияние на развитие этой области математики и на решение конкретных задач, у нас, у школьников, повышается интерес к изучаемому предмету, и мы увидим его практическое значение.

Задачи исследования:

1.Рассмотреть историю возникновения и развития тригонометрии.

2.Показать на конкретных примерах практические приложения тригонометрии в различных науках.

Н. Рубцов

Тригонометрия - это раздел математики, в котором изучаются зависимости между величинами углов и длинами сторон треугольников, а также алгебраические тождества тригонометрических функций. Сложно представить, но с этой наукой мы сталкиваемся не только на уроках математики, но и в нашей повседневной жизни. Мы могли не подозревать об этом, но тригонометрия встречается в таких науках, как физика, биология, не последнюю роль она играет и в медицине, и, что самое интересное, без нее не обошлось даже в музыке и архитектуре. Значительную роль в развитии навыков применения на практике теоретических знаний, полученных при изучении математики, играют задачи с практическим содержанием. Каждого изучающего математику, интересует, как и где применяются полученные знания. Ответ на этот вопрос и дает данная работа.

История создания тригонометрии

От вавилонской математики ведёт начало привычное нам измерение углов градусами, минутами и секундами (введение этих единиц в древнегреческую математику обычно приписывают Гипсиклу, II век до н. э.).

Главным достижением этого периода стало соотношение катетов и гипотенузы в прямоугольном треугольнике, позже получившее имя теоремы Пифагора.

Древняя Греция

После того как арабские трактаты были в XII-XIII веках переведены на латынь, многие идеи индийских и персидских математиков стали достоянием европейской науки. По всей видимости, первое знакомство европейцев с тригонометрией состоялось благодаря зиджу Аль-Хорезми, два перевода которого были выполнены в XII веке.

Длительную историю имеет понятие синуса. Фактически различные отношения отрезков треугольника и окружности(а по существу, и тригонометрические функции) встречаются уже в ӀӀӀ в. до н. э в работах великих математиков Древней Греции-Евклида, Архимеда, Аполлония Пергского. В римский период эти отношения уже достаточно систематично исследовались Менелаем(Ӏ в. до н. э), хотя и не приобрели специального названия. Современный минус угла , например изучался как произведение полухорд, на которую опирается центральный угол величиной , или как хорда удвоенной дуги.

В последующий период математика долгое время наиболее активно развивалась индийскими и арабскими учеными. В Ӏ V - V вв. появился, в частности, уже специальный термин в трудах по астрономии великого индийского ученого Ариабхаты(476-ок. 550), именем которого назван первый индийский спутник Земли.

Позднее привилось более краткое название джива. Арабскими математиками в Ι X в. слово джива(или джиба) было заменено на арабское слово джайб(выпуклость). При переводе арабских математических текстов в XΙΙ в. это слово было заменено латинским синус( sinus -изгиб, кривизна)

Длительное время тригонометрия развивалась как часть геометрии, т.е. факты, которые мы сейчас формулируем в терминах тригонометрических функций, формулировались и доказывались с помощью геометрических понятий и утверждений. Пожалуй ,наибольшие стимулы к развитию тригонометрии возникали в связи с решением задач астрономии, что представляло большой практический интерес(например, для решения задач определения местонахождения судна, предсказаний затмений и т,д)

Астрономов интересовали соотношения между сторонами и углами сферических треугольников, составленных из больших кругов, лежащих на сфере. И надо заметить, что математики древности удачно справлялись с задачами, существенно более трудными, нежели задачи на решении плоских треугольников.

Во всяком случае в геометрической форме многие известные нам формулы тригонометрии открывались и переоткрывались древнегреческими, индийскими, арабскими математиками(правда, формулы разности тригонометрических функций стали известны только в XVΙ Ӏ в.- их вывел английский математик Непер для упрощения вычислений с тригонометрическими функциями. А первый рисунок синусоиды появился в 1634 г.)

Принципиальное значение имело составление К.Птолемеем первой таблицы синусов (долгое время она называлась таблицей хорд): появилось практическое средство решения ряда прикладных задач, и в первую очередь задач астрономии.

Имея дело с готовыми таблицами, или пользуясь калькулятором, мы часто не задумываемся о том, что было время, когда таблицы еще не были изобретены. Для того чтобы составить их, требовалось выполнить не только большой объем вычислений, но и придумать способ составления таблиц. Таблицы Птолемея точны до пяти десятичных знаков включительно.

Современный вид тригонометрии придал крупнейший математик XV ΙӀΙ столетия Л.Эйлер(1707-1783), швейцарец по происхождению, долгие годы работавший в России и являвшийся членом Петербургской Академии наук. Именно Эйлер первый ввел известные определения тригонометрических функций, стал рассматривать функции произвольного угла, получил формулы приведения. Все это малая доля того, что за долгую жизнь успел сделать Эйлер в математике: он оставил свыше 800 работ ,доказал многие ставшие классическими теоремы, относящиеся к самым разным областям математики. Но если вы пытаетесь оперировать с тригонометрическими функциями в геометрической форме, т.е так, как это делали многие поколения математиков до Эйлера, то сумеете оценить заслуги Эйлера в систематизации тригонометрии. После Эйлера тригонометрия приобрела новую форму исчисления: различные факты стали доказывать путем формального применения формул тригонометрии, доказательства стали намного компактнее, проще.

Из истории развития сферической геометрии .

Трактат Сабита ибн Корры дошел до нас в арабском оригинале,. И в латинском переводе XII в. Этот перевод Герандо Кремонским (1114-1187), получил широкое распространение в Средневековой Европе.

История тригонометрии, как науки о соотношениях между углами и сторонами треугольника и других геометрических фигур, охватывает более двух тысячелетий. Большинство таких соотношений нельзя выразить с помощью обычных алгебраических операций, и поэтому понадобилось ввести особые тригонометрические функции, первоначально оформлявшиеся в виде числовых таблиц.
Историки полагают, что тригонометрию создали древние астрономы, немного позднее её стали использовать в архитектуре. Со временем область применения тригонометрии постоянно расширялась, в наши дни она включает практически все естественные науки, технику и ряд других областей деятельности.

Прикладные тригонометрические задачи отличаются большим разнообразием — например, могут быть заданы измеримые на практике результаты действий над перечисленными величинами (к примеру, сумма углов или отношение длин сторон).

Тригонометрия и реальная жизнь

Тригонометрические функции нашли применение в математическом анализе, физике, информатике, геодезии, медицине, музыке, геофизике, навигации.

Применение тригонометрии в навигации

Навигация ( это слово происходит от латинского navigatio – плыву на судне) – одна из наиболее древних наук. Простейшие задачи навигации, такие, например, как определение кратчайшего маршрута, выбор направления движения, встали перед самыми первыми мореплавателями. В настоящее время эти же и другие задачи приходится решать не только морякам, но и лётчикам, и космонавтам. Некоторые понятия и задачи навигации рассмотрим поподробнее.

Задача . Известны географические координаты – широта и долгота пунктов А и В земной поверхности: , и , . Требуется найти кратчайшее расстояние между пунктами А и В вдоль земной поверхности ( радиус Земли считается известным: R = 6371 км)

Решение. Напомним сначала, что широтой пункта М земной поверхности называется величина угла, образованного радиусом ОМ, где О – центр Земли, с плоскостью экватора: ≤ , причем севру от экватора широта считается положительной, а к югу – отрицательной (рисунок 1)

Долгота пункта М есть величина двугранного угла между плоскостями СОМ и СОН, где С – Северный полюс Земли, а Н – точка, отвечающая гринвичской обсерватории: ≤ ( к востоку от гринвичского меридиана долгота считается положительной, к западу – отрицательной).

Применяя стандартное обозначение для элементов треугольника АВС и соответствующего трехгранного угла ОАВС, из условия задачи находим: α = = - , β = (рис.2).

Угол С также не трудно выразить через координаты точек А и В. По определению ≤ , поэтому либо угол С = , если ≤ , либо - , если . Зная = с помощью теоремы косинусов: = + ( - ). Зная и, следовательно угол, находим искомое расстояние: =.

Тригонометрия в навигации 2.

Для прокладки курса корабля на карте, выполненной в проекции Герхарда Меркатора (1569г.), необходимо было определять широту. При плавании по Средиземному морю в лоциях до XVII в. широта не указывалась. Впервые применил тригонометрические расчеты в навигации Эдмонд Гюнтер(1623).

Тригонометрия помогает рассчитывать влияние ветра на полет самолета. Треугольник скоростей – это треугольник, образованный вектором воздушной скорости ( V ), вектором ветра( W ), вектором путевой скорости ( V п ). ПУ – путевой угол, УВ – угол ветра, КУВ – курсовой угол ветра.

Зависимость между элементами навигационного треугольника скоростей имеет вид:

V п = V cos УС + W cos УВ; sin УС = * sin УВ, tg УВ =

Навигационный треугольник скоростей решается с помощью счетных устройств, на навигационной линейке и приближенно в уме.

Тригонометрия в алгебре.

Вот пример решения сложного уравнения с помощью тригонометрической подстановки.

Пусть , получим

с учётом ограничений получим:

Тригонометрия в физике

Везде, где приходится иметь дело с периодическими процессами и колебаниями – будь то акустика, оптика или качание маятника, мы имеем дело с тригонометрическими функциями. Формулы колебаний:

где A – амплитуда колебания, - угловая частота колебания, -начальная фаза колебания

При погружении предметов в воду они не меняют ни формы, ни размеров. Весь секрет - оптический эффект который заставляет наше зрение воспринимать объект по-иному. Простейшие тригонометрические формулы и значения синуса угла падения и преломления луча дают возможность высчитать постоянный коэффициент преломления при переходе светового луча из среды в среду. Например, радуга возникает из-за того, что солнечный свет испытывает преломление в капельках воды, взвешенных в воздухе по закону преломления:

sin α / sin β = n 1 / n 2

n 1 - показатель преломления первой среды
n 2 - показатель преломления второй среды

α -угол падения, β -угол преломления света.

Проникновение в верхние слои атмосферы планет заряженных частиц солнечного ветра определяется взаимодействием магнитного поля планеты с солнечным ветром.

Сила, действующая на движущуюся в магнитном поле заряженную частицу, называется силой Лоренца. Она пропорциональна заряду частицы и векторному произведению поля и скорости движения частицы.

В качестве практического примера рассмотрим физическую задачу, которая решается с применением тригонометрии.

Задача. На наклонной плоскости, составляющей с горизонтом угол 24,5 о , находится тело массой 90 кг. Найдите, с какой силой это тело давит на наклонную плоскость (т.е какое давление оказывает тело на эту плоскость).

Обозначив оси Х и У, начнем строить проекции сил на оси, для начала воспользовавшись данной формулой:

ma = N + mg , затем смотрим на рисунок,

Х : ma = 0 + mg sin24,5 0

Y : 0 = N – mg cos24,5 0

N = mg cos 24,5 0

подставляем массу, находим, что сила равна 819 Н.

hello_html_m4f913045.jpg

Тригонометрия в медицине и биологии

Одно из фундаментальных свойств живой природы - это цикличность большинства происходящих в ней процессов.

Биологические ритмы, биоритмы – это более или менее регулярные изменения характера и интенсивности биологических процессов.

Основной земной ритм – суточный.

Модель биоритмов можно построить с помощью тригонометрических функций.

Для построения модели биоритмов необходимо ввести дату рождения человека, дату отсчета (день, месяц, год) и длительность прогноза (количество дней).

Даже некоторые участки головного мозга называются синусами.

Стенки синусов образованы твёрдой мозговой оболочкой, выстланной эндотелием. Просвет синусов зияет, клапаны и мышечная оболочка, в отличие от других вен, отсутствуют. В полости синусов располагаются покрытые эндотелием волокнистые перегородки. Из синусов кровь поступает во внутренние ярёмные вены, помимо этого существует связь синусов с венами наружной поверхности черепа посредством резервных венозных выпускников.

Движение рыб в воде происходит по закону синуса или косинуса, если зафиксировать точку на хвосте, а потом рассмотреть траекторию движения.

При плавании тело рыбы принимает форму кривой, которая напоминает график

Тригонометрия в музыке

Мы слушаем музыку в формате mp3.

hello_html_m3895204c.jpg

Как можно увидеть – это хотя и очень сложная, но синусоида, подчиняющаяся законам тригонометрии.

Тригонометрия в информатике

Тригонометрические функции можно использовать для точных расчётов.

С помощью тригонометрических функций можно приблизить любую

(в некотором смысле "хорошую") функцию, разложив её в ряд Фурье:

a 0 + a 1 cos x + b 1 sin x + a 2 cos 2x + b 2 sin 2x + a 3 cos 3x + b 3 sin 3x + .

Подбирая подходящим образом числа a 0 , a 1 , b 1 , a 2 , b 2 , . можно в виде такой (бесконечной) суммы представлять почти любые функции в компьютере с требуемой точностью.

Тригонометрические функции оказываются полезными при работе с графической информацией. Необходимо промоделировать (описать в компьютере) вращение некоторого объекта вокруг некоторой оси. Возникает поворот на некоторый угол. Чтобы определить при этом координаты точек придётся умножать на синусы и косинусы.

Джастин Уиндел, программист и дизайнер из Google Grafika Lab , опубликовал демо, показывающее примеры использования тригонометрических функций для создания динамической анимации.

Тригонометрия в строительстве и геодезии

Длины сторон и величины углов произвольного треугольника на плоскости связаны между собой определенными соотношениями, важнейшие из которых называют теоремами косинусов и синусов.

В этих формулах а, b , c – длины сторон треугольника АВС, лежащих соответственно против углов А, В, С. Эти формулы позволяют по трем элементам треугольника – длинам сторон и углам – восстановить остальные три элемента. Они применяются при решении практических задач, например в геодезии.

Вся "классическая" геодезия основана на тригонометрии. Поскольку фактически с древних времён геодезисты занимаются тем, что "решают" треугольники.

Процесс строительства зданий, дорог, мостов и других сооружений начинается с изыскательских и проектных работ. Все измерения на стройке проводятся с помощью геодезических инструментов, таких как теодолит и тригонометрический нивелир. При тригонометрическом нивелировании определяют разность высот между несколькими точками земной поверхности.

Тригонометрия была вызвана к жизни необходимостью производить измерения углов, но со временем развилась и в науку о тригонометрических функциях.

Тригонометрия тесно связана с физикой, встречается в природе, музыке, архитектуре, медицине и технике.

Тригонометрия нашла отражение в нашей жизни, и сферы, в которых она играет важную роль, будут расширяться, поэтому знание её законов необходимо каждому.

Под математической задачей с практическим содержанием (задачей прикладного характера) мы понимаем задачу, фабула которой раскрывает приложения математики в смежных учебных дисциплинах, технике, в быту.

Рассказ о исторических причинах возникновения тригонометрии, ее развитии и практическом применении побуждает у нас – школьников интерес к изучаемому предмету, формирует наше мировоззрение и повышает общую культуру.

Данная работа будет полезна для учащихся старших классов, которые ещё не увидели всю красоту тригонометрии и не знакомы с областями её применения в окружающей жизни.


ТРИГОНОМЕТРИЧЕСКОЕ НИВЕЛИРОВАНИЕ - метод определения разностей высот точек на земной поверхности по измеренному углу наклона и длине наклонной линии визирования или её проекции на горизонтальную плоскость. Превышение h определяют по формулам:

h=stg n+i-V или h=Ssin n+i-V, где

n — угол наклона визирного луча;

S — длина линии визирования;

s — горизонтальная проекция;

i — высота прибора;

V — высота визирования.

Тригонометрическое нивелирование применяется при топогеодезических работах на земной поверхности и маркшейдерских съёмках в горных выработках, наклоны которых свыше 8°.

При тригонометрическом нивелировании превышение между точками определяют по измеренным вертикальным углам и расстояниям между точками (горизонтальным проложениям). Тригонометрическое нивелирование позволяет с одной станции определить практически любое превышение между точками, имеющими взаимную видимость, но его точность ограничена из-за недостаточно точного учёта влияния на величины вертикальных углов оптического преломления и уклонений отвесных линий, особенно в горной местности.

Превышение определяется по измеренному теодолитом (кипрегелем, эклиметром) углу наклона линии визирования с одной точки на другую (α) и расстоянию между этими точками (S). Тригонометрическое нивелирование применяется при топографической съемке и других работах

Тригонометрическое нивелирование – определение превышения между точками с помощью наклонного визирного луча

В точке А устанавливают теодолит, в точке В – рейку. Рулеткой или рейкой измеряют высоту теодолита. Используя вертикальный круг теодолита, определяют угол наклона визирной оси трубы ν при её наведении на какую-либо точку рейки. Расстояние от этой точки до пятки рейки называется высотой визирования l. Длину линии АВ измеряют лентой или дальномером.

Если зрительную трубу наводить на рейке на высоту теодолита, то V = l и превышение вычисляют по формуле

Если расстояние измерялось лентой, то горизонтальное проложение линии АВ равно S = D∙cosν .

Тригонометрическое нивелирование становится очень производительным, когда расстояния измеряются дальномером.

В случае использования нитяного дальномера S = D∙cos2ν, тогда

Теодолит, снабженный вертикальным кругом и нитяным дальномером называется тахеометром, а совокупность геодезических измерений для определения планового и высотного положения точек, называется тахеометрическойсъемкой.

ОпределениепревышениятригонометрическимнивелированиемсучетомпоправкизакривизнуЗемлии рефракции

В предыдущем разделе при определении разности высот двух точек тригонометрическим нивелированием, предполагалось, что расстояние между этими точками невелико и отвесные линии, проходящие через точки А и В, можно считать параллельными, а визирный луч – прямой линией. На самом деле при расстояниях больше 300 м приходится учитывать поправки за кривизну Земли Kи рефракцию r

Поправки за кривизну Земли и рефракцию f= K – r учитываются только при расстояниях АВ более 300 м.


ТРИГОНОМЕТРИЧЕСКОЕ НИВЕЛИРОВАНИЕ - метод определения разностей высот точек на земной поверхности по измеренному углу наклона и длине наклонной линии визирования или её проекции на горизонтальную плоскость. Превышение h определяют по формулам:

h=stg n+i-V или h=Ssin n+i-V, где

n — угол наклона визирного луча;

S — длина линии визирования;

s — горизонтальная проекция;

i — высота прибора;

V — высота визирования.

Тригонометрическое нивелирование применяется при топогеодезических работах на земной поверхности и маркшейдерских съёмках в горных выработках, наклоны которых свыше 8°.

При тригонометрическом нивелировании превышение между точками определяют по измеренным вертикальным углам и расстояниям между точками (горизонтальным проложениям). Тригонометрическое нивелирование позволяет с одной станции определить практически любое превышение между точками, имеющими взаимную видимость, но его точность ограничена из-за недостаточно точного учёта влияния на величины вертикальных углов оптического преломления и уклонений отвесных линий, особенно в горной местности.




Превышение определяется по измеренному теодолитом (кипрегелем, эклиметром) углу наклона линии визирования с одной точки на другую (α) и расстоянию между этими точками (S). Тригонометрическое нивелирование применяется при топографической съемке и других работах

Тригонометрическое нивелирование – определение превышения между точками с помощью наклонного визирного луча

В точке А устанавливают теодолит, в точке В – рейку. Рулеткой или рейкой измеряют высоту теодолита. Используя вертикальный круг теодолита, определяют угол наклона визирной оси трубы ν при её наведении на какую-либо точку рейки. Расстояние от этой точки до пятки рейки называется высотой визирования l. Длину линии АВ измеряют лентой или дальномером.

Если зрительную трубу наводить на рейке на высоту теодолита, то V = l и превышение вычисляют по формуле

Если расстояние измерялось лентой, то горизонтальное проложение линии АВ равно S = D∙cosν .

Тригонометрическое нивелирование становится очень производительным, когда расстояния измеряются дальномером.

В случае использования нитяного дальномера S = D∙cos2ν, тогда

Теодолит, снабженный вертикальным кругом и нитяным дальномером называется тахеометром, а совокупность геодезических измерений для определения планового и высотного положения точек, называется тахеометрическойсъемкой.

ОпределениепревышениятригонометрическимнивелированиемсучетомпоправкизакривизнуЗемлии рефракции

В предыдущем разделе при определении разности высот двух точек тригонометрическим нивелированием, предполагалось, что расстояние между этими точками невелико и отвесные линии, проходящие через точки А и В, можно считать параллельными, а визирный луч – прямой линией. На самом деле при расстояниях больше 300 м приходится учитывать поправки за кривизну Земли Kи рефракцию r

Поправки за кривизну Земли и рефракцию f= K – r учитываются только при расстояниях АВ более 300 м.

Метод тригонометрического нивелирования

Метод тригонометрического нивелирования нужен, чтобы определить, насколько одна точка на земной поверхности превышает другую. Для этого определения нужно знать угол наклона, а также длину наклонной линии между точками или проекции этой линии на горизонтали.

У этой методики есть другие наименования – геодезическое нивелирование, а также нивелирование наклонным лучом. Для проведения измерений по принципу тригонометрического нивелирования необходимо специальное оборудование – теодолиты. А для вычислений используют тригонометрические функции.

Где используют тригонометрическое нивелирование

Измерения способом тригонометрического нивелирования проводят при тахеометрических съемках. Его используют, если произвести геометрическое нивелирование невозможно или нецелесообразно из-за значительных перепадов высот на участке. Метод считается не особенно точным, для сложных задач он не подойдет. Но в очень пересеченной местности, в горных районах он является единственно возможным. Если визирный луч проходит достаточно высоко, результаты будут удовлетворительными. А вот яркое солнце может искажать результат, поэтому более подходящими для работы являются два часа после восхода или два часа перед закатом.

Что необходимо для работы

Замеры делают теодолитом (электронным тахеометром). Оборудование должно быть современным, точным, регулярно, своевременно проходящим поверку. Чтобы проложить наклонные лучи до точек, необходимы рейки или вешки. Они бывают специальными, то есть на рейки для удобства уже нанесена сантиметровая шкала. На вешках – марки и отражатели. Простые рейки нужны для снятия замеров с небольшим расстоянием между точками – до 70 метров. Если расстояние больше (от 70 до 350 метров) понадобятся вехи с призменными отражателями, марками. Рейки или вешки должны быть видны. Если же погодные условия не позволяют провести такие измерения, если видимость плохая, то вместо вешек можно использовать штативы, на которые ставят трегер с центриром, а также есть марка с призмой.

При помощи тахеометров (теодолитов) и вешек, а также рулетки определяют такие величины:

  • высота самого инструмента;
  • высота визирования в измеряемых точках;
  • длина наклонного луча;
  • горизонтальные и вертикальные углы.

Все снимаемые замеры заносят в журнал наблюдений. В электронном виде он уже есть в электронном тахеометре, но также записи дублируют на бумажный носитель.

У тахеометров погрешность при однократном измерении горизонтального или вертикального угла не превышает 5 – 6 секунд. А погрешность при однократном замере длины – в пределах 2 – 6 мм в зависимости от измеряемых расстояний.

Как производят тригонометрическое нивелирование

Стандартные измерения по этому методу выглядят так:

  1. На одном из пунктов устанавливают теодолит. Его центрируют, производят горизонтирование. Затем замеряют высоту инструмента – это будет величина I.
  2. Во второй точке выставляют визир. Это может быть рейка или веха. Высоту этого визира также измеряют, обозначают V.
  3. Измеряют наклонное расстояние между этими двумя точками стояния S, а также горизонтальный и вертикальный углы.
  4. Если требуется, замеряют горизонтальное проложение D наклонного расстояния S.

Чтобы вычислить превышение между этими двумя высотами точек, используется формула h=S*sinV+I-V или h=D*tgV+I-V.

Так производится вычисление методом одностороннего тригонометрического нивелирования. Он не очень точный, но при геодезических исследованиях используется часто. Если применять современные приборы, например, электронные тахеометры, а также одновременно с замерами и вычислениями сделать геодезическое обоснование на съемочных пунктах, определение превышения может иметь высокую точность.

Также есть и другие методы, например, двухстороннего тригонометрического нивелирования и нивелирование из середины.

От предыдущего метода отличается тем, что измеряющий прибор устанавливают между точками. Для измерения наклонными расстояниями устанавливают две визирные цели. В их качестве могут выступать рейки, вешки с марками и отражателями, штативы. Затем снимают необходимые линейные и угловые замеры. Потом производят вычисление превышения по формулам.

Двухстороннее тригонометрическое нивелирование

Его исполняют одновременным или неодновременным способом. При одновременном работы производятся на двух инструментах и двумя исполнителями синхронно. При неодновременном прибор переставляют по пунктам измерений последовательно вперед и назад на расстояние 200 – 350 метров.

Почему используют разные методы нивелирования

На точность измерений при проведении геодезических работ влияет рефракция воздуха.

Рефракция – это искривление светового луча. Оно происходит из-за того, что воздух имеет неоднородную плотность, а значит, луч преломляется. Свой путь от одной точки до другой он проходит не по прямой, а по кривой с двоякой кривизной. Рефракция бывает вертикальной и боковой. Она искажает результат измерений и не даёт им быть абсолютно точными.

Особенно она может искажать замеры вертикальных углов. Если требуются высокоточные результаты, проводят измерения разными методами, чтобы устранить влияние рефракции. Также на результаты вычислений могут влиять данные об уклонении отвесной линии на опорных точках, где замеряются зенитные расстояния. Такие сведения могут быть искажены или вовсе отсутствовать.

Углы рефракции более стабильны при хорошей видимости, при утренней или вечерней изотермии. В таких условиях колебания визирной цели сведены к минимуму.

Чтобы получить более точные результаты измерений, необходимо учитывать все нюансы работы: рефракцию, влияние кривизны Земли и т. п. Также для достоверности проводят измерения одного объекта разными методами.

Вывод

Тригонометрическое нивелирование позволяет определить высотные координаты пунктов опорной сети. Для геодезических вычислений необходимы горизонтальные проложения. Их получают разными способами, и не всегда их возможно сделать точно. Поэтому тригонометрическим способом определяют лишь высотные показатели.

Преимущество метода состоит в том, что тригонометрическим нивелированием можно делать замеры и вычисления превышения для точек на больших расстояниях. Они могут располагаться в нескольких километрах друг от друга. Это очень производительный и быстрый способ.

Эта методика довольно трудоемкая, но при правильном и тщательно исполнении она даёт хороший результат. По точности тригонометрическое нивелирование уступает геометрическому, но на некоторых участках применяется только оно. Чтобы результат был максимально точным необходимо современное оборудование, а также квалифицированные исполнители.

Оформите заявку на сайте, мы свяжемся с вами в ближайшее время и ответим на все интересующие вопросы.

Читайте также: