Сообщение ядерное оружие и его поражающие факторы

Обновлено: 05.07.2024

Рассмотрение классификации ядерного оружия и поражающих факторов ядерного взрыва. Воздействие на людей, технику, сооружения ударной волны, светового излучения, проникающей радиации, радиоактивного заражения местности, электромагнитного импульса.

Рубрика Безопасность жизнедеятельности и охрана труда
Вид реферат
Язык русский
Дата добавления 15.11.2016
Размер файла 218,6 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Реферат на тему:

Ядерное оружие, его поражающие факторы

Ядерное оружие -- оружие массового поражения взрывного действия, основанное на использовании внутриядерной энергии, выделяющейся при цепных реакциях деления тяжелых ядер некоторых изотопов урана и плутония или при термоядерных реакциях синтеза изотопов водорода (дейтерия и трития) в более тяжелые, например ядра изогона гелия. При термоядерных реакциях выделяется энергии в 5 раз больше, чем при реакциях деления (при одной и той же массе ядер).

Ядерное оружие включает различные ядерные боеприпасы, средства доставки их к цели (носители) и средства управления.

Ядерные боеприпасы всех типов в зависимости от мощности подразделяются на следующие виды:

1.сверхмалые (менее 1 тыс.т);

2. малые(1-10 тыс.т);

3. средние (10-100 тыс.т);

4. крупные (100тыс.-1млн.т).

В зависимости от задач, решаемых с применением ядерного оружия, ядерные взрывы подразделяются на следующие виды:

3. наземные (надводные);

4. подземные (подводные).

При ядерном взрыве за миллионные доли секунды в зоне протекания ядерных реакций температура повышается до нескольких миллионов градусов, а максимальное давление достигает миллиардов атмосфер. Высокие температура и давление вызывают мощную воздушную ударную волну.

Поражающие факторы ядерного взрыва

ядерный оружие поражающий ударный

Основными поражающими факторами ядерного взрыва являются: ударная волна, световое излучение ядерного взрыва, проникающая радиация, радиоактивное заражение местности и электромагнитный импульс.

Ударная волна

Ударная волна (УВ) -- область резко сжатого воздуха, распространяющаяся во все стороны от центра взрыва со сверхзвуковой скоростью.

Раскаленные пары и газы, стремясь расшириться, производят резкий удар по окружающим слоям воздуха, сжимают их до больших давлений и плотности и нагревают до высокой температуры (несколько десятков тысяч градусов). Этот слой сжатого воздуха представляет ударную волну. Передняя граница сжатого слоя воздуха называется фронтом ударной волны. За фронтом УВ следует область разряжения, где давление ниже атмосферного. Вблизи центра взрыва скорость распространения УВ в несколько раз превышает скорость звука. С увеличением расстояния от места взрыва скорость распространения волны быстро падает. На больших расстояниях ее скорость приближается к скорости распространения звука в воздухе.

Ударная волна боеприпаса средней мощности проходит: первый километр за 1,4 с; второй -- за 4 с; пятый -- за 12 с.

Поражающее воздействие УВ на людей, технику, здания и сооружения характеризуется: скоростным напором; избыточным давлением во фронте движения УВ и временем ее воздействия на объект (фаза сжатия).

Воздействие УВ на людей может быть непосредственным и косвенным. При непосредственном воздействии причиной травм является мгновенное повышение давления воздуха, что воспринимается как резкий удар, ведущий к переломам, повреждению внутренних органов, разрыву кровеносных сосудов. При косвенном воздействии люди поражаются летящими обломками зданий и сооружений, камнями, деревьями, битым стеклом и другими предметами. Косвенное воздействие достигает 80 % от всех поражений.

Степень поражения ударной волной различных объектов зависит от мощности и вида взрыва, механической прочности (устойчивости объекта), а также от расстояния, на котором произошел взрыв, рельефа местности и положения объектов на местности.

Поражения, наносимые людям (рис.1):

легкие - скоропроходящие нарушения функций организма (звон в ушах, головокружение, головная боль, возможные вывихи и ушибы);

средние -- вывихи конечностей, контузия головного мозга, повреждение органов слуха, кровотечение из носа и ушей;

тяжелые -- сильные контузии всего организма, потеря сознания, переломы конечностей, возможны повреждения внутренних органов;

крайне тяжелые -- переломы конечностей, внутренние кровотечения, сотрясение мозга, потеря сознания, возможны смертельные исходы.

Для защиты от воздействия УВ следует использовать: траншеи, щели и окопы, снижающие действие в 1,5-2 раза; блиндажи -- в 2-3 раза; убежища -- в 3-5 раз; подвалы домов (зданий); рельеф местности (лес, овраги, лощины и т. д.).

Световое излучение

Световое излучение -- это поток лучистой энергии, включающий ультрафиолетовые, видимые и инфракрасные лучи.

Его источник -- светящаяся область, образуемая раскаленными продуктами взрыва и раскаленным воздухом. Световое излучение распространяется практически мгновенно и длится, в зависимости от мощности ядерного взрыва, до 20 с. Однако сила его такова, что, несмотря на кратковременность, оно способно вызывать ожоги кожи (кожных покровов), поражение (постоянное или временное) органов зрения людей и возгорание горючих материалов объектов. В момент образования светящейся области температура на ее поверхности достигает десятков тысяч градусов. Основным поражающим фактором светового излучения является световой импульс.

Световой импульс -- количество энергии в калориях, падающей на единицу площади поверхности, перпендикулярной направлению излучения, за все время свечения.

Для защиты населения от световою излучения необходимо использовать защитные сооружения, подвалы домов и зданий, защитные свойства местности. Любая преграда, способная создать тень, защищает от прямого действия светового излучения и исключает ожоги.

Независимо от причин возникновения ожоги разделяют по тяжести поражения организма на четыре степени (рис.2)

Ожоги первой степени выражаются в болезненности, покраснении и припухлости кожи. Ожоги второй степени характеризуются образованием пузырей. Для ожогов третьей степени характерно омертвение кожи с частичным поражением росткового слоя. При ожогах четвертой степени происходит обугливание кожи и подкожной клетчатки.

Пораженные с ожогами первой и второй степени обычно выздоравливают, а с третьей и четвертой при значительной части поражения кожного покрова могут погибнуть.

Поражения глаз световым излучением, три вида:

временное ослепление -- может длиться днем 2 -- 5 мин, а ночью -- до 30 мин;

ожоги глазного дна -- возникают в том случае, когда человек фиксирует взгляд на точке взрыва. Это может происходить даже на таких расстояниях, на которых световое излучение не вызывает никаких ожогов. Поражение глазного дна возможно при световом импульсе 6 кДж/м2;

ожоги роговицы и век -- возникают на тех же расстояниях,
что и ожоги кожи.

Степень воздействия светового излучения на элементы объекта зависят от свойств конструкционных материалов.

Защита от светового излучения более проста, чем от других поражающих факторов ядерного взрыва, поскольку любая непрозрачная преграда, любой объект, создающий тень, могут служить защитой от светового излучения.

Проникающая радиация

Проникающая радиация -- ноток гамма-лучей и нейтронов, излучаемых из зоны ядерного взрыва. Время ее действия составляет 10-15 с, дальность -- 2-3 км от центра взрыва.

При обычных ядерных взрывах нейтроны составляют примерно 30 %, при взрыве нейтронных боеприпасов -- 70-80 % от у-излучения.

Поражающее действие проникающей радиации основано на ионизации клеток (молекул) живого организма, приводящей к гибели. Нейтроны, кроме того, взаимодействуют с ядрами атомов некоторых материалов и могут вызвать в металлах и технике наведенную активность.

Основным параметром, характеризующим проникающую радиацию, является: для у-излучений -- доза и мощность дозы излучения, а для нейтронов -- поток и плотность потока.

Допустимые дозы облучения населения в военное время: однократная -- в течение 4 суток 50 Р; многократная -- в течение 10-30 суток 100 Р; в течение квартала -- 200 Р; в течение года -- 300 Р.

В результате прохождения излучений через материалы окружающей среды уменьшается интенсивность излучения. Ослабляющее действие принято характеризовать слоем половинного ослабления, т. с. такой толщиной материала, проходя через которую радиация уменьшается в 2 раза. Например, в 2 раза ослабляют интенсивность у-лучей: сталь толщиной 2,8 см, бетон -- 10 см, грунт -- 14 см, дерево -- 30 см.

В качестве защиты от проникающей радиации используются защитные сооружения ГО, которые ослабляют ее воздействие от 200 до 5000 раз. Слой фунта в 1,5 м защищает от проникающей радиации практически полностью.

Поражающее действие проникающей радиации на людей заключается в ионизации атомов и молекул биологической ткани гамма-излучением и нейтронами, в результате чего нарушается нормальный обмен веществ и изменяется характер жизнедеятельности клеток, отдельных органов и систем организма, что приводит к возникновению специфического заболевания -- лучевой болезни.

В зависимости от поглощенной биологическими тканями организма дозы различают четыре степени лучевой болезни (рис.3)

Поглощенная доза характеризуется количеством энергии, поглощенной тканями организма человека. Единицей ее измерения в системе СИ является грей (Гр), а внесистемной -- рад. 1 Гр = 100 рад = 1 Дж/кг.

Лучевая болезнь первой степени -- скрытый период продолжается 2 -- 3 недели, после чего появляются недомогание, общая слабость, тошнота, головокружение, периодическое повышение температуры. В крови уменьшается содержание белых кровяных шариков (лейкоцитов). Лучевая болезнь первой степени излечима.

Лучевая болезнь второй степени -- скрытый период длится около недели. Признаки заболевания выражены более ярко. При активном лечении излечение наступает через 1,5 -- 2 мес.

Лучевая болезнь третьей степени -- скрытый период составляет несколько часов. Болезнь протекает интенсивно и тяжело. В случае благоприятного исхода выздоровление может наступить через 6-8 мес.

Лучевая болезнь четвертой степени является наиболее опасной. Без лечения обычно оканчивается смертью в течение 2 недель.

Тяжесть поражения, в известной мере, зависит от состояния организма до облучения и его индивидуальных особенностей.

Радиоактивное загрязнение (заражение)

Радиоактивное загрязнение воздуха, местности, акватории и расположенных на них объектов происходит в результате выпадения радиоактивных веществ (РВ) из облака ядерного взрыва.

При температуре примерно 1700 °С свечение светящейся области ядерного взрыва прекращается и она превращается в темное облако, к которому поднимается пылевой столб (поэтому облако имеет грибовидную форму). Это облако движется по направлению ветра, и из него выпадают РВ.

Параметрами радиоактивного загрязнения являются доза облучения (по воздействию на людей) и мощность дозы излучения -- уровень радиации (по степени загрязнения местности и различных объектов). Эти параметры являются количественной характеристикой поражающих факторов: радиоактивного загрязнения при аварии с выбросом РВ, а также радиоактивною загрязнения и проникающей радиации при ядерном взрыве.

На местности, подвергшейся радиоактивному заражению при ядерном взрыве, образуются два участка: район взрыва и след облака.

По степени опасности зараженную местность по следу облака взрыва принято делить на четыре зоны (рис. 4):

Зона А -- зона умеренного заражения. Характеризуется дозой излучения до полного распада радиоактивных веществ на внешней границе зоны 40 рад и на внутренней -- 400 рад. Площадь зоны А составляет 70-80 % площади всего следа.

Зона Б -- зона сильного заражения. Дозы излучения на границах равны соответственно 400 рад и 1200 рад. Площадь зоны Б -- примерно 10 % площади радиоактивною следа.

Зона В -- зона опасного заражения. Характеризуется дозами излучения на границах 1200 рад и 4000 рад.

Зона Г -- зона чрезвычайно опасного заражения. Дозы на границах 4000 рад и 7000 рад.

Электромагнитный импульс

Электромагнитный импульс (ЭМИ) -- это совокупность электрических и магнитных полей, возникающих в результате ионизации атомов среды под воздействием гамма-излучения. Продолжительность его действия составляет несколько миллисекунд.

Основными параметрами ЭМИ являются наводимые в проводах и кабельных линиях токи и напряжения, которые могут приводить к повреждению и выводу из строя радиоэлектронной аппаратуры, а иногда и к повреждению работающих с аппаратурой людей.

При наземном и воздушном взрывах поражающее действие электромагнитного импульса наблюдается на расстоянии нескольких километров от центра ядерного взрыва.

Наиболее эффективной защитой от электромагнитного импульса является экранирование линий энергоснабжения и управления, а также радио- и электроаппаратуры.

Очаг ядерного поражения -- это территория, в пределах которой в результате применения ядерного оружия произошли массовые поражения и гибель людей, сельскохозяйственных животных и растений, разрушения и повреждения зданий и сооружений, коммунально-энергетических и технологических сетей и линий, транспортных коммуникаций и других объектов.

Зоны очага ядерного взрыва.

Для определения характера возможных разрушений, объема и условий проведения аварийно-спасательных и других неотложных работ очаг ядерного поражения условно делят на четыре зоны: полных, сильных, средних и слабых разрушений.

Зона полных разрушений имеет па границе избыточное давление на фронте ударной волны 50 кПа и характеризуется массовыми безвозвратными потерями среди незащищенного населения (до 100 %), полными разрушениями зданий и сооружений, разрушениями и повреждениями коммунально-энергетических и технологических сетей и линий, а также части убежищ гражданской обороны, образованием сплошных завалов в населенных пунктах. Лес полностью уничтожается.

Зона сильных разрушений с избыточным давлением на фронте ударной волны от 30 до 50 кПа характеризуется: массовыми безвозвратными потерями (до 90 %) среди незащищенного населения, полными и сильными разрушениями зданий и сооружений, повреждением коммунально- энергетических и технологических сетей и линий, образованием местных и сплошных завалов в населенных пунктах и лесах, сохранением убежищ и большинства противорадиационных укрытий подвального типа.

Зона средних разрушений с избыточным давлением от 20 до 30 кПа характеризуется безвозвратными потерями среди населения (до 20 %), средними и сильными разрушениями зданий и сооружений, образованием местных и очаговых завалов, сплошных пожаров, сохранением коммунально-энергетических сетей, убежищ и большинства противорадиационных укрытий.

Зона слабых разрушений с избыточным давлением от 10 до 20 кПа характеризуется слабыми и средними разрушениями зданий и сооружений.

Персонал объектов экономики и население, попадающие в зоны радиоактивного заражения, подвергаются воздействию ионизирующих излучений, что вызывает лучевую болезнь. Тяжесть болезни зависит от полученной дозы излучения (облучения). Зависимость степени лучевой болезни от величины дозы излучения приведена в табл. 1.

Таблица 1. Зависимость степени лучевой болезни от величины дозы облучения.

Ядерное оружие - это самое опасное оружие массового поражения, известное миру на сегодняшний день. Ядерные ракеты, несущие на себе смертоносный запал, весят тонны, а иногда и десятки тонн. Они обладают огромным запасом топлива, что позволяет им облететь Землю несколько раз и попасть в заданную точку с любого конца нашей планеты. Обладая огромной скоростью, они становятся неуязвимыми для многих систем противоракетной обороны (ПРО) стран мира. Ядерное оружие, как и любое другое, обладает рядом факторов, делающих его универсальным в своем роде.

Поражающий фактор

Данный фактор заключается в площади, которая подвергнется удару и будет заражена радиацией. У каждой ядерной ракеты этот фактор различный. Поражающий фактор напрямую зависит от мощности ядерной ракеты, которая характеризуется в тротиловом эквиваленте.

Рис. 1. Взрыв однофазной ядерной бомбы мощностью 23 кт. Полигон в Неваде. 1953 год

  • Ядерная волна
  • Световое излучение
  • Электромагнитный импульс

Ядерная волна

Данная волна представляет собой движение воздушных масс параллельно поверхности земли. Вызвана она огромным выбросом энергии. Ядерная волна - это один из самых страшных подпунктов поражающего фактора. Даже перед ядерной волной самой маленькой ракеты не устоит ни одно здание. Волна взрыва распространяется на огромные расстояния, начиная с нескольких километров и заканчивая несколькими десятками, в исключительных случаях в радиусе 100 километров не остается ничего живого. Все превращается в прах.

Световое излучение

Второй по мощности подпункт поражающего фактора. Он является кратковременным и возникает только в момент соприкосновения боеголовки с землей. После контакта происходит выброс энергии невероятной силы. Он сопровождается яркой вспышкой света, которая сравнивается с яркостью солнца. Казалось бы, ничего страшного в этом нет. Однако свет такой яркости способен сжечь все вокруг себя в радиусе нескольких десятков километров.

Рис. 2. Тополь-М на Тверской улице Москвы во время репетиции парада Если в момент взрыва человек, находившийся в 15 километрах от него, смотрел в ту сторону, то ему гарантированно сожжет сетчатку глаза. Скорость света огромна - почти 300000000 м/с. С такой же скоростью он распространяется и в момент взрыва. Световой поток состоит из таких излучений, как инфракрасное, видимое и даже ультрафиолетовое.

Излучение радиации (проникающая радиация)

Так как ядерная бомба состоит из химических элементов, которые излучают радиацию, в частности это уран и цезий, соответственно - взрыв такого оружия будет вызывать моментальное распространение радиации на огромные территории. Такая радиация представляет собой поток направленных гамма-лучей, а также нейтронов. Длительность проникающей радиации, как правило, составляет 10-15 секунд. Данный тип радиации опасен тем, что он способен проникать в любые помещения и здания. Однако чем прочнее материал, через который она проходит, тем меньше будет ее сила. Так, например, пройдя через сталь толщиной 2,8 см, сила радиации ослабевает примерно в 2 раза.

Важно! Количество нейтронов в обычных ядерных бомбах составляет около 30% от общей массы. А если бомбы или ракеты нейтронного характера , тогда это число повышается до 70-80%. Для того чтобы обезопасить мирное население в период ядерной войны, создаются специальные сооружения, которые позволяют ослабить проникающую радиацию приблизительно в 5000 раз.

Рис. 3. PC-24 Ярс

Радиоактивное заражение

  1. Зона А . Она располагается дальше всех от эпицентра взрыва. Допустимая доза в ней составляет от 40 до 400 рад. Такая зона называется зоной умеренного заражения.
  2. Зона Б . Статус зоны сильного заражения носит участок, где допустимая радиация находится в промежутке от 400 до 1200 рад.
  3. Зона В. Называется зоной опасного заражения. Допустимые значения радиации на этом участке могут находится от 1200 до 4000 рад.
  4. Зона Г. Считается чрезвычайно опасной. Здесь доза излучения может достигать 7000 рад.

Важно! Смертельная для человека доза составляет от 600 до 1000 рад. При мощности излучения, превышающей отметку в 7000 рад, смерть наступает мгновенно. Человек просто сгорает заживо.

Электромагнитный импульс

Данный импульс возникает в процессе ионизации при гамма-излучении. Его длительность не превышает пару миллисекунд. Однако этот импульс распространяется со сверхзвуковой скоростью. Поэтому нескольких миллисекунд ему хватит, чтобы в радиусе нескольких десятков километров вывести всю электронику из строя.

Именно по этой простой причине вся военная техника оснащена не бензиновыми, а дизельными силовыми агрегатами. Для того, чтобы воспламенилось бензиновое топливо, необходима искра. В двигатель она поступает только в том случае, если повернуть замок зажигания. Но он не сможет выдать необходимое количество электричества, так как электромагнитный импульс вывел его из строя. Дизель же воспламеняется за счет сжатия. Для того чтобы мотор запустился, достаточно просто толкнуть автомобиль.

Рис. 4. Ракета Р-36М Сатана

Вес, длина и способ запуска

  1. Бомбы. Их необходимо сбрасывать непосредственно с авиации.
  2. Ракеты , в том числе и баллистические. Они имеют в своем строении определенный запас топлива, который позволяет летать им очень далеко и долго. В свою очередь они делятся на два класса:
    • Запускаемые с техники , которые может быстро передвигаться и менять место своей дислокации. Однако, для полной боеготовности к запуску таким ракетам требуется время с продолжительностью около 5 минут.
    • Базирующиеся в шахтах . Данный тип ракет уникален тем, что никто, кроме президента и министра обороны не знает их расположение, а также число. Для их развертывания требуется приблизительно столько же времени, но ракеты такого типа могут облететь весь земной шар несколько раз.
  • Тополь-М . Признана самой мобильной ядерной установкой. Производство осуществляется с 1994 года. Вес составляет 46,5 тонн. Длина - 17,5 метра. Является основой ядерного щита России.
  • Ярс РС-24 . Самая защищенная ракета. Масса около 47 тонн. Длина приблизительно 23 метра.
  • Р-36М Сатана . Признана самой тяжелой ядерной ракетой в нашей стране. Ее вес составляет 211 тонн. Длина - 34,3 метра.
  • РС-28 Сармат . Длина составляет 30-35 метров. Вес более 200 тонн.

История применения ядерного оружия

  • Вооруженные силы США сбросили на Хиросиму ядерную ракету “Малыш”, мощность которой составляла около 15 килотонн в тротиловом эквиваленте.
  • На Нагасаки была сброшена бомба “Толстяк”. Ее мощность составила более 21 килотонны тротила.

Важно! За всю длительную историю строения ядерного оружия абсолютным рекордсменом стала советская ракета “Царь-бомба”, чья мощность составляла 101,5 мегатонны.

Ядерное оружие (ЯО) - оружие массового поражения взрывного действия, основанное на использовании энергии, выделяющейся при цепных реакциях деления тяжелых ядер некоторых изотопов урана и плутония или при термоядерных реакциях синтеза легких ядер изотопов водорода (дейтерия и трития) в более тяжелые, например ядра изотопов гелия.

Это оружие включает различные ядерные боеприпасы (боевые части ракет и торпед, авиационные и глубинные бомбы, артиллерийские снаряды и мины, снаряженные ядерными зарядными устройствами), средства управления ими и доставки их к цели (носители).

Поражающее действие ядерного взрыва зависит от мощности боеприпаса, вида взрыва, типа ядерного зарядного устройства.

Поражающие факторы ядерного взрыва (рис. 3.16):

  • воздушная ударная волна;
  • световое излучение;
  • проникающая радиация;
  • радиоактивное заражение местности.


Рис. 3.16.
При ядерном взрыве за миллионные доли секунды в зоне протекания ядерных реакций температура повышается до нескольких миллионов градусов, а максимальное давление достигает миллиардов атмосфер. Высокие температура и давление вызывают мощную воздушную ударную волну.

Воздушная ударная волна. Область резкого сжатия воздуха, распространяющаяся во все стороны от центра взрыва со сверхзвуковой скоростью.
Поражения, наносимые людям (рис. 3.17.):

  • легкие - скоропроходящие нарушения функций организма (звон в ушах, головокружение, головная боль, возможные вывихи и ушибы);
  • средние — вывихи конечностей, контузия головного мозга, повреждение органов слуха, кровотечение из носа и ушей;
  • тяжелые — сильные контузии всего организма, потеря сознания, переломы конечностей, возможны повреждения внутренних органов;
  • крайне тяжелые — переломы конечностей, внутренние кровотечения, сотрясение мозга, потеря сознания, возможны смертельные исходы.



Рис. 3.17.

Разрушения хозяйственных объектов, три степени:

  • слабая - объект не выходит из строя, необходим незначительный ремонт;
  • средняя - когда разрушены главным образом второстепенные части объекта, а основные элементы могут быть восстановлены путем проведения среднего и капитального ремонта;
  • сильная — когда разрушены основные элементы объекта и объект не может быть восстановлен.

Для жилых и промышленных зданий обычно берется еще и четвертая степень — их полное разрушение.

Защита населения. Основной способ — укрытие, для чего используются все виды защитных сооружений: убежища, укрытия (окопы, открытые и перекрытые траншеи, погреба, подвалы и т.д.). Перекрытые траншеи уменьшают поражение людей в 2 раза, убежища с заглублением более 10 м полностью исключают поражение людей.
Световое излучение ядерного взрыва - электромагнитное излучение оптического диапазона в видимой, ультрафиолетовой и инфракрасной областях спектра.

Источником светового излучения является светящаяся область ядерного взрыва, состоящая из нагретых до высокой температуры паров конструкционных материалов боеприпаса и воздуха, а при наземных взрывах — и испарившегося грунта. Температура светящейся области может достигать 8—10 000 °С. Время свечения светящейся области зависит от мощности ядерного взрыва и составляет от 0,2 до 40 с.

Поражающий фактор светового излучения: световой импульс — это количество энергии светового излучения, падающей за время излучения на единицу площади неподвижной неэкранированной поверхности, расположенной перпендикулярно к направлению прямого излучения, без учета отраженного излучения. Световой импульс измеряется в джоулях на квадратный метр (кДж/м2) или калориях на квадратный сантиметр (кал/см2). 1 кал/см2 ~ 40 кДж/м2.

При оценке воздействия светового излучения на людей и объекты экономики необходимо учитывать и отраженные лучи. За счет отражения от облаков или снежного покрова поражающее действие светового излучения может увеличиваться в 2 раза.

Световое излучение ядерного взрыва при непосредственном воздействии на людей вызывает ожоги открытых участков тела, ослепление или ожоги сетчатки глаз. Ожоги могут происходить непосредственно от излучения или пламени, возникшего от возгорания различных материалов под действием светового излучения.

Независимо от причин возникновения ожоги разделяют по тяжести поражения организма на четыре степени (рис. 3.18).


Рис. 3.18.
Ожоги первой степени выражаются в болезненности, покраснении и припухлости кожи. Ожоги второй степени характеризуются образованием пузырей. Для ожогов третьей степени характерно омертвение кожи с частичным поражением росткового слоя. При ожогах четвертой степени происходит обугливание кожи и подкожной клетчатки.

Пораженные с ожогами первой и второй степени обычно выздоравливают, а с третьей и четвертой при значительной части поражения кожного покрова могут погибнуть.

Поражения глаз световым излучением, три вида:

  • временное ослепление — может длиться днем 2 — 5 мин, а ночью — до 30 мин;
  • ожоги глазного дна — возникают в том случае, когда человек фиксирует взгляд на точке взрыва. Это может происходить даже на таких расстояниях, на которых световое излучение не вызывает никаких ожогов. Поражение глазного дна возможно при световом импульсе 6 кДж/м2;
  • ожоги роговицы и век — возникают на тех же расстояниях,
    что и ожоги кожи.

Степень воздействия светового излучения на элементы объекта зависят от свойств конструкционных материалов.

Защита от светового излучения более проста, чем от других поражающих факторов ядерного взрыва, поскольку любая непрозрачная преграда, любой объект, создающий тень, могут служить защитой от светового излучения.

Проникающая радиация — поток гамма-излучения и нейтронов, испускаемых в окружающую среду из зоны ядерного взрыва.

В зависимости от энергии гамма-излучений и нейтронов их поток может распространяться в воздухе во все стороны на расстояние 2,5 - 3 км. Время действия проникающей радиации 10 - 15 с.

Поражающее действие проникающей радиации на людей заключается в ионизации атомов и молекул биологической ткани гамма-излучением и нейтронами, в результате чего нарушается нормальный обмен веществ и изменяется характер жизнедеятельности клеток, отдельных органов и систем организма, что приводит к возникновению специфического заболевания — лучевой болезни.

В зависимости от поглощенной биологическими тканями организма дозы различают четыре степени лучевой болезни (рис. 3.19).



Рис. 3.19.
Поглощенная доза характеризуется количеством энергии, поглощенной тканями организма человека. Единицей ее измерения в системе СИ является грей (Гр), а внесистемной — рад. 1 Гр = 100 рад = 1 Дж/кг.

Лучевая болезнь первой степени — скрытый период продолжается 2 — 3 недели, после чего появляются недомогание, общая слабость, тошнота, головокружение, периодическое повышение температуры. В крови уменьшается содержание белых кровяных шариков (лейкоцитов). Лучевая болезнь первой степени излечима.

Лучевая болезнь второй степени — скрытый период длится около недели. Признаки заболевания выражены более ярко. При активном лечении излечение наступает через 1,5 — 2 мес.

Лучевая болезнь третьей степени — скрытый период составляет несколько часов. Болезнь протекает интенсивно и тяжело. В случае благоприятного исхода выздоровление может наступить через 6-8 мес.

Лучевая болезнь четвертой степени является наиболее опасной. Без лечения обычно оканчивается смертью в течение 2 недель.

Тяжесть поражения, в известной мере, зависит от состояния организма до облучения и его индивидуальных особенностей.

В элементах объектов экономики при действии нейтронов может образовываться наведенная активность, которая при последующей эксплуатации объекта будет оказывать поражающее действие на обслуживающий персонал. Под воздействием больших доз нейтронных потоков теряют работоспособность системы радиоэлектроники и автоматики.

Радиоактивное заражение местности приземного слоя атмосферы и воздушного пространства возникает в результате прохождения радиоактивного облака ядерного взрыва или газоаэрозольного облака радиационной аварии.

Источники радиоактивного заражения:

при ядерном взрыве:

  • продукты деления ядерных - взрывчатых веществ (Pu-239, U-235,U-238);
  • радиоактивные изотопы (радионуклиды), образующиеся в грунте и других материалах под воздействием нейтронов — наведенная активность;
  • непрореагировавшая часть ядерного заряда;

при радиационной аварии:

  • отработанное ядерное топливо;
  • часть ядерного топлива.

При наземном ядерном взрыве светящаяся область касается поверхности земли и сотни тонн грунта мгновенно испаряются. Восходящие за огненным шаром воздушные потоки подхватывают и поднимают значительное количество пыли. В результате образуется мощное облако, состоящее из огромного количества радиоактивных и неактивных частиц, размеры которых колеблются от нескольких микрон до нескольких миллиметров.

На следе облака ядерного взрыва в зависимости от степени заражения и опасности поражения людей на картах (схемах) принято наносить четыре зоны (А, Б, В, Г). При радиационной аварии на карты наносятся пять зон (М, А, Б, В, Г) заражения. Каждая зона характеризуется мощностью дозы излучения — Рди и дозой излучения за период полного распада (ипр) радиоактивного вещества при ядерном взрыве - Дипр или дозой излучения за первый год облучения (ипго) при радиационных авариях — Дипго (зоны заражения на следе радиоактивного облака представлены на рис. 4.20).

Зона М - "Радиационная опасность", наносится при радиационных авариях красным цветом и только в мирное время.
Зона А — "Умеренное заражение", наносится синим цветом.
Зона Б — "Сильное заражение", наносится зеленым цветом.
Зона В — "Опасное заражение", наносится коричневым цветом.
Зона Г — "Чрезвычайно опасное заражение", наносится черным цветом.

Поражения человеку на следе облака наносится ионизирующими излучениями: альфа-частицами (потоком ядер гелия), бета-частицами (потоком электронов), гамма-лучами (потоком фотонов, корпускул лучистой энергии), а также нейтронами. Опасность поражения людей на открытой местности на следе радиоактивного облака с течением времени уменьшается.

Радиоактивные загрязнения, как и проникающая радиация, могут вызвать у человека лучевую болезнь. Степень лучевой болезни зависит от величины полученной дозы излучения и времени, в течение которого человек подвергается облучению. Различают однократное, многократное и острое облучения. Однократным считается облучение, полученное в течение первых четырех суток. Облучение, полученное за время, превышающее четверо суток, является многократным. Острым называют облучение однократной дозой в 100 рад и более.

Возможные последствия облучения человека в зависимости от времени и полученной дозы приведены в табл. 3.24.


Я́дерное ору́жие (или а́томное ору́жие) — совокупность ядерных боеприпасов, средств их доставки к цели и средств управления; относится к оружию массового поражения наряду с биологическим и химическим оружием. Ядерный боеприпас — оружие взрывного действия, основанное на использовании ядерной энергии, высвобождающейся при цепной ядерной реакции деления тяжёлых ядер и/или термоядерной реакции синтеза лёгких ядер.

Содержание

Поражающие факторы

При подрыве ядерного боеприпаса происходит ядерный взрыв, поражающими факторами которого являются:

Люди, непосредственно подвергшиеся воздействию поражающих факторов ядерного взрыва, кроме физических повреждений, испытывают мощное психологическое воздействие от ужасающего вида картины взрыва и разрушений. Электромагнитный импульс непосредственного влияния на живые организмы не оказывает, но может нарушить работу электронной аппаратуры.

Классификация ядерных боеприпасов

Все ядерные боеприпасы могут быть разделены на две основные категории:

  • Иногда в отдельную категорию выделяется нейтронное оружие — двухфазный боеприпас малой мощности (от 1 кт до 25 кт), в котором 50—75% энергии получается за счет термоядерного синтеза. Поскольку основным переносчиком энергии при синтезе являются быстрые нейтроны, то при взрыве такого боеприпаса выход нейтронов может в несколько раз превышать выход нейтронов при взрывах однофазных ядерных взрывных устройств сравнимой мощности. За счет этого достигается существенно больший вес поражающих факторов нейтронное излучение и наведённая радиоактивность (до 30% от общего энерговыхода), что может быть важным с точки зрения задачи уменьшения радиоактивных осадков и снижения разрушений на местности при высокой эффективности применения против танков и живой силы. Следует отметить мифический характер представлений о том, что нейтронное оружие поражает исключительно людей и оставляет в сохранности строения. По разрушительному воздействию взрыв нейтронного боеприпаса в сотни раз превосходит любой неядерный боеприпас.

Мощность ядерного заряда измеряется в тротиловом эквиваленте — количестве тринитротолуола, которое нужно взорвать для получения той же энергии. Обычно его выражают в килотоннах (кт) и мегатоннах (Мт). Тротиловый эквивалент условен: во-первых, распределение энергии ядерного взрыва по различным поражающим факторам существенно зависит от типа боеприпаса и, в любом случае, сильно отличается от химического взрыва. Во-вторых, просто невозможно добиться полного сгорания соответствующего количества химического взрывчатого вещества.

Принято делить ядерные боеприпасы по мощности на пять групп:

  • сверхмалые (менее 1 кт);
  • малые (1 — 10 кт);
  • средние (10 — 100 кт);
  • крупные (большой мощности) (100 кт — 1 Мт);
  • сверхкрупные (сверхбольшой мощности) (свыше 1 Мт).

Принцип действия

В основу ядерного оружия положены неуправляемые цепная реакция деления тяжелых ядер и реакции термоядерного синтеза.

Варианты детонации

Существуют две основные схемы подрыва делящегося заряда: пушечная, иначе называемая баллистической, и имплозивная.

Пушечная схема


Верхний блок показывает принцип работы пушечной схемы. Второй и третий показывают возможность преждевременного развития цепной реакции до полного соединения блоков.



Имплозивная схема


В ядерных зарядах на основе реакции деления в центре полой сборки обычно размещается небольшое количество термоядерного топлива (дейтерий и тритий), которое нагревается и сжимается в процессе деления сборки до такого состояния, что в нём начинается термоядерная реакция синтеза. Эту газовую смесь необходимо непрерывно обновлять, чтобы скомпенсировать непрерывно идущий самопроизвольный распад ядер трития. Выделяющиеся при этом дополнительные нейтроны инициируют новые цепные реакции в сборке и возмещают убыль нейтронов, покидающих активную зону, что приводит к многократному росту энергетического выхода от взрыва и более эффективному использованию делящегося вещества. Варьируя содержание газовой смеси в заряде получают боеприпасы с регулируемой в широких пределах мощностью взрыва.

Двухфазные боеприпасы позволяют повысить мощность ядерных взрывов до десятков мегатонн. Однако ракеты с разделяющимися боеголовками, высокая точность современных средств доставки и спутниковая разведка сделали устройства мегатонного класса практически ненужными. Тем более, что носители сверхмощных боеприпасов более уязвимы для систем ПРО и ПВО.



В двухфазном устройстве первая стадия физического процесса (primary) используется для запуска второй стадии (secondary), в ходе которой выделяется наибольшая часть энергии. Такую схему принято называть дизайном Теллера-Улама.

Энергия от детонации primary передаётся через специальный канал (interstage) в процессе радиационной диффузии квантов рентгеновского излучения и обеспечивает детонацию secondary посредством радиационной имплозии тампера/пушера, внутри которого находится дейтерид лития-6 и запальный плутониевый стержень. Последний также служит дополнительным источником энергии вместе с пушером и/или тампером из урана-235 или урана-238, причем совместно они могут давать до 85 % от общего энерговыхода ядерного взрыва. При этом термоядерный синтез служит в большей мере источником нейтронов для деления ядер. Под действием нейтронов деления на ядра Li в составе дейтерида лития образуется тритий, который сразу вступает в реакцию термоядерного синтеза с дейтерием.

Читайте также: