Сообщение применение электромагнитного поля

Обновлено: 04.07.2024

Электромагнитное поле (ЭМП) радиочастот характеризуется рядом свойств (способностью нагревать материалы, распространяться в пространстве и отражаться от границы раздела двух сред, взаимодействовать с веществом), благодаря которым ЭМП широко используются в различных отраслях народного хозяйства: промышленности, науке, технике, медицине. Электромагнитные волны диапазона низких, средних, высоких и очень высоких частот применяются для термообработки металлов, полупроводниковых материалов и диэлектриков (поверхностный нагрев металла, закалка и отпуск, напайка твердых сплавов на режущий инструмент, пайка, плавка металлов и полупроводников, сварка, сушка древесины и др.), в радиосвязи, радиовещании, медицине.

Для индукционного нагрева наиболее широко используются ЭМП частотой 60 - 74, 440 и 880 кГц. Индукционный нагрев осуществляется в основном магнитной составляющей ЭМП за счет вихревых токов, наводимых в материалах при воздействии на них ЭМП.

ЭМП диапазона ВЧ и ОВЧ часто применяются в радиосвязи, радиовещании, телевидении, медицине, для нагрева диэлектриков в высокочастотном электрическом поле (сварка полимерной пленок при изготовлении обложек для книг, папок, пакетов, игрушек, спецодежды, полимеризация клея при склейке деревянных изделий, нагрев пластмасс и пресспорошков и др.). Нагрев диэлектриков осуществляется в основном электрической составляющей ЭМП. Установки диэлектрического нагрева преимущественно работают на частотах 27, 39, 4О МГц.

Электромагнитные волны диапазона УВЧ, СВЧ и КВЧ (микроволны) используются в радиолокации, радионавигации, для радиорелейной связи, многоканальной радиосвязи, радиоастрономии, радиоспектроскопии, геодезии, дефектоскопии, физиотерапии и т. д. Иногда ЭМП УВЧ диапазона применяются для вулканизации резины, термической обработки пищевых продуктов, стерилизации, пастеризации, вторичного разогрева пищевых продуктов и т. д.

В физиотерапии ЭМП используют как мощный терапевтический фактор в комплексном лечении многих заболеваний (ВЧ-установки для диатермии и индуктотермии, специальные аппараты для УВЧ-терапии и СВЧ-аппараты для микроволновой терапии).

Источниками излучений электромагнитных волн низкой, средней, высокой и очень высокой частоты в производственное помещение являются ламповые генераторы.

В радиотехнических установках всех диапазонов частот, используемых для радиолокации, связи, радиовещания, основными источниками излучения энергии являются антенные системы. Паразитное излучение создается вследствие некачественного экранирования ВЧ-элементов в блоках передатчиков, в устройствах сложения мощностей и разделительных фильтрах, неплотности соединений волноводных трактов, отсутствия экранирования линий передачи электромагнитной энергии.

В электронной промышленности источниками электромагнитных излучений радиоволнового диапазона на участках динамических испытаний приборов могут быть испытываемые приборы, элементы волноводных трактов, измерительные генераторы.

В процессе эксплуатации СВЧ печей могут возникать утечки энергии в результате нарушения экрана рабочей камеры. Источниками ЭМП в физиотерапии при работе высокочастотных аппаратов являются электроды и СВЧ - излучатели.

При оценке условий труда учитываются время воздействия ЭМП характер облучения работающих (непрерывный, прерывистый, интермиттирующий).

При осуществлении санитарного надзора за радиотехническими устройствами ведется протокол измерений уровней электромагнитных полей на рабочих местах и в случае превышения ПДУ даются рекомендации по снижению значений ЭМП. Большое значение имеет паспортизация установок. Паспорт установки должен включать в себя технические данные генератора (мощность, частотный диапазон, назначение), схему размещения в производственном помещении.

Практика показывает, что степень облучения работающих на установкаx индукционного и диэлектрического нагрева зависит от мощности установок и степени экранирования ВЧ – элементов, а также от расположения рабочего места относительно источника излучения.

При эксплуатации радиочастотных установок наряду с электромагнитными полями существенное гигиеническое значение могут иметь сопутствующие физические и химические факторы производственной среды (шум, высокие и низкие температуры, углеводороды и др.), обусловленные работой генераторных схем и особенностями технологических процессов, а также характер самого труда.




Электромагнитное поле (ЭМП) радиочастот характеризуется рядом свойств (способностью нагревать материалы, распространяться в пространстве и отражаться от границы раздела двух сред, взаимодействовать с веществом), благодаря которым ЭМП широко используются в различных отраслях народного хозяйства: промышленности, науке, технике, медицине. Электромагнитные волны диапазона низких, средних, высоких и очень высоких частот применяются для термообработки металлов, полупроводниковых материалов и диэлектриков (поверхностный нагрев металла, закалка и отпуск, напайка твердых сплавов на режущий инструмент, пайка, плавка металлов и полупроводников, сварка, сушка древесины и др.), в радиосвязи, радиовещании, медицине.

Для индукционного нагрева наиболее широко используются ЭМП частотой 60 - 74, 440 и 880 кГц. Индукционный нагрев осуществляется в основном магнитной составляющей ЭМП за счет вихревых токов, наводимых в материалах при воздействии на них ЭМП.

ЭМП диапазона ВЧ и ОВЧ часто применяются в радиосвязи, радиовещании, телевидении, медицине, для нагрева диэлектриков в высокочастотном электрическом поле (сварка полимерной пленок при изготовлении обложек для книг, папок, пакетов, игрушек, спецодежды, полимеризация клея при склейке деревянных изделий, нагрев пластмасс и пресспорошков и др.). Нагрев диэлектриков осуществляется в основном электрической составляющей ЭМП. Установки диэлектрического нагрева преимущественно работают на частотах 27, 39, 4О МГц.

Электромагнитные волны диапазона УВЧ, СВЧ и КВЧ (микроволны) используются в радиолокации, радионавигации, для радиорелейной связи, многоканальной радиосвязи, радиоастрономии, радиоспектроскопии, геодезии, дефектоскопии, физиотерапии и т. д. Иногда ЭМП УВЧ диапазона применяются для вулканизации резины, термической обработки пищевых продуктов, стерилизации, пастеризации, вторичного разогрева пищевых продуктов и т. д.

В физиотерапии ЭМП используют как мощный терапевтический фактор в комплексном лечении многих заболеваний (ВЧ-установки для диатермии и индуктотермии, специальные аппараты для УВЧ-терапии и СВЧ-аппараты для микроволновой терапии).

Источниками излучений электромагнитных волн низкой, средней, высокой и очень высокой частоты в производственное помещение являются ламповые генераторы.

В радиотехнических установках всех диапазонов частот, используемых для радиолокации, связи, радиовещания, основными источниками излучения энергии являются антенные системы. Паразитное излучение создается вследствие некачественного экранирования ВЧ-элементов в блоках передатчиков, в устройствах сложения мощностей и разделительных фильтрах, неплотности соединений волноводных трактов, отсутствия экранирования линий передачи электромагнитной энергии.

В электронной промышленности источниками электромагнитных излучений радиоволнового диапазона на участках динамических испытаний приборов могут быть испытываемые приборы, элементы волноводных трактов, измерительные генераторы.

В процессе эксплуатации СВЧ печей могут возникать утечки энергии в результате нарушения экрана рабочей камеры. Источниками ЭМП в физиотерапии при работе высокочастотных аппаратов являются электроды и СВЧ - излучатели.

При оценке условий труда учитываются время воздействия ЭМП характер облучения работающих (непрерывный, прерывистый, интермиттирующий).

При осуществлении санитарного надзора за радиотехническими устройствами ведется протокол измерений уровней электромагнитных полей на рабочих местах и в случае превышения ПДУ даются рекомендации по снижению значений ЭМП. Большое значение имеет паспортизация установок. Паспорт установки должен включать в себя технические данные генератора (мощность, частотный диапазон, назначение), схему размещения в производственном помещении.

Практика показывает, что степень облучения работающих на установкаx индукционного и диэлектрического нагрева зависит от мощности установок и степени экранирования ВЧ – элементов, а также от расположения рабочего места относительно источника излучения.

При эксплуатации радиочастотных установок наряду с электромагнитными полями существенное гигиеническое значение могут иметь сопутствующие физические и химические факторы производственной среды (шум, высокие и низкие температуры, углеводороды и др.), обусловленные работой генераторных схем и особенностями технологических процессов, а также характер самого труда.

Электромагниты и их применение

Грузоподъемный электромагнит

Электромагниты получили настолько широкое распространение, что трудно назвать область техники, где бы они не применялись в том или ином виде. Они содержатся во многих бытовых приборах - электробритвах, магнитофонах, телевизорах и т.п. Устройства техники связи - телефония, телеграфия и радио немыслимы без их применения.

Электромагниты являются неотъемлемой частью электрических машин, многих устройств промышленной автоматики, аппаратуры регулирования и защиты разнообразных электротехнических установок. Развивающейся областью применения электромагнитов является медицинская аппаратура. Наконец, гигантские электромагниты для ускорения элементарных частиц применяются в синхрофазотронах.

Вес электромагнитов колеблется от долей грамма до сотен тонн, а потребляемая при их работе электрическая мощность - от милливатт до десятков тысяч киловатт.

силовой электромагнит

Особой областью применения электромагнитов являются электромагнитные механизмы. В них электромагниты используются в качестве привода для осуществления необходимого поступательного перемещения рабочего органа или поворота его в пределах ограниченного угла, или для создания удерживающей силы.

Примером подобных электромагнитов являются тяговые электромагниты, предназначенные для совершения определенной работы при перемещении тех или иных рабочих органов; электромагнитные замки; электромагнитные муфты сцепления и торможения и тормозные электромагниты; электромагниты, приводящие в действие контактные устройства в реле, контакторах, пускателях, автоматических выключателях; подъемные электромагниты, электромагниты вибраторов и т. п.

В ряде устройств наряду с электромагнитами или взамен их используются постоянные магниты (например, магнитные плиты металлорежущих станков, тормозные устройства, магнитные замки и т. п.).

грузоподъемный электромагнит

Электромагниты весьма разнообразны по конструктивным выполнениям, которые различаются по своим характеристикам и параметрам, поэтому классификация облегчает изучение процессов, происходящих при их работе.

В зависимости от способа создания магнитного потока и характера действующей намагничивающей силы электромагниты подразделяются на три группы: электромагниты постоянного тока нейтральные, электромагниты постоянного тока поляризованные и электромагниты переменного тока.

В нейтральных электромагнитах постоянного тока рабочий магнитный поток создается с помощью обмотки постоянного тока. Действие электромагнита зависит только от величины этого потока и не зависит от его направления, а следовательно, от направления тока в обмотке электромагнита. При отсутствии тока магнитный поток и сила притяжения, действующая на якорь, практически равны нулю.

Поляризованные электромагниты постоянного тока характеризуются наличием двух независимых магнитных потоков:(поляризующего и рабочего. Поляризующий магнитный поток в большинстве случаев создается с помощью постоянных магнитов. Иногда для этой цели используют электромагниты. Рабочий поток возникает под действием намагничивающей силы рабочей или управляющей обмотки. Если ток в них отсутствует, на якорь действует сила притяжения, создаваемая поляризующим магнитным потоком. Действие поляризованного электромагнита зависит как от величины, так и от направления рабочего потока, т. е. от направления тока в рабочей обмотке.

Электромагниты переменного тока

В электромагнитах переменного тока питание обмотки осуществляется от источника переменного тока. Магнитный поток, создаваемый обмоткой, по которой проходит переменный ток, периодически изменяется по величине и направлению (переменный магнитный поток), в результате чего сила электромагнитного притяжения пульсирует от нуля до максимума с удвоенной частотой по отношению к частоте питающего тока.

Однако для тяговых электромагнитов снижение электромагнитной силы ниже определенного уровня недопустимо, так как это приводит к вибрации якоря, а в отдельных случаях к прямому нарушению нормальной работы. Поэтому в тяговых электромагнитах, работающих при переменном магнитном потоке, приходится прибегать к мерам для уменьшения глубины пульсации силы (например, применять экранирующий виток, охватывающий часть полюса электромагнита).

исполнительные электромагниты

Кроме перечисленных разновидностей, в настоящее время большое распространение получили электромагниты с выпрямлением тока, которые по питанию могут быть отнесены к электромагнитам переменного тока, а по своим характеристикам приближаются к электромагнитам постоянного тока. Поскольку все же имеются некоторые специфические особенности их работы.

В зависимости от способа включения обмотки различают электромагниты с последовательными и параллельными обмотками.

Обмотки последовательного включения , работающие при заданном токе, выполняются с малым числом витков большого сечения. Ток, проходящий по такой обмотке, практически не зависит от ее параметров, а определяется характеристиками потребителей, включенных .последовательно с обмоткой.

Обмотки параллельного включения , работающие при заданном напряжении, имеют, как правило, весьма большое число витков и выполняются из провода малого сечения.

По характеру работы обмотки электромагниты разделяются на работающие в длительном, прерывистом и кратковременном режимах.

По скорости действия электромагниты могут быть с нормальной скоростью действия, быстродействующие и замедленно действующие. Это разделение является несколько условным и свидетельствует главным образом о том, приняты ли специальные меры для получения необходимой скорости действия.

Все перечисленные выше признаки накладывают свой отпечаток на особенности конструктивных выполнений электромагнитов.

Грузоподъемные электромагниты

Вместе с тем при всем разнообразии встречающихся на практике электромагнитов они состоят из основных частей одинакового назначения. К ним относятся катушка с расположенной на ней намагничивающей обмоткой (может быть несколько катушек и несколько обмоток), неподвижная часть магнитопровода, выполняемого из ферромагнитного материала (ярмо и сердечник) и подвижная часть магнитопровода (якорь). В некоторых случаях неподвижная часть магнитопровода состоит из нескольких деталей (основания, корпуса, фланцев и т. д.). а)

Якорь отделяется от остальных частей магнитопровода воздушными промежутками и представляет собой часть электромагнита, которая, воспринимая электромагнитное усилие, передает его соответствующим деталям приводимого в действие механизма.

Количество и форма воздушных промежутков, отделяющих подвижную часть магнитопровода от неподвижной, зависят от конструкции электромагнита. Воздушные промежутки, в которых возникает полезная сила, называются рабочими; воздушные промежутки, в которых не возникает усилия в направлении возможного перемещения якоря, являются-паразитными.

Поверхности подвижной или неподвижной части магнитопровода, ограничивающие рабочий воздушный промежуток, называют полюсами.

В зависимости от расположения якоря относительно остальных частей электромагнита различают электромагниты с внешним притягивающимся якорем, электромагниты со втягивающимся якорем и электромагниты с внешним поперечно движущимся якорем.

Характерной особенностью электромагнитов с внешним притягивающимся якорем является внешнее расположение якоря относительно обмотки. На него действует главным образом рабочий поток, проходящий от якоря к торцу шляпки сердечника. Характер перемещения якоря может быть вращательным (например, клапанный электромагнит) или поступательным. Потоки рассеяния (замыкающиеся помимо рабочего зазора) у таких электромагнитов практически не создают тягового усилия, и поэтому их стремятся уменьшить. Электромагниты этой группы способны развивать достаточно большое усилие, но обычно применяются при сравнительно небольших рабочих ходах якоря.

устройство электромагнита

Особенностью электромагнитов со втягивающимся якорем являются частичное расположение якоря в своем начальном положении внутри катушки и дальнейшее перемещение его в катушку в процессе работы. Потоки рассеяния у таких электромагнитов, особенно при больших воздушных зазорах, создают определенное тяговое усилие, в результате чего они являются полезными, особенно при сравнительно больших ходах якоря. Такие электромагниты могут выполняться со стопом или без него, причем форма поверхностей, образующих рабочий зазор, может быть различной в зависимости от того, какую тяговую характеристику нужно получить.

Наибольшее распространение получили электромагниты с плоскими и усеченно коническими полюсами, а также электромагниты без стопа. В качестве направляющей для якоря чаще всего применяется трубка из немагнитного материала, создающая паразитный зазор между якорем и верхней, неподвижной, частью магнитопровода.

Электромагниты со втягивающимся якорем могут развивать усилия и иметь ход якоря, изменяющиеся в очень большом диапазоне, что обусловливает их широкое распространение.

В электромагнитах с внешним поперечно движущимся якорем якорь перемещается поперек магнитных силовых линий, поворачиваясь на некоторый ограниченный угол. Такие электромагниты обычно развивают сравнительно небольшие усилия, но они позволяют путем соответствующего согласования форм полюсов и якоря получать изменения тяговой характеристики и высокий коэффициент возврата.

В каждой из трех перечисленных групп электромагнитов в свою очередь имеется ряд конструктивных разновидностей, связанных как с характером протекающего по обмотке тока, так и с необходимостью обеспечения заданных характеристик и параметров электромагнитов.

Франклинизация - лечебное применение воздействий постоянным электрическим полем высокого напряжения. Магнитные моменты электронов в атомах. Процесс распространения электромагнитного поля в пространстве. Примеры применения фотоэлементов и фотодиодов.

Рубрика Физика и энергетика
Вид контрольная работа
Язык русский
Дата добавления 09.06.2015
Размер файла 25,6 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

1. Электрическое поле

Электрическое поле -- одна из двух компонент электромагнитного поля, представляющая собой векторное поле, существующее вокруг тел или частиц, обладающих электрическим зарядом, а также возникающее при изменении магнитного поля (например, в электромагнитных волнах).

Франклинизация - лечебное применение воздействий постоянным электрическим полем высокого напряжения. При общем воздействии напряжение постоянного электрического поля достигает 50 кВ, при местном - 15-20 кВ.

При проведении воздействий, осуществляемых таким образом, что между одним из электродов (с иглами) и телом пациента, соединенным со вторым электродом, создается воздушный зазор в несколько сантиметров. В этом зазоре под влиянием высокого напряжения происходит ионизация воздуха с образованием аэроионов, окислов азота, озона, которые вдыхаются или действуют на раневую поверхность. К поверхности тканей, расположенных против игольчатого электрода (высокочувствительные зоны иннервации тройничным нервом, воротниковая зона, раневая поверхность), происходит перемещение ионов противоположного знака, поляризуются молекулы диэлектриков, образуется микроток в тканях с хорошей проводимостью. Все это активирует тканевые обменные процессы в области головы, головного мозга и его оболочек, а при воздействии на область повреждения - в области раневой или язвенной поверхности, т. е. оказывает сосудорасширяющее, гипотензивное, спазмолитическое действие, стимулирует эритропоэз.

Показано при расстройстве функций нервной системы (невроз, неврастения, шизофрения, мигрень, арахноидит) плохо заживляющие раны.

Ультравысокочастотная терапия - применение с лечебной целью воздействий на определенные участки тела непрерывным или импульсным электрическим полем ультравысокой частоты (э. п. УВЧ).

Изменения направления электрического поля вызывают с такой же частотой колебания ионов, вращение дипольных молекул, поляризацию диэлектрических частиц. Эти процессы сопровождаются образованием внутритканевого тепла, количество которого зависит не только от частоты поля, но и от электропроводности и диэлектрических свойств тканей.

В связи с очень большой частотой перемены направления поля значительно уменьшается емкостное сопротивление тканей, и они становятся легко проходимы для энергии высокочастотных колебаний. Примерно такую же емкостную проводимость на этих частотах приобретает и воздух. Поэтому э. п. УВЧ свободно проходит через зазор воздуха между конденсаторными пластинами и телом, через кожу с подкожным жировым слоем, жировые и соединительнотканные прослойки, проникает внутрь сосудов, суставов, через кости и костный мозг и другие ткани, не доступные для многих видов энергии.

Ряд ученых считает, что наряду с процессами теплообразования имеет значение и нетепловой (асциляторный) компонент.

Поводом явилась клиническая эффективность при интенсивностях, не вызывающих ощущение тепла при клинических формах, где тепло противопоказано. Электрическое поле УВЧ обладает противовоспалительным, улучшающим кровообращение, болеутоляющим, улучшающим функцию нервной системы, десенсибилизирующим действием.

Благодаря активной научно-технической деятельности, особенно в последние десятилетия, человек принес свои коррективы в окружающую нас атмосферу. Уровень напряженности электрического поля возрос и в некоторых местах стал уже небезразличен живому организму.

Особенно сильное воздействие на здоровье оказывает электрическое поле там где есть высоковольтные линии электропередач (ЛЭП), Напряженность электрического поля непосредственно под ЛЭП. в зависимости, конечно. от ее конструкции, достигает порой десятков киловольт на метр.

Исследования показали, что степень функциональных расстройств зависит от длительности пребывания человека в электрическом поле. Наиболее чувствительна нервная система. Вслед за ней, по-видимому, опосредованно, могут возникать расстройства деятельности и сердечно-сосудистой системы, изменения в составе крови.

Поэтому высоковольтные сооружений возводятся с учетом того, что люди, находящиеся в их зоне, соблюдают все необходимые гигиенические нормы.

Учеными установлена потенциальная опасность пребывания человека в электрическом поле, напряженность которого превышает 25 кВ/м. Здесь можно работать только с применением средств индивидуальной защиты.

Не зная о том как воздействует на организм электрическое поле высокого напряжения, некоторые люди в зоне ЛЭП разбивают огороды, подолгу и часто там бывают, ухаживая за грядками. Это недопустимо! Даже профессионалам, по долгу службы осуществляющим контроль и ремонт в этих местах, разрешается работать не более чем полтора часа в день, если напряженность там где электрическое поле достигает 15 кВ/м, При напряженности же в 20 кВ/м -- не более 10 минут.

В зоне электрического поля ЛЭП (линий электропередач) нежелательно гулять, кататься на лыжах, особенно детям, людям с ослабленной сердечно-сосудистой деятельностью. Это относится и к городским территориям, через которые проходят высоковольтные линии и высокое электрическое поле. Нужно максимально ограничить свое пребывание в подобных местах. Ночевки же безоговорочно исключаются.

Хотелось бы предостеречь любителей-огородников: не стройте никаких металлических домиков, сарайчиков для хранения инвентаря на территории ЛЭП, Прикосновение к такому сооружению, даже если человек изолирован от земли, например, резиновой обувью, может вызвать весьма сильный и далеко не всегда безопасный для жизни удар током.

2. Магнитное поле

Магнимтное помле -- силовое поле, действующее на движущиеся электрические заряды и на тела, обладающие магнитным моментом, независимо от состояния их движения; магнитная составляющая электромагнитного поля.

Магнитное поле может создаваться током заряженных частиц и/или магнитными моментами электронов в атомах (и магнитными моментами других частиц, что обычно проявляется в существенно меньшей степени) (постоянные магниты).

Кроме этого, оно возникает в результате изменения во времени электрического поля.

3. Электромагнитные волны

Электромагнитная волна - процесс распространения электромагнитного поля в пространстве.

Электромагнитная волна представляет собой процесс последовательного, взаимосвязанного изменения векторов напряжённости электрического и магнитного полей, направленных перпендикулярно лучу распространения волны, при котором изменение электрического поля вызывает изменения магнитного поля, которые, в свою очередь, вызывают изменения электрического поля.

2. Основными свойствами электромагнитных волн являются:

Спутники связи. Кабели. TASI.

Импульсно-кодовая модуляция. Электронная коммутация.

Системы кабельного телевидения.

4. Световые кванты

Фотоэлектрический эффект (фотоэффект) -- Явление взаимодействия света с веществом, в результате которого энергия фотонов передается электронам вещества. Для твердых и жидких тел различают внешний и внутренний фотоэффект. Внешний фотоэффект заключается в испускании электронов с поверхности вещества. При внутреннем фотоэффекте электроны, оставаясь в веществе, изменяют свое энергетическое состояние. В газах фотоэффект состоит в фотоионизации -- ионизации атомов или молекул под действием света.

В настоящее время существует три вида фотоэффекта:

Внутренний фотоэффект. Заключается в изменении проводимости полупроводников. Он используется в фоторезисторах, которые применяются в дозиметрах рентгеновского и ультрафиолетового излучения, также используется в медицинских приборах (оксигемометр) и в пожарной сигнализации.

Вентильный фотоэффект. Заключается в возникновении фото-ЭДС на границе веществ с разным типом проводимости, в результате разделения носителей электрического заряда электрическим полем. Он используется в солнечных батареях, в селеновых фотоэлементах и датчиках, регистрирующих уровень освещенности.

Внешний фотоэффект. Как уже говорилось ранее, это процесс выхода электронов из вещества в вакуум под действием квантов электромагнитного излучения. франклинизация электромагнитное поле фотодиод

Фотоэлементы, фотодиоды и фотосопротивления

Вакуумные и твёрдотельные фотоэлементы широко используются в системах сигнализации и охраны.

Чаще всего для этого применяются фотосопротивления, работающие навнутреннем фотоэффекте, или фотодиоды, реализующие вентильный фотоэффект. Фотоэлементы, использующие внешний фотоэффект используются реже.

Второй пример применения фотоэффекта вы можете обнаружить у себя дома. Это пульты дистанционного управления для телевизора, видеомагнитофона и так далее.

С этой разновидностью фотоэлектронных устройств мы в последнее время стали очень часто сталкиваться в обычной жизни. Если до недавнего времени о солнечных батареях мы слышали только применительно к космическим станциям и экспериментальным автомобилям, то теперь достаточно достать микрокалькулятор и, с вероятностью 90%, солнечная батарея перед вами -- ныне этими устройствами оснащены почти все распространённые модели простых микрокалькуляторов.

Фотоэлектрический эффект, наряду с явлением вторичной электронной эмиссии, используется в фотоэлектронных умножителях (ФЭУ).

Электронно-оптический преобразователь (ЭОП) -- это устройство для усиления яркости изображения как в видимой, так и в невидимой (ИК, УФ и других) областях спектра с преобразованием невидимого изображения в видимое.

Самое известное применение ЭОП -- это приборы ночного видения, преобразующие тепловое ИК-излучение в изображение видимого диапазона.

5. Развитие Вселенной. Происхождение Солнечной системы

Провести классификацию малых тел Солнечной системы, выделив состав и физические свойства

Малые тела Солнечной системы

железные, каменные и ледяные. Отражательная способность астероида равна примерно 15%.

Метеориты делятся на группы:

1. Каменные (до 2/3 частей) (92,8%),

2. Железные (до 1/3 части) (5,7% - 7%): металлические (или железо-никелевые),

3. Железокаменные (немного) (1,5%) - смешанные.

Подобные документы

Связь между переменным электрическим и переменным магнитным полями. Свойства электромагнитных полей и волн. Специфика диапазонов соответственного излучения и их применение в быту. Воздействие электромагнитных волн на организм человека и защита от них.

курсовая работа [40,5 K], добавлен 15.08.2011

Распространение радиоволн в свободном пространстве. Энергия электромагнитных волн. Источник электромагнитного поля. Принцип Гюйгенса - Френеля, зоны Френеля. Дифракция радиоволн на полуплоскости. Проблема обеспечения электромагнитной совместимости РЭС.

реферат [451,4 K], добавлен 29.08.2008

Описание свойств электромагнитных полей математическими средствами. Дефект традиционной классической электродинамики. Базовые физические представления современной теории электромагнитного поля, концепция корпускулярно-полевого дуализма микрочастицы.

статья [225,0 K], добавлен 29.11.2011

Понятие волны и ее отличие от колебания. Значение открытия электромагнитных волн Дж. Максвеллом, подтверждающие опыты Г. Герца и эксперименты П. Лебедева. Процесс и скорость распространения электромагнитного поля. Свойства и шкала электромагнитных волн.

реферат [578,5 K], добавлен 10.07.2011

Поля и излучения низкой частоты. Влияние электромагнитного поля и излучения на живые организмы. Защита от электромагнитных полей и излучений. Поля и излучения высокой частоты. Опасность сотовых телефонов. Исследование излучения видеотерминалов.

Помогаем учителям и учащимся в обучении, создании и грамотном оформлении исследовательской работы и проекта.

Темы исследований

Оформление работы

Наш баннер

Сайт Обучонок содержит исследовательские работы и проекты учащихся, темы творческих проектов по предметам и правила их оформления, обучающие программы для детей.


Код баннера:

Исследовательские работы и проекты

Применение магнитного поля в науке, технике и медицине


В исследовательском проекте по физике на тему "Применение магнитного поля в науке, технике и медицине" учащийся дает определение понятия "магнитное поле", изучает способы его образования и узнает о практическом применении магнитного поля в науке. В работе рассматривается понятие "Сила Ампера" и роль магнитного поля в создании техники.

Подробнее о работе:


В данной исследовательской работе по физике на тему "Применение магнитного поля в науке, технике и медицине" ученик 11 класса рассматривает теоретическую базу о магнитном поле, рассказывает историю его открытия и изучения, выясняет, какие силы действуют в магнитном поле. В своем проекте учащийся систематизировал материал о применении магнитного поля в практической жизни и науке, полученный из различных источников.

Автор в своем индивидуальном исследовательском проекте по физике о возможностях магнитного поля привел основные сведения, связанные с открытием данного явления и его использованием. Школьник рассказала о таких методах использования магнитного поля в медицине, как постоянная магнитотерапия, импульсная магнитотерапия, низкочастотная магнитотерапия и магнитно-резонансная томография.

Оглавление

Введение
1. Историческая справка.
2. Понятие о магнитном поле.
3. Применение магнитного поля.
4. Сила Ампера.
4.1. Амперметр.
4.2. Электродвигатель.
4.3. Электромагнит.
4.4. Маглев.
4.5. Телеграф.
4.6. Пушка Гаусса.
4.7. Динамик.
4.8. Сила Лоренца.
4.9. Кинескоп
4.10. Масс-спектограф.
4.11. Циклотрон.
4.12. Синхрофазотрон.
4.13. Магнетрон.
4.14. Магнитное поле в медицине.
4.15. Постоянная магнитотерапия.
4.16. Импульсная магнитотерапия.
4.17. Низкочастотная магнитотерапия.
4.18. Магнитно-резонансная томография.
Заключение
Источники информации.

Введение

Открытие магнитного поля – одно из самых важных научных открытий в истории человечества. Без него было бы трудно представить нашу современную жизнь: не было бы изобретено множество приборов, не были бы получены важнейшие технологии.

Данная исследовательская работа (проект) посвящается изучению применения магнитного поля в различных сферах деятельности человека.

Цель: узнать о практическом применении магнитного поля в науке, технике, медицине.

  • Провести анализ литературы по данной теме;
  • Изучить возникновение и действие магнитного поля;
  • Выяснить, какие силы действуют в магнитном поле;
  • Систематизировать материал, полученный из различных источников о применении магнитного поля в практической жизни.

Историческая справка


История магнетизма уходит корнями в глубокую древность, к античным цивилизациям Малой Азии. Именно на территории Малой Азии, в Магнезии, находили горную породу, образцы которой притягивались друг к другу. По названию местности такие образцы и стали называть "магнетиками".

И ещё 2600 лет до н.э. китайский император Хванг Ти вёл своё войско в густом тумане с помощью магнитной фигурки, что, поворачиваясь вокруг своей оси, всегда смотрела на юг. Это, как можно догадаться, и был своего рода прототип первого компаса. Уже со второго века н.э. в Китае изготавливались постоянные магниты, надолго сохраняющие магнитные свойства. А в 13 веке о магнитах и компасе узнали в Европе.

магнитное поле 1

магнитное поле 2

магнитное поле 3

Однако только в XIX веке была обнаружена связь между электричеством и магнетизмом, и возникло представление о магнитном поле.

В 1820 г. датский физик Ханс Кристиан Эрстед (1777-1851) обнаружил, что магнитная стрелка, расположенная рядом с электрическим проводником, отклоняется, когда по проводнику течет ток, т. е. вокруг проводника с током создается магнитное поле.

Его опыт имел большое значения для развития учения об электромагнитных явлениях.

магнитное поле 4

А узнав о работе Эрстеда, французский физик Андре Мари Ампер исследовал взаимодействие параллельных проводников с током. Он установил, что при наличии в проводниках разнонаправленных токов – проводники отталкиваются друг от друга. А если токи имеют одинаковое направление, то проводники будут притягиваться.

магнитное поле 5

Это были два самых известных опыта в истории изучения магнитного поля, которые подтолкнули других учёных делать всё новые и новые исследования в этой области.

Понятие о магнитном поле


Магнитное поле - это особый вид материи, посредством которой осуществляется взаимодействие между движущимися электрически заряженными частицами.

магнитное поле 6

Источниками магнитного поля являются постоянные магниты, проводники с током. Обнаружить магнитное поле можно по действию на магнитную стрелку, проводник с током и движущиеся заряженные частицы.

магнитное поле 7

Свойства магнитного поля:

  • магнитное поле создается движущимися заряженными частицами и телами, проводниками с током, постоянными магнитами;
  • магнитное поле действует на движущиеся заряженные частицы и тела, на проводники с током, на постоянные магниты, на рамку с током;
  • магнитное поле является вихревым, т.е. его силовые линии (линии магнитной индукции) замкнутые.

Теперь скажу о двух силах, действующих в магнитном поле:

1. Сила Ампера

Силой Ампера называется сила, которая действует на проводник с током, находящийся в магнитном поле.

Существует и специальный закон об этой силе, называемый законом Ампера: на проводник c током силой ​I​ и длиной ​l​, помещенный в магнитное поле с индукцией ​B⃗ ​, действует сила, модуль которой равен (произведению силы тока на вектор магнитной индукции и на синус альфа):

где ​α​ – угол между проводником с током и вектором магнитной индукции ​B⃗ ​.

Направление силы Ампера определяют по правилу левой руки: если ладонь левой руки расположить так, чтобы перпендикулярная к проводнику составляющая вектора магнитной индукции ​B⊥​ входила в ладонь, а четыре вытянутых пальца указывали направление тока в проводнике, то отогнутый на 90° большой палец покажет направление силы Ампера.

магнитное поле 9

2. Сила Лоренца

Сила Лоренца – сила, действующая на движущуюся заряженную частицу со стороны магнитного поля.

Формула для нахождения силы Лоренца:

F = q* B * V * siin a,

где ​q​ – заряд частицы, ​v​ – скорость частицы, ​B​ – модуль вектора магнитной индукции, ​α​ – угол между вектором скорости частицы и вектором магнитной индукции.

Направление силы Лоренца определяют по правилу левой руки: если ладонь левой руки расположить так, чтобы перпендикулярная к проводнику составляющая вектора магнитной индукции ​B⊥​ входила в ладонь, а четыре вытянутых пальца указывали направление скорости положительно заряженной частицы, то отогнутый на 90° большой палец покажет направление силы Лоренца.

магнитное поле 11

Силы Ампера и Лоренца широко применяются в науке и технике. Сейчас мы это рассмотрим.

Применение магнитного поля. Сила Ампера

Амперметр

Еще одно открытие Ампера – это закон действия магнитного поля на проводник с током. Он выражается прежде всего в действии магнитного поля на виток или рамку с током. Так, на виток с током в магнитном поле действует момент силы, которая стремится развернуть этот виток таким образом, чтобы его плоскость стала перпендикулярна линиям магнитного поля.

Угол поворота витка прямо пропорционален величине тока в витке. Если внешнее магнитное поле в витке постоянно, то значение модуля магнитной индукции также величина постоянная. Площадь витка при не очень больших токах также можно считать постоянной, следовательно, справедливо то, что сила тока равна произведению момента сил, разворачивающих виток с током, на некоторую постоянную при неизменных условиях величину.

M – момент сил, разворачивающих виток с током.

Следовательно, появляется возможность измерять силу тока по величине угла поворота рамки, которая реализована в измерительном приборе – амперметре.

магнитное поле 15

Электродвигатель

После открытия действия магнитного поля на проводник с током Ампер понял, что это открытие можно использовать для того, чтобы заставить проводник двигаться в магнитном поле. Так, магнетизм можно превратить в механическое движение – создать двигатель. Одним из первых, работающих на постоянном токе, был электродвигатель (рис. 3), созданный в 1834 г. русским электротехником Б.С. Якоби.

магнитное поле 16

Рассмотрим упрощенную модель двигателя, которая состоит из неподвижной части с закрепленными на ней магнитами – статора. Внутри статора может свободно вращаться рамка из проводящего материала, которая называется ротором. Для того чтобы по рамке мог протекать электрический ток, она соединена с клеммами при помощи скользящих контактов (рис. 4). Если подключить двигатель к источнику постоянного тока, то при замыкании цепи рамка с током начнет вращение.

Читайте также: