Сообщение об ученом генетике

Обновлено: 07.07.2024

Лауреаты Нобелевской премии по генетике. История великих открытий

10 декабря – день вручения Нобелевской премии! Мы хотим рассказать историю ее создания и познакомить читателя с самыми видными лауреатами премии в области генетики.

Нобелевская премия - самая престижная премия в области науки. О ней слышал каждый человек, даже если он далек от науки, как Нептун от Солнца. Премия названа в честь ученого Альфреда Нобеля, который за свою жизнь запатентовал 355 изобретений. Занятно, что сам он глубоко занимался производством взрывчатых веществ и изобрел динамит.

На основе этого, в 1900 году был создан независимый Фонд Нобеля с начальным капиталом 31 миллион шведских крон. Первые Нобелевские премии были присуждены 10 декабря 1901 г.

Генетика-относительно молодая, но очень важная и перспективная наука, которая может гордиться своими достижениями. Итак, кто и чем отличился в области генетики:

2. Американский генетик Герман Джозеф Мёллер в 1946 г. получил премию по физиологии и медицине за то, что смог доказать, что рентгеновские лучи могут увеличивать скорость мутации в генах в сотни и тысячи раз по сравнению с нормой.

4. Джордж Бидл и Эдуард Тейтем изучали грибки, образующие розовую плесень на хлебе. Они проанализировали множество поколений, помещали их в разные среды и установили, что определенные гены отвечают за синтез специфических клеточных веществ. Их открытия оказались полезными для увеличения фармакологического производства открытого Александером Флемингом пенициллина - вещества, образуемого грибками. Получили Нобелевскую премию в 1958 г.

5. Джеймс Дьюи Уотсон, Фрэнсис Крик открыли структуру дезоксирибонуклеиновой кислоты (ДНК) - вещества, которое содержит всю наследственную информацию. Открытие двуспиральной структуры произошло после того, как Морис Уилкинс тайно показал Уотсону и Крику рентгеновский снимок молекулы ДНК, сделанный его сотрудницей Розалинд Франклин. На этом снимке они четко узнали признаки спирали. Очевидно, что открытие пространственной структуры ДНК совершило революцию в мире науки и повлекло за собой целый ряд новых открытий, без которых нельзя представить не только современную науку, но и современную жизнь в целом. За это ученые удостоились Нобелевской премии.

8. Барух Бенацерраф, Жан Доссе и Джордж Снелл. Поскольку Барух в детстве страдал бронхиальной астмой, его интересовали ненормальной реакции организма на инородные агенты. В 1948 г. начал изучать механизмы аллергии. Ученые установили, что способность реагировать на определенные антитела определена генетически. Более того, у некоторых людей из -за высокой генетической способности отторгать инородные тела. Не приживаются имплантированные органы. За эти открытия ученые получили Нобелевскую премию в 1980 г.

9. Пол Берг, УолтеруГилберт и Фредэрик Сенгер изучали химический состав дезоксирибонуклеиновой кислоты (ДНК) и рибонуклеиновой кислоты (РНК). Берг начал свой первый эксперимент по получению рекомбинантной молекулы ДНК приблизительно в 1970 г., взяв для этого SV40 и вирус Escherichia coli. Технология, разработанная Бергом и его командой, позволила не только оперировать генами для создания новых фармацевтических средств, таких, как интерферон и гормоны роста, но и впервые так глубоко проникнуть в молекулярную биологию высших организмов. В 1980 г. Полу Бергу была присуждена половина Нобелевской премии по химии "за фундаментальные исследования биохимических свойств нуклеиновых кислот, в особенности рекомбинантных ДНК". Вторая половина премии была поделена между Уолтером Гилбертом и Фредериком Сенгером. Сенгер и его коллеги обнаружили полную последовательность более, чем 5400 оснований в ДНК одного вируса и 17 000 оснований в другом ДНК

11. Дж. Майкл Бишоп и Гарольд Э.Вармус. Работая в области молекулярной вирусологии, Вармус совместно с Дж. М. Бишопом в исследованиях 1970-х гг. сделали открытие, которое приоткрыло тайну этиологии опухолей (злокачественных и доброкачественных). Согласно полученным результатам, неконтролируемый рост клеток, образующих опухоль, вызывается не столько проникающим в клетку извне онковирусом, сколько внутренними процессами в самой клетке. Вармус доказал, что нормальные гены роста клетки вследствие случайных спонтанных мутаций или процесса старения могут изменять свою молекулярную структуру и таким образом превращаться в так называемые протовирусы онкогенной природы. За открытие клеточного происхождения онкогенных протовирусов Вармус совместно с Дж. М. Бишопом в 1989 г. были удостоены Нобелевской премии по физиологии и медицине.

12. Сидней Ольтман и Томас Чек изучали молекулу РНК. Открытие Олтмена и Чека показало, что первой появившейся на планете Земля молекулой могла быть и не белковая молекула, и не молекула ДНК. Молекула РНК тоже отвечает требуемым параметрам - она одновременно может служить и генетическим материалом, и обладать свойствами фермента. В 1989 им была присуждена Нобелевская премия за открытие каталитических свойств РНК.


Грегор Мендель (Грегор Иоганн Мендель) (1822-84) — австрийский естествоиспытатель, ученый-ботаник и религиозный деятель, монах, основоположник учения о наследственности (менделизм). Применив статистические методы для анализа результатов по гибридизации сортов гороха (1856-63), сформулировал закономерности наследственности (см. законы Менделя).

Грегор Мендель родился 22 июля 1822, Xейнцендорф, Австро-Венгрия, ныне Гинчице. Скончался 6 января 1884, Брюнн, ныне Брно, Чешская Республика.

Трудные годы учения

Иоганн родился вторым ребенком в крестьянской семье смешанного немецко-славянского происхождения и среднего достатка, у Антона и Розины Мендель. В 1840 Мендель окончил шесть классов гимназии в Троппау (ныне г. Опава) и в следующем году поступил в философские классы при университете в г. Ольмюце (ныне г. Оломоуц). Однако, материальное положение семьи в эти годы ухудшилось, и с 16 лет Мендель сам должен был заботиться о своем пропитании. Не будучи в силах постоянно выносить подобное напряжение, Мендель по окончании философских классов, в октябре 1843, поступил послушником в Брюннский монастырь (где он получил новое имя Грегор). Там он нашел покровительство и финансовую поддержку для дальнейшего обучения.

В 1847 Мендель был посвящен в сан священника. Одновременно с 1845 года он в течение 4 лет обучался в Брюннской теологической школе. Августинской монастырь св. Фомы был центром научной и культурной жизни Моравии. Помимо богатой библиотеки, он имел коллекцию минералов, опытный садик и гербарий. Монастырь патронировал школьное образование в крае.

Монах-преподаватель

Будучи монахом, Грегор Мендель с удовольствием вел занятия по физике и математике в школе близлежащего городка Цнайм, однако не прошел государственного экзамена на аттестацию учителя. Видя его страсть к знаниям и высокие интеллектуальные способности, настоятель монастыря послал его для продолжения обучения в Венский университет, где Мендель в качестве вольнослушателя проучился четыре семестра в период 1851-53, посещая семинары и курсы по математике и естественным наукам, в частности, курс известного физика К. Доплера. Хорошая физико-математическая подготовка помогла Менделю впоследствии при формулировании законов наследования. Вернувшись в Брюнн, Мендель продолжил учительство (преподавал физику и природоведение в реальном училище), однако вторая попытка пройти аттестацию учителя вновь оказалась неудачной.

Опыты над гибридами гороха

Совсем иные следствия вытекали из семилетней работы Менделя, по праву составляющей фундамент генетики. Во-первых, он создал научные принципы описания и исследования гибридов и их потомства (какие формы брать в скрещивание, как вести анализ в первом и втором поколении). Мендель разработал и применил алгебраическую систему символов и обозначений признаков, что представляло собой важное концептуальное нововведение.

Во-вторых, Грегор Мендель сформулировал два основных принципа, или закона наследования признаков в ряду поколений, позволяющие делать предсказания. Наконец, Мендель в неявной форме высказал идею дискретности и бинарности наследственных задатков: каждый признак контролируется материнской и отцовской парой задатков (или генов, как их потом стали называть), которые через родительские половые клетки передаются гибридам и никуда не исчезают. Задатки признаков не влияют друг на друга, но расходятся при образовании половых клеток и затем свободно комбинируются у потомков (законы расщепления и комбинирования признаков). Парность задатков, парность хромосом, двойная спираль ДНК — вот логическое следствие и магистральный путь развития генетики 20 века на основе идей Менделя.

Великие открытия часто признаются не сразу

Вокруг парадоксальной судьбы открытия и переоткрытия законов Менделя создан красивый миф о том, что его работа оставалась совсем неизвестной и на нее лишь случайно и независимо, спустя 35 лет, натолкнулись три переоткрывателя. На самом деле, работа Менделя цитировалась около 15 раз в сводке о растительных гибридах 1881, о ней знали ботаники. Более того, как выяснилось при анализе рабочих тетрадей К. Корренса, он еще в 1896 читал статью Менделя и даже сделал ее реферат, но не понял в то время ее глубинного смысла и забыл.

Судьба открытия Менделя — задержка на 35 лет между самим фактом открытия и его признанием в сообществе – не парадокс, а скорее норма в науке. Так, спустя 100 лет после Менделя, уже в период расцвета генетики, подобная же участь непризнания в течение 25 лет постигла открытие Б. Мак-Клинток мобильных генетических элементов. И это несмотря на то, что она, в отличие от Менделя, была ко времени своего открытия высоко авторитетным ученым и членом Национальной Академии наук США.

Томас Хант Морган


Уильям Бэтсон


1) Г. Мендель
Этот немецкий учёный заложил основы современной генетики, установив в 1865 году принцип дискретности (прерывности), наследовании признаков и свойств организмов. Также он доказал метод скрещивания (на примере гороха) и обосновал три закона, названных позже его именем.

Вложенные файлы: 1 файл

Учёные.docx

Учёные, которые внесли вклад в развитие селекции и генетики.

Этот немецкий учёный заложил основы современной генетики, установив в 1865 году принцип дискретности (прерывности), наследовании признаков и свойств организмов. Также он доказал метод скрещивания (на примере гороха) и обосновал три закона, названных позже его именем.

В начале двадцатого века этот американский биолог обосновал хромосомную теорию наследственности, согласно которой наследственные признаки определяются хромосомами - органоидами ядра всех клеток организма. Ученый доказал, что гены расположены среди хромосом линейно и что гены одной хромосомы сцеплены между собой.

Этот учёный, основатель теории происхождения человека от обезьяны, провёл большое количество опытов по гибридизации, в ряде которых и была установлена теория о происхождении человека.

Впервые в 1717 году получил искусственные гибриды. Это были гибриды гвоздик, получившиеся в результате скрещивания двух различных родительских форм

5) И. И. Герасимов

В 1892 году русский ботаник Герасимов исследовал влияние температуры на клетки зеленой водоросли спирогиры и обнаружил удивительное явление - изменение числа ядер в клетке. После воздействия низкой температурой или снотворным, он наблюдал появление клеток без ядер, а также с двумя ядрами. Первые вскоре погибали, а клетки с двумя ядрами успешно делились. При подсчете хромосом оказалось, что их вдвое больше, чем в обычных клетках. Так было открыто наследственное изменение, связанное с мутацией генотипа, т.е. всего набора хромосом в клетке. Оно получило название полиплоидии, а организмы с увеличенным числом хромосом – полиплоидов.

Выдающуюся роль в селекции животных сыграли достижения известного советского селекционера Иванова, разработавшего современные принципы отбора и скрещивания пород. Он сам широко вводил генетические принципы в практику племенного дела, сочетая их с подбором условий воспитания и кормления, благоприятных для развития породных свойств. На этой основе им были созданы такие выдающиеся породы животных, как белая украинская степная свинья и асканийский рамбулье.

В последнее десятилетие активно изучается возможность искусственного массового клонирования уникальных животных, ценных для сельского хозяйства. Основной подход заключается в переносе ядра из диплоидной соматической клетки в яйцеклетку, из которой предварительно удалено собственное ядро. Яйцеклетку с подмененным ядром стимулируют к дроблению (часто электрошоком) и помещают животным для вынашивания. Таким путем в 1997 г. в Шотландии от ядра диплоидной клетки из молочной железы овцы-донора появилась овечка Долли. Она стала первым клоном, искусственно полученным у млекопитающих. Именно этот случай был достижением Вильмута и его сотрудников.

7) С. С. Четвериков

В двадцатых годах возникли и стали развиваться мутационная и популяционная генетики. Популяционная генетика это область генетики, которая изучает основные факторы эволюции - наследственность, изменчивость и отбор - в конкретных условиях внешней среды, популяции. Основателем этого направления и был советский ученый Четвериков.

В 30-е годы генетик этот учёный предположил, что хромосомы - это гигантские молекулы, предвосхитив тем самым появление нового направления в науке – молекулярной генетики.

Советский ученый Вавилов установил, что у родственных растений возникают сходные мутационные изменения, например у пшеницы в окраске колоса, остистости. Эта закономерность объясняется сходным составом генов в хромосомах родственных видов. Открытие Вавилова получило название закона гомологических рядов. На основании его можно предвидеть появление тех или иных изменений у культурных растений.

Генетика – это наука, изучающая закономерности наследования генетической информации и изменчивость организмов. Основоположник генетики – австрийский ученый Грегор Мендель.

История развития генетики

Генетика – относительно молодая наука, зародилась она в 19 ст., и развивается до сегодняшних дней.

Что такое генетика

Выделяют три основных этапа в развитии генетики:

Этап I

Этап II

Второй этап начался с изучения генетики на клеточном уровне. Исследуя строение клетки, удалось установить, что гены являются участками гомологичных хромосом, которые в процессе деления распределяются между дочерними клетками. В этот период Т.Г.Морганом было открыто явление кроссинговера, который играет важную роль в механизме наследственной изменчивости.

Этап III

Третий этап характеризуется достижениями в сфере молекулярных наук, которые позволили изучать закономерности генетики на уровне бактерий и вирусов. Была выдвинута теория, которая гласит, что один ген отвечает за один фермент. Фермент катализирует определенную реакцию, среди множества других, которая отвечает за формирование признака.

В 50-60 годах прошлого столетия Ф.Крик и Дж.Уотсон разработали модель ДНК, которая представляла собой двойную спираль, она дала возможность проследить репликацию молекулы ДНК. Это открытие стало выдающимся событием века.

В XXI веке начала развиваться генная инженерия, которая дает возможность создавать собственные генетические системы. Это позволило выделять гены из одних участков и внедрять их в генетический аппарат других организмов. Так генная инженерия стала занимать важное место в селекции растений и животных, в медицине при изучении врожденных заболеваний, аномалий развития.

Основные понятия генетики

Наследственность — способность одного поколения живых организмов передавать свои характеристики следующему.

Изменчивость — приобретение потомством отличительных признаков в процессе индивидуального развития.

Признаки — особые черты строения организма, которые формируются на протяжении жизни и зависят от генетического фона и условий окружающей среды.

Фенотип — совокупность всех внешних и внутренних признаков организма.

Генотип — набор генов, унаследованных от родителей, которые под влиянием внешних факторов определяют фенотип организма.

Аллельные гены — гены, занимающие одинаковые локусы в гомологичных хромосомах.

Гомозиготы— особи, несущие аллельные гены с одинаковой молекулярной основой.

Гетерозиготы — особи, несущие аллельные гены различной молекулярной структуры.

Законы и понятия генетики

Законы и понятия генетики

Законы генетики

Основные законы были сформулированы Менделем, которые он вывел опытным путем, исследуя закономерности наследования на растениях.

Закон единообразия гибридов первого поколения.

Суть закона заключается в следующем: если скрестить два гомозиготных организма, которые кодируют разное проявление одного признака, то потомки в первом поколении будут единообразны. Аллель, который проявился, является доминантным, он подавляет рецессивный признак.

Определить это явление Менделю удалось, используя чистые линии гороха с белыми и пурпурными цветами. После скрещивания, все потомство имело пурпурный окрас цветков.

Закон расщепления.

Скрещивание гетерозигот, полученных в первом поколении, дает расщепление по такому принципу:

Так, менделевский закон подтвердил, что рецессивные признаки никак не изменяются и не теряются, а просто не проявляются в сочетании с доминантным геном.

Закон независимого наследования признаков.

Скрещивание двух гетерозиготных особей, которые отличаются более чем по двум признакам, дает поколение с разнообразной и независимой комбинацией генов.

Разделы генетики

Классическая генетика изучает закономерности передачи генов.

Цитогенетика исследует структуру хромосом и их участие в передаче наследственной информации.

Молекулярная генетика исследует молекулярные основы наследования признаков путем изучения строения ДНК и РНК.

Биохимическая генетика направлена на изучение влияния генетических факторов на биохимические процессы в живом организме.

Медицинская генетика – изучает наследственные заболевания и разрабатывает эффективное лечение.

Значение генетики

Все чаще рождаются дети с наследственными аномалиями развития. Врожденная патология сказывается на деятельности жизненно важных органов и приводит к росту ранней детской смертности.

Неблагоприятная экологическая обстановка вредные привычки родителей приводят к разного рода мутациям, которые сказываются на здоровье человека.

На сегодняшний день ученые-генетики сделали много открытий в области медицины, селекции животных и растений, что позволяет целенаправленно влиять на наследственность организмов, предотвращая мутационные процессы.

Многие заболевания, как показали исследования, носят генетическую природу:

  • Увеличение количества хромосом (синдром Клайнфельтера);
  • уменьшение (синдром Шерешевского-Тернера);
  • болезни сцепленные с хромосомами (гемофилия, дальтонизм);
  • нарушения обмена веществ (галактоземия).

Теперь, зная причину развития заболевания, ученые разрабатывают методы предотвращения мутаций, которые ведут к врожденным аномалиям.

Селекция животных и растений уже стала самостоятельной наукой, но в основе ее лежат генетические закономерности наследования. Новые сорта растений с высокой урожайностью, ценные породы животных удалось получить, используя законы наследственности и изменчивости.

Фармацевтическая промышленность не обходится без генетической инженерии. Продукция антибиотиков стала возможной благодаря генетической модификации микроорганизмов-продуцентов. Так удалось многократно увеличить скорость синтеза лекарственных средств и уменьшить затраты на производство.

Читайте также: