Сообщение на тему закон всемирного тяготения в открытии новых планет

Обновлено: 02.07.2024

Человек, изучая явления, постигает их сущность и открывает законы природы. Так, поднятое над Землей и предоставленное самому себе тело начнет падать. Оно изменяет свою скорость, следовательно, на него действует сила тяжести. Это явление наблюдается повсюду на нашей планете: Земля притягивает к себе все тела, в том числе и нас с вами. Только ли Земля обладает свойством действовать на все тела силой притяжения?

Почти все в Солнечной системе вращается вокруг Солнца. У некоторых планет есть спутники, но и они, совершая свой путь вокруг планеты, вместе с нею движутся вокруг Солнца. Солнце обладает массой, превосходящую массу всего прочего населения Солнечной системы в 750 раз. Благодаря этому Солнце заставляет планеты и все остальное двигаться по орбитам вокруг себя. В космических масштабах масса является главной характеристикой тел, потому что все небесные тела подчиняются закону всемирного тяготения.

Исходя из законов движения планет, установленных И.Кеплером, великий английский ученый Исаак Ньютон (1643-1727), в ту пору никем еще признанный, открыл закон всемирного тяготения, с помощью которого удалось с большой точностью для того времени рассчитать движение Луны, планет и комет, объяснить приливы и отливы в океане.

Эти законы человек использует не только для более глубокого познания природы (например, для определения масс небесных тел), но и для решения практических задач (космонавтика, астродинамика).

Цель работы: изучить закон всемирного тяготения, показать его практическую значимость, раскрыть понятие взаимодействия тел на примере этого закона.

Работа состоит из введения, основной части, заключения и списка используемой литературы.

1 Законы движения планет – законы Кеплера

Чтобы в полной мере оценить весь блеск открытия Закона всемирного тяготения, вернемся к его предыстории. Существует легенда, что гуляя по яблоневому саду в поместье своих родителей, Ньютон увидел луну в дневном небе, и тут же на его глазах с ветки оторвалось и упало на землю яблоко. Поскольку Ньютон в это самое время работал над законами движения, он уже знал, что яблоко упало под воздействием гравитационного поля Земли. Знал он и о том, что Луна не просто висит в небе, а вращается по орбите вокруг Земли, и, следовательно, на нее воздействует какая-то сила, которая удерживает ее от того, чтобы сорваться с орбиты и улететь по прямой прочь, в открытый космос. Тут ему и пришло в голову, что, возможно, это одна и та же сила заставляет и яблоко падать на землю, и Луну оставаться на околоземной орбите – сила тяготения, которая существует между всеми телами.

Итак, когда великие предшественники Ньютона изучали равноускоренное движение тел, падающих на поверхность Земли, они были уверены, что наблюдают явление чисто земной природы — существующее только недалеко от поверхности нашей планеты. Когда другие ученые, изучая движение небесных тел, полагали что в небесных сферах действуют совсем иные законы движения, нежели законы, управляющие движением здесь, на Земле.

Сама идея всеобщей силы тяготения неоднократно высказывалась и ранее: о ней размышляли Эпикур, Гассенди, Кеплер, Борелли, Декарт, Роберваль, Гюйгенс и другие. Декарт считал его результатом вихрей в эфире. История науки свидетельствует, что практически все аргументы, касающиеся движения небесных тел, до Ньютона сводились в основном к тому, что небесные тела, будучи совершенными, движутся по круговым орбитам в силу своего совершенства, поскольку окружность — суть идеальная геометрическая фигура.

Таким образом, выражаясь современным языком, считалось, что имеются два типа гравитации, и это представление устойчиво закрепилось в сознании людей того времени. Все считали, что есть земная гравитация, действующая на несовершенной Земле, и есть гравитация небесная, действующая на совершенных небесах. Изучение движения планет и строения Солнечной системы и привело, в конечном итоге, к созданию теории гравитации – открытию закона всемирного тяготения.

Первая попытка создания модели Вселенной была предпринята Птолемеем (~140 г.). В центре мироздания Птолемей поместил Землю, вокруг которой по большим и малым кругам, как в хороводе, двигались планеты и звезды. Геоцентрическая система Птолемея продержалась более 14 столетий и только в середине XVI века была заменена гелиоцентрической системой Коперника.

В начале XVII века на основе системы Коперника немецкий астроном И.Кеплер сформулировал три эмпирических закона движения планет Солнечной системы, используя результаты наблюдений за движением планет датского астронома Т.Браге.

Вытянутость эллипса зависит от скорости движения планеты; от расстояния, на котором находится планета от центра эллипса. Изменение скорости небесного тела приводит к превращению эллиптической орбиты в гиперболическую, двигаясь по которой можно покинуть пределы Солнечной системы.

На рис. 1 показана эллиптическая орбита планеты, масса которой много меньше массы Солнца. Солнце находится в одном из фокусов эллипса. Ближайшая к Солнцу точка P траектории называется перигелием, точка A, наиболее удаленная от Солнца – афелием. Расстояние между афелием и перигелием – большая ось эллипса.


Рисунок 1 - Эллиптическая орбита планеты массой

m υ2 – гиперболическая траектория;

6) траектория Луны

Таким образом, мы выяснили, что все движения в Солнечной системе подчиняются закону всемирного тяготения Ньютона.

Исходя из малой массы планет и тем более прочих тел Солнечной системы, можно приближенно считать, что движения в околосолнечном пространстве подчиняются законам Кеплера.

Все тела движутся вокруг Солнца по эллиптическим орбитам, в одном из фокусов которых находится Солнце. Чем ближе к Солнцу небесное тело, тем быстрее его скорость движения по орбите (планета Плутон, самая далекая из известных, движется в 6 раз медленнее Земли).

Тела могут двигаться и по разомкнутым орбитам: параболе или гиперболе. Это случается в том случае, если скорость тела равна или превышает значение второй космической скорости для Солнца на данном удалении от центрального светила. Если речь идет о спутнике планеты, то и космическую скорость надо рассчитывать относительно массы планеты и расстояния до ее центра.

3 Искусственные спутники Земли

4 октября 1957 г. - Выведен на орбиту 1-й искусственный спутник Земли

3 ноября 1957 года - запущен 2-й ИСЗ с собакой Лайкой на борту

15 мая 1958 года запущен 3-й ИСЗ с научной аппаратурой



m – масса спутника

R – радиус Земли

h – высота спутника над поверхностью Земли




Вывод: Скорость спутника зависит от его высоты над поверхностью Земли. Скорость не зависит от массы спутника


Итак, в данной работе мы рассмотрели тему: Закон всемирного тяготения.

Закон всемирного тяготения был установлен Исааком Ньютоном путем обобщения результатов, полученных известными астрономами ранее. Важную роль сыграли закономерности движения планет, обнаруженные немецким астрономом И.Кеплером в результате обработки астрономических наблюдений информации датского астронома Тихо Браге. Кеплер сформулировал их в виде трех законов.

1. Все планеты движутся по эллипсам, в одном из фокусов которых находится Солнце.

2. Площади, описываемые радиусами-векторами планет за одно и то же время, равны.

3. Отношение квадратов периодов обращения планет вокруг Солнца равно отношению кубов больших полуосей их орбит.

Ньютон выдвинул предположение, что между любыми телами в природе существуют силы взаимного притяжения. Эти силы называют силами гравитации, или силами всемирного тяготения. Сила всемирного тяготения проявляется в Космосе, Солнечной системе и на Земле. Ньютон обобщил законы движения небесных тел и выяснил, что сила F равна:


- наблюдаемые движения планет свидетельствуют о наличии центральной силы;

- обратно, центральная сила притяжения приводит к эллиптическим (или гиперболическим) орбитам.

В результате данный закон звучит следующим образом: между любыми материальными точками существует сила взаимного притяжения, прямо пропорциональная произведению их масс и обратно пропорциональная квадрату расстояния между ними, действующая по линии, соединяющей эти точки.

Теория Ньютона, в отличие от гипотез предшественников, имела ряд существенных отличий. Ньютон опубликовал не просто предполагаемую формулу закона всемирного тяготения, но фактически предложил целостную математическую модель:

- закон движения (второй закон Ньютона);

- система методов для математического исследования (математический анализ).

В совокупности эта триада достаточна для полного исследования самых сложных движений небесных тел, тем самым создавая основы небесной механики. До Эйнштейна никаких принципиальных поправок к указанной модели не понадобилось, хотя математический аппарат оказалось необходимым значительно развить.

В дальнейшем мы убедились, что законы Кеплера и закон тяготения Ньютона имеют всемирный характер, причем закон всемирного тяготения не только является основным законом небесной механики, но и играет решающую роль в анализе различных космогонических и космологических процессов.

Со временем оказалось, что закон всемирного тяготения позволяет с огромной точностью объяснить и предсказать движения небесных тел, и он стал рассматриваться как фундаментальный.

Список литературы

1. Громов С.В. Физика. 9 класс / С.В.Громов. - М.: Просвещение, 2002. – 158 с.

2. Касаткина И.Л. Репетитор по физике / И.Л.Касаткина. – М.: Феникс, 2003. – 368 с.

3. Касьянов В.А. Физика. Учебник. 10 класс / В.А.Касьянов. – М.: Дрофа, 2005. – 416 с.

4. Мякишев Г.Я. Физика: Учеб. для 10 кл. общеобразоват. учреждений / Г.Я.Мякишев, Б.Б.Буховцев, Н.Н.Сотский. — М.: Просвещение, 2009. - 399 с.

История открытия закона всемирного тяготения уходит далеко в прошлое и связана со множеством великих умов. Среди них Николай Коперник, родившийся почти за 200 лет до того, как закон был сформулирован более точно. Постулат окружён множеством слухов и легенд, начиная с яблока, которое изменило представление о физике того времени, и заканчивая известным соперничеством Ньютона и Роберта Гука, ставивших себя на первое место при ответе на вопрос, кто открыл закон всемирного тяготения.

история открытия закона всемирного тяготения

Сейчас доподлинно неизвестно, что из рассказанного соответствует истине, но некоторые события и факты из задокументированных источников не нуждаются в подтверждении и представляют собой вехи развития знания людей о явлении гравитации.

Как Ньютон открыл закон всемирного тяготения

Говоря о законах классической механики, всегда упоминают сэра Исаака Ньютона. Учёный перевернул виденье своих современников об окружающем их мире и, что самое главное, математически обосновал свои предположения, которые долгие годы после смерти физика не нуждались в доработке.

С его именем связан один из постулатов современной физики, ставший в своё время объектом для множества научных дискуссий, – закон всемирного тяготения, который Ньютон открыл в 1688 году и опубликовал вместе со знаменитыми тремя законами механики, образовавшими фундамент развития науки о движении.

открытие закона всемирного тяготения

Закон тяготения не был бы настолько привлекательным, если бы описывал только то, как тела падают на землю. В легенде его открытия существует важное уточнение о том, что Ньютон ещё в 1666 году размышлял о движении объектов, в частности Луны. Уже тогда зная, что спутник вращается вокруг Земли, учёный пытался понять причины такого поведения и увидел, как яблоко сорвалось с ветки и приземлилось рядом.

Это и послужило причиной возникновения предположения, что именно воздействие Земли вынуждает тела не зависать без поддержки в воздухе, а Луну двигаться по наблюдаемой траектории. Однако доказать это сразу не удалось: проведя все расчёты, сэр Ньютон сформулировал закон всемирного тяготения, но из-за несправедливого в тот момент расстояния между спутником и нашей планетой получил слишком большую погрешность, что при его щепетильном характере оказалось неприемлемым. Только спустя 22 года с новыми, более точными цифрами, учёный представил общественности свой закон.

История открытия закона всемирного тяготения

О земном притяжении задумывались ещё в Древней Греции, но большинство предложенных теорий были далеки от действительности. Сам Исаак Ньютон в своей переписке с Эдмундом Галлеем обозначал своими предшественниками французского астронома Исмаэля Буйо (Буллиальда), английского математика Кристофера Рене и английского учёного, проявившего себя не в одной науке, Роберта Гука.

Система Коперника

гелиоцентрическая система мира

До 1543 года общепризнанной и неоспоримой полагалась геоцентрическая модель (все планеты и солнце вращаются вокруг земли), сформулированная Птолемеем ещё во II веке, но после того, как книга Коперника была опубликована, научное мировоззрение общества потребовало существенных изменений.

геоцентрическая система мира

О самом тяготении в сочинении астронома не было речи, но закон Ньютона затрагивает не только Землю, но и Солнечную систему. Поэтому для правильной постановки задачи, посвящённой раскрытию механизма Вселенной (чем, если говорить кратко, занимается физика как наука), важно понимать, что наша планета не является центром мироздания, что и доказал Николай Коперник.

Первые догадки Уильяма Гильберта

Имя Уильяма Гильберта особенно известно в области, изучающей электрические и магнитные явления, что, впрочем, смогло помочь ему прославиться и в механике. Гильберт был одним из первых учёных, кто согласился с Коперником и его картиной мира, но предшественником Ньютона его делает тот факт, что именно Гильберт первым высказал догадку о природе гравитации Земли и Луны.

теория Уильяма Гильберта

В посмертной работе физика, изданной в 1603 году, указано предположение учёного, что наша планета и её спутник являются огромными магнитами и поэтому притягиваются друг к другу. Причём в труде указано, что магнитная сила Земли больше из-за разности масс. Такая смелая догадка в общем смысле оказалась справедливой, однако природу взаимодействия Гильберт высказал неверно: он полагал, что движение планет происходит за счёт действия магнетизма.

Три закона Кеплера в открытии закона всемирного тяготения

Первыми эмпирическими соотношениями, приблизившими открытие закона всемирного тяготения, стали законы Кеплера, первые два из которых датированы 1609 годом, а третий – 1618.

Учитель Иоганна Кеплера датский алхимик и астроном Тихо Браге первым провёл точные астрономические наблюдения за движением планет, на основании которых составил таблицу, состоявшую из координат. Получив данное наследие, Кеплер понял, что планеты движутся с определённой закономерностью, и вывел три закона, описывающих идеализированную гелиоцентрическую картину мира.

Первый закон Кеплера утверждает, что все планеты Солнечной системы обращаются вокруг звезды по эллипсу, и одним из фокусов этого эллипса является Солнце.

Второй закон Кеплера гласит, что плоскость движения планет проходит через Солнце и, если засечь одинаковые промежутки времени и провести радиусы от звезды до планеты, они будут занимать одинаковые по величине площади.

законы Кеплера

Третий закон Кеплера носит математический характер и записывается соотношением:

где T1,2 – периоды обращения двух планет вокруг Солнца,

a1,2 – длины больших полуосей орбит этих планет.

Особенность закономерностей Кеплера заключается в том, что уже за полвека до Ньютона он выделил Солнцу главенствующую роль при движении планет, однако теоретически обосновать свой вывод не смог. После первопричину его законов нашёл Ньютон.

Законы падения тел Галилео Галилея (Закон инерции)

Наряду с работой Кеплера эксперименты Галилея по падению тел также подготавливали для Ньютона почву для будущего открытия.

опыты Галилео Галилея

Помимо этого, учёный ввёл новое понятие (которое сегодня называют инерцией), показав, что тело будет покоиться или двигаться равномерно, если на него не воздействуют внешние силы. Через полвека после формулировки этого правила Галилеем Ньютон повторит его в качестве первого закона механики.

Доказательства Роберта Гука

Роберт Гук был учёным, открывшим множество явлений в разных областях физики, химии и биологии. Однако его современники часто вспоминали его как завистливого и склочного человека из-за импульсивного характера и споров об авторстве с другими учёными. Закон всемирного тяготения также стал камнем преткновения для Гука, и в момент его открытия физик заявил, что сформулировал это правило задолго до Ньютона. Частично это правда.

догадки Роберта Гука

Эдмунд Галлей и его выводы из закона Кеплера

В 1684 году английский астроном Эдмунд Галлей математически доказал обратную пропорциональность силы тяжести и квадрата расстояния, выведя зависимость из третьего закона Кеплера.

вывод пропорциональности силы Эдмундом Галлеем

Таким образом, всё было готово для точной формулировки теории тяготения Ньютона и её полного математического обоснования.

Решение задачи Исааком Ньютоном

Чтобы вывести окончательный вариант закона всемирного тяготения, Ньютон описал движение Луны вокруг Земли, оперируя радиусами планеты и спутника, а также расстоянием между ними. Важную роль при формировании математической модели играли второй и третий законы механики, к тому времени уже вычисленные Ньютоном.

определение закона всемирного тяготения

Интересный факт: гравитационная постоянная G, которая присутствует в современной формуле закона притяжения, не была явно вставлена учёным в выведенный им закон. Более того, она отсутствовала в трудах физиков до XIX века.

Определение значения гравитационной постоянной

В 1798 году Генри Кавендиш при помощи крутильных весов, созданных Шарлем Кулоном, провёл эксперимент, пытаясь вычислить среднюю плотность Земли. Его установка представляла собой коромысло с двумя небольшими шарами на концах, к которым в ходе опыта подводили по шару большего размера. Из-за гравитационного воздействия между телами коромысло установки отклонялось на некоторый угол, что фиксировалось оптическими приборами. Это значение и величина упругости нити, держащей коромысло, позволили определить силу притяжения между шарами, а после и коэффициент пропорциональности, до этого момента неизвестный.

крутильные весы Кавендиша

В результате своего эксперимента Генри Кавендиш рассчитал, что гравитационная постоянная равна G = 6,754∙10 -11 м 3 / (кг∙с 2 ). Сегодня это значение вычислено с большей точностью: G = 6,67384∙10 -11 Н∙м²·кг −2 .

Вычисление коэффициента пропорциональности стало одним из многочисленных применений закона тяготения.

Краткая биография великого английского учёного Исаака Ньютона

Исаак Ньютон родился 4 января 1643 года. Так как отец мальчика, в честь которого он и был назван, погиб до его рождения, мать будущего учёного обзавелась новой семьёй, оставив сына на попечение родственников. Ньютон рос болезненным, но мечтательным ребёнком, уже в детском возрасте проявив любовь к чтению и разработке простых игрушек. Однако в первое время в школе мальчик плохо учился, и только случай помог изменить его отношение к учёбе. Будучи слабым ребёнком, Ньютон подвергся нападению со стороны своих одноклассников и, понимая, что едва ли сможет одолеть их физически, решил превзойти обидчиков умом.

Так, в 1661 году Исаак Ньютон стал студентом Колледжа Святой Троицы, находящегося под попечением Кембриджского университета, впоследствии связав с ним более 30 лет жизни. В период чумы, царствовавшей в Англии с 1665 по 1667 годы, Ньютон вернулся в домой, и, как после утверждал сам учёный, именно в этот период он сделал большую часть своих научных открытий.

Исаак Ньютон

В 1668 году после возвращения в колледж Исааком Ньютоном была получена магистерская степень, и он стал преподавателем в своей альма-матер. В последующие годы физик глубоко увлёкся алхимией, математическим анализом и проводил оптические опыты, и ему удалось изобрести телескоп-рефлектор, усовершенствованные версии которого помогли открыть многие астрономические объекты.

Ньютон был замкнутым, нелюдимым человеком, не любившим делиться своими научными результатами из-за споров и дискуссий, в которые его постоянно норовили втянуть. Зимой 1677 года в его доме случился пожар, в связи с чем сгорела большая часть его рукописных работ, а в мае того же года умер его друг Исаак Барроу, что стало невосполнимой утратой для учёного, которому за всю жизнь удалось сблизиться только с несколькими людьми.

Интересный факт: трудясь при дворе, физик смог придумать технологию чеканки, позволяющую минимизировать подделки. Новизна заключалась в отделке гуртов у монет маленькими линиями, что используется и сегодня.

В 1703 году Королевское общество выбрало Ньютона президентом, а в 1705 году королева Великобритании Анна даровала ему титул сэра, который был впервые присвоен за научные достижения.

Сэр Исаак Ньютон умер 31 марта 1727 года. Современники описывали, что в похоронах участвовал весь Лондон.

Вопрос о том, как был открыт закон всемирного тяготения, только на первый взгляд кажется простым. На самом деле его ответ скрывает в себе многолетний труд множества учёных, которые постепенно делали возможным данное открытие.

§ 14. Д вижение небесных тел под действием сил тяготения

1. Закон всемирного тяготения

С огласно закону всемирного тяготения, изученному в курсе физики,

все тела во Вселенной притягиваются друг к другу с силой, прямо пропорциональной произведению их масс и обратно пропорциональной квадрату расстояния между ними:


F = G ,


где m 1 и m 2 — массы тел; r — расстояние между ними; G — гравитационная постоянная.

Открытию закона всемирного тяготения во многом способствовали законы движения планет, сформулированные Кеплером, и другие достижения астрономии XVII в. Так, знание расстояния до Луны позволило Исааку Ньютону (1643—1727) доказать тождественность силы, удерживающей Луну при её движении вокруг Земли, и силы, вызывающей падение тел на Землю.

Ведь если сила тяжести меняется обратно пропорционально квадрату расстояния, как это следует из закона всемирного тяготения, то Луна, находящаяся от Земли на расстоянии примерно 60 её радиусов, должна испытывать ускорение в 3600 раз меньшее, чем ускорение силы тяжести на поверхности Земли, равное 9,8 м/с 2 . Следовательно, ускорение Луны должно составлять 0,0027 м/с 2 .

В то же время Луна, как любое тело, равномерно движущееся по окружности, имеет ускорение

где ω — угловая скорость Луны; r — радиус её орбиты. Если считать, что радиус Земли равен 6400 км, то радиус лунной орбиты будет составлять r = 60 • 6 400 000 м = 3,84 • 10 8 м. Звёздный период обращения Луны T = 27,32 суток, в секундах составляет 2,36 • 10 6 с. Тогда ускорение орбитального движения Луны

a = • r = • 3,84 • 10 8 м = 0,0027 м/с 2 .

Равенство этих двух величин ускорения доказывает, что сила, удерживающая Луну на орбите, есть сила земного притяжения, ослабленная в 3600 раз по сравнению с действующей на поверхности Земли.

Можно убедиться и в том, что при движении планет, в соответствии с третьим законом Кеплера, их ускорение и действующая на них сила притяжения Солнца обратно пропорциональны квадрату расстояния, как это следует из закона всемирного тяготения. Действительно, согласно третьему закону Кеплера отношение кубов больших полуосей орбит d и квадратов периодов обращения T есть величина постоянная:

= = = . = const.

Ускорение планеты равно

a = = = 4 π 2 .

Из третьего закона Кеплера следует

= ,

поэтому ускорение планеты равно


a = 4 π 2 • const .

Итак, сила взаимодействия планет и Солнца удовлетворяет закону всемирного тяготения.

2. Возмущения в движении тел Солнечной системы

З аконы Кеплера строго выполняются, если рассматривается движение двух изолированных тел (Солнце и планета) под действием их взаимного притяжения. Однако в Солнечной системе планет много, все они взаимодействуют не только с Солнцем, но и между собой. Поэтому движение планет и других тел не в точности подчиняется законам Кеплера. Отклонения тел от движения по эллипсам называются возмущениями .

Возмущения эти невелики, так как масса Солнца гораздо больше массы не только отдельной планеты, но и всех планет в целом. Наибольшие возмущения в движении тел Солнечной системы вызывает Юпитер, масса которого в 300 раз превышает массу Земли. Особенно заметны отклонения астероидов и комет при их прохождении вблизи Юпитера.

3. Масса и плотность Земли

З акон всемирного тяготения позволил определить массу нашей планеты. Исходя из закона всемирного тяготения, ускорение свободного падения можно выразить так:


g = G .

Подставим в формулу известные значения этих величин: g = 9,8 м/с 2 , G = 6,67 • 10 –11 Н • м 2 /кг 2 , R = 6370 км — и получим, что масса Земли M = 6 • 10 24 кг.

Зная массу и объём земного шара, можно вычислить его среднюю плотность: 5,5 • 10 3 кг/м 3 . С глубиной за счёт увеличения давления и содержания тяжелых элементов плотность возрастает.

4. Определение массы небесных тел

Б олее точная формула третьего закона Кеплера, которая была получена Ньютоном, даёт возможность определить одну из важнейших характеристик любого небесного тела — массу. Выведем эту формулу, считая (в первом приближении) орбиты планет круговыми.

Пусть два тела, имеющие массы m 1 и m 2 , взаимно притягивающиеся и обращающиеся вокруг общего центра масс, находятся от центра масс на расстоянии r 1 и r 2 и обращаются вокруг него с периодом T . Расстояние между их центрами R = r 1 + r 2 . На основании закона всемирного тяготения ускорение каждого из этих тел равно:

a 1 = G , a 2 = G .


Угловая скорость обращения вокруг центра масс составляет ω = . Тогда центростремительное ускорение выразится для каждого тела так:

a 1 = r 1 , a 2 = r 2 .

Приравняв полученные для ускорений выражения, выразив из них r 1 и r 2 и сложив их почленно, получаем:

G = = ( r 1 + r 2 ),

= .

Поскольку в правой части этого выражения находятся только постоянные величины, оно справедливо для любой системы двух тел, взаимодействующих по закону тяготения и обращающихся вокруг общего центра масс, — Солнце и планета, планета и спутник. Определим массу Солнца, для этого запишем выражение:

= ,

где M — масса Солнца; m 1 — масса Земли; m 2 — масса Луны; T 1 и a 1 — период обращения Земли вокруг Солнца (год) и большая полуось её орбиты; T 2 и a 2 — период обращения Луны вокруг Земли и большая полуось лунной орбиты.

Пренебрегая массой Земли, которая ничтожно мала по сравнению с массой Солнца, и массой Луны, которая в 81 раз меньше массы Земли, получим:

= .

Подставив в формулу соответствующие значения и приняв массу Земли за единицу, мы получим, что Солнце примерно в 333 тыс. раз по массе больше нашей планеты.

Массы планет, не имеющих спутников, определяют по тем возмущениям, которые они оказывают на движение астероидов, комет или космических аппаратов, пролетающих в их окрестностях. Об определении массы звёзд см. в § 23.

П од действием взаимного притяжения частиц тело стремится принять форму шара. Если эти тела вращаются, то они деформируются, сжимаются у полюсов.

Кроме того, изменение их формы происходит и под действием взаимного притяжения, которое вызывают явления, называемые приливами . Давно известные на Земле, они получили объяснение только на основе закона всемирного тяготения.


Рис. 3.13. Схема лунных приливов

Рассмотрим ускорения, создаваемые притяжением Луны в различных точках земного шара (рис. 3.13). Поскольку точки A , B и O находятся на различных расстояниях от Луны, ускорения, создаваемые её притяжением, будут различны.

Разность ускорений, вызываемых притяжением другого тела в данной точке и в центре планеты, называется приливным ускорением.

Приливные ускорения в точках A и B направлены от центра Земли. В результате Земля, и в первую очередь её водная оболочка, вытягивается в обе стороны по линии, соединяющей центры Земли и Луны. В точках A и B наблюдается прилив, а вдоль круга, плоскость которого перпендикулярна этой линии, на Земле происходит отлив. Тяготение Солнца также вызывает приливы, но из-за большей его удалённости они меньше, чем вызванные Луной. Приливы наблюдаются не только в гидросфере, но и в атмосфере и в литосфере Земли и других планет.

Вследствие суточного вращения Земля стремится увлечь за собой приливные горбы, в то же время вследствие тяготения Луны, которая обращается вокруг Земли за месяц, полоса приливов должна перемещаться по земной поверхности значительно медленнее. В результате между огромными массами воды, участвующей в приливных явлениях, и дном океана возникает приливное трение. Оно тормозит вращение Земли и вызывает увеличение продолжительности суток, которые в прошлом были значительно короче (5—6 ч). Тот же эффект ускоряет орбитальное движение Луны и приводит к её медленному удалению от Земли. При этом приливы со стороны Земли на Луне затормозили её вращение, и она теперь обращена к Земле одной стороной. Такое же медленное вращение характерно для многих спутников Юпитера и других планет. Сильные приливы, вызываемые на Меркурии и Венере Солнцем, по-видимому, являются причиной их крайне медленного вращения вокруг оси.

6. Движение искусственных спутников Земли и космических аппаратов к планетам


В озможность создания искусственного спутника Земли теоретически обосновал ещё Ньютон. Он показал, что существует такая горизонтально направленная скорость , при которой тело, падая на Землю, тем не менее на неё не упадёт, а будет двигаться вокруг Земли, оставаясь от неё на одном и том же расстоянии. При такой скорости тело будет приближаться к Земле вследствие её притяжения как раз на столько, на сколько из-за кривизны поверхности нашей планеты оно будет от неё удаляться (рис. 3.14). Эта скорость, которую называют первой космической (или круговой), известна вам из курса физики:


v 1 = = 7,9 • 10 3 м/с = 7,9 км/с.


Рис. 3.14. Орбита искусственного спутника Земли

Практически осуществить запуск искусственного спутника Земли оказалось возможно лишь через два с половиной столетия после открытия Ньютона — 4 октября 1957 г. За время, прошедшее с этого дня, который нередко называют началом космической эры человечества, искусственные спутники самого различного устройства и назначения заняли важное место в нашей повседневной жизни. Они обеспечивают непрерывный мониторинг погоды и других природных явлений, трансляции телевидения и т. п. Спутниковая навигационная система ГЛОНАСС и другие системы глобального позиционирования позволяют в любой момент с высокой степенью точности определить координаты любой точки на Земле. Пожалуй, нет в наши дни ни одной глобальной проблемы, в решении которой не принимали участие искусственные спутники Земли (ИСЗ).

Космические аппараты (КА), которые направляются к Луне и планетам, испытывают притяжение со стороны Солнца и согласно законам Кеплера так же, как и сами планеты, движутся по эллипсам. Скорость движения Земли по орбите составляет около 30 км/с. Если геометрическая сумма скорости космического аппарата, которую ему сообщили при запуске, и скорости Земли будет больше этой величины, то КА будет двигаться по орбите, лежащей за пределами земной орбиты. Если меньше — то внутри орбиты Земли. В первом случае, если аппарат летит к Марсу (рис. 3.15) или другой внешней планете, энергетические затраты будут наименьшими, если КА достигнет орбиты этой планеты при своём максимальном удалении от Солнца — в афелии. Кроме того, необходимо так рассчитать время старта КА, чтобы к этому моменту в ту же точку своей орбиты пришла планета. Иначе говоря, начальная скорость и день запуска КА должны быть выбраны таким образом, чтобы КА и планета, двигаясь каждый по своей орбите, одновременно подошли к точке встречи. Во втором случае — для внутренней планеты — встреча с КА должна произойти в перигелии его орбиты (рис. 3.16). Такие траектории полётов называются полуэллиптическими . Большие оси этих эллипсов проходят через Солнце, которое находится в одном из фокусов, как и полагается по первому закону Кеплера.


Рис. 3.15. Траектория полёта KA к Марсу

Рис. 3.16. Траектория полёта KA к Венере

Конструкция и оборудование современных КА обеспечивают возможность совершения ими весьма сложных манёвров — выход на орбиту спутника планеты, посадка на планету, передвижение по её поверхности и т. п.


В опросы 1. Почему движение планет происходит не в точности по законам Кеплера? 2. Как было установлено местоположение планеты Нептун? 3. Какая из планет вызывает наибольшие возмущения в движении других тел Солнечной системы и почему? 4. Какие тела Солнечной системы испытывают наибольшие возмущения и почему? 5. По каким траекториям движутся космические аппараты к Луне; к планетам? 6*. Объясните причину и периодичность приливов и отливов. 7*. Будут ли одинаковы периоды обращения искусственных спутников Земли и Луны, если эти спутники находятся на одинаковых расстояниях от них?


У пражнение 12 1. Определите массу Юпитера, зная, что его спутник, который отстоит от Юпитера на 422 000 км, имеет период обращения 1,77 суток. Для сравнения используйте данные для системы Земля—Луна. 2. Ускорение силы тяжести на Марсе составляет 3,7 м/с 2 , на Юпитере — 25 м/с 2 . Рассчитайте первую космическую скорость для этих планет. 3. Сколько суток (примерно) продолжается полёт КА до Марса, если он проходит по эллипсу, большая полуось которого равна 1,25 а. е.?

Закон всемирного тяготения был открыт Исааком Ньютоном в 1666 году. Впервые закон был сформулирован и опубликован Ньютоном в 1687 году. Открытие ученого внесло неоценимый вклад в развитие науки.

Закон всемирного тяготения или классическая теория тяготения Ньютона объясняет гравитационное взаимодействие между телами в рамках классической механики. Как и все физические законы, закон всемирного тяготения имеет форму математического уравнения:

F=GMm/D 2

В полученном в результате расчетов уравнении Yьютона сила притяжения (F) прямо пропорциональна произведению масс двух тел (M и m) и обратно пропорциональна квадрату расстояния (D) между ними. G - гравитационная постоянная, приблизительно равная 6,67 10–11

До того времени, как Ньютон совершил открытие закона тяготения, считалось, что существует два типа гравитации. Одна действует на Земле. Это сила, притягивающая к планете все тела находящиеся на ее поверхности: людей, деревья, камни и многое другое. Вторая гравитационная сила, по мнению предшественников Ньютона, действует в космосе, она также обладает свойствами притяжения, однако взаимодействие происходит между более крупными объектами, такими как небесные тела: Солнце, Земля, Луна и т.д. Открытие же Ньютона объединило эти два понятия о гравитации, и, следовательно, перестало существовать ложное деление Земли и остального космического пространства.

Закон всемирного тяготения действителен для всех тел во Вселенной. То есть, сила взаимного притяжения действует как между Землей и Солнцем, так и между Луной и растущим где-нибудь в лесу деревом, между книгой, которую держит в руках человек, и самим человеком. В одних случаях силу взаимного гравитационного притяжения можно измерить, например, между Землей и Луной. Однако бывает и так, что силы притяжения настолько малы, что их не может обнаружить даже самый точный прибор. Так мы испытываем силу гравитационного притяжения с кометой, путешествующей по своей орбите. Однако эта сила настолько незначительна и мала, что ее невозможно никак зарегистрировать и, следовательно, произвести измерения.

Сила тяготения – это универсальная сила. Она позволяет рассчитать массу планет, спутников, комет и других небесных тел, с ее помощью можно объяснить приливы и отливы, происходящие в океане и многое другое.

Закон всемирного тяготения лег в основу небесной механики. При помощи него ученые определяют местонахождения небесных тел и их траектории движения. Законы Кеплера описывающие движения планет действительны лишь тогда, когда вокруг звезды движется одна планета. В Солнечной системе их восемь. Поэтому планеты притягиваются не только звездой, но и друг другом. Такое явления называется возмущением. При расчетах координат небесных тел оно учитывается. Так была открыта планета Нептун. После открытия Урана, ученые составили траекторию его движения на несколько лет. После проверки данных с расчетами было обнаружено отклонение планеты от заданной траектории. Оказалось, что помимо солнца Уран действовали гравитационные силы Нептуна. Позднее таким же образом была открыта и карликовая планета – Плутон.

Закон всемирного тяготения

Популярные сегодня темы

Тело кабана уплощено сбоку, жесткое и короткое с короткими ногами. Голова большая, продолговатая, коническая, оканчивающаяся рылом

Судебной системой называется вся совокупность государственных органов, осуществляющих правосудие – т.е. деятельность по рассмотрению и разрешению (вынесению решения, постановления, приговора

Огурец - это очень популярная овощная культура. Огурец однолетний является травянистым растением семейства тыквенных. Стебель у данного овоща строится по земле. Он шершавый и имеет усики на к

Для начала следует сказать, что вода является, по сути, самым безопасным природным растворителем. Веществ, способных противостоять ее свойствам практически не существует – каждое из них, как

На данный момент в нашем цивилизованном и развитом обществе существует множество интересных и увлекательных профессий, среди которых найдётся занятия даже для самого уникального и необычного

яблоко Ньютона

Ни для кого не секрет, что закон всемирного тяготения был открыт великим английским ученым Исааком Ньютоном, по легенде гуляющим в вечернем саду и раздумывающем над проблемами физики. В этот момент с дерева упало яблоко (по одной версии прямо на голову физику, по другой просто упало), ставшее впоследствии знаменитым яблоком Ньютона, так как привело ученого к озарению, эврике. Яблоко, упавшее на голову Ньютону и вдохновило того к открытию закона всемирного тяготения, ведь Луна в ночном небе оставалась не подвижной, яблоко же упало, возможно, подумал ученый, что какая-то сила воздействует как на Луну (заставляя ее вращаться по орбите), так и на яблоко, заставляя его падать на землю.

Сейчас по заверениям некоторых историков науки вся эта история про яблоко лишь красивая выдумка. На самом деле падало яблоко или нет, не столь уж важно, важно, что ученый таки действительно открыл и сформулировал закон всемирного тяготения, который ныне является одним из краеугольных камней, как физики, так и астрономии.

Разумеется, и задолго до Ньютона люди наблюдали, как падающие на землю вещи, так и звезды в небе, но до него они полагали, что существует два типа гравитации: земная (действующая исключительно в пределах Земли, заставляющая тела падать) и небесная (действующая на звезды и Луну). Ньютон же был первым, кто объединил эти два типа гравитации в своей голове, первым кто понял, что гравитация есть только одна и ее действие можно описать универсальным физическим законом.

Определение закона

Попробуем же теперь сформулировать и записать закон всемирного тяготения максимально кратко: сила притяжения между двумя телами с массами m1 и m2 и разделенными расстоянием R прямо пропорциональна обеим массам и обратно пропорциональна квадрату расстояния между ними.

Формула

Ниже представляем вашему вниманию формулу закона всемирного тяготения.

формула закона всемирного тяготения

Невесомость тел

Открытый Ньютоном закон всемирного тяготения, а также сопутствующий математический аппарат позже легли в основу небесной механики и астрономии, ведь с помощью него можно объяснить природу движения небесных тел, равно как и явление невесомости. Находясь в космическом пространстве на значительном удалении от силы притяжения-гравитации такого большого тела как планета, любой материальный объект (например, космический корабль с астронавтами на борту) окажется в состоянии невесомости, так как сила гравитационного воздействия Земли (G в формуле закона тяготения) или какой-нибудь другой планеты, больше не будет на него влиять.

Видео

И в завершение поучительное видео об открытии закона всемирного тяготения.

Читайте также: