Сообщение на тему учет и использование теплового расширения в медицине физике

Обновлено: 05.07.2024

Известно, что под действием тепла частицы ускоряют свое хаотичное движение. Если нагревать газ, то молекулы, составляющие его, просто разлетятся друг от друга. Нагретая жидкость сначала увеличится в объеме, а затем начнет испаряться. А что будет с твердыми телами? Не каждое из них может изменить свое агрегатное состояние.

Термическое расширение: определение

Тепловое расширение – это изменение размеров и формы тел при изменении температуры. Математически можно высчитать объемный коэффициент расширения, позволяющий спрогнозировать поведение газов и жидкостей в изменяющихся внешних условиях. Чтобы получить такие же результаты для твердых тел, необходимо учитывать коэффициент линейного расширения. Физики выделили целый раздел для такого рода исследований и назвали его дилатометрией.

Инженерам и архитекторам необходимы знания о поведении разных материалов под воздействием высоких и низких температур для проектировки зданий, прокладывания дорог и труб.

Расширение газов

тепловое расширение

Тепловое расширение газов сопровождается расширением их объема в пространстве. Это заметили философы-естественники еще в глубокой древности, но построить математические расчеты получилось только у современных физиков.

В первую очередь ученые заинтересовались расширением воздуха, так как это казалось им посильной задачей. Они настолько рьяно взялись за дело, что получили довольно противоречивые результаты. Естественно, такой исход научное сообщество не удовлетворил. Точность измерения зависела от того, какой использовался термометр, от давления и множества других условий. Некоторые физики даже пришли к мнению, что расширение газов не зависит от изменения температуры. Или эта зависимость не полная.

Работы Дальтона и Гей-Люссака

тепловое расширение тел

Физики продолжали бы спорить до хрипоты или забросили бы измерения, если бы не Джон Дальтон. Он и еще один физик, Гей-Люссак, в одно и то же время независимо друг от друга смогли получить одинаковые результаты измерений.

Люссак пытался найти причину такого количества разных результатов и заметил, что в некоторых приборах в момент опыта была вода. Естественно, в процессе нагревания она превращалась в пар и изменяла количество и состав исследуемых газов. Поэтому первое, что сделал ученый, – это тщательно высушил все инструменты, которые использовал для проведения эксперимента, и исключил даже минимальный процент влажности из исследуемого газа. После всех этих манипуляций первые несколько опытов оказались более достоверными.

Дальтон занимался этим вопросом дольше своего коллеги и опубликовал результаты еще в самом начале XIX века. Он высушивал воздух парами серной кислоты, а затем нагревал его. После серии опытов Джон пришел к выводу, что все газы и пар расширяются на коэффициент 0,376. У Люссака получилось число 0,375. Это и стало официальным результатом исследования.

Упругость водяных паров

Тепловое расширение газов зависит от их упругости, то есть способности возвращаться в исходный объем. Первым данный вопрос стал исследовать Циглер в середине восемнадцатого века. Но результаты его опытов слишком разнились. Более достоверные цифры получил Джеймс Уатт, который использовал для высоких температур папинов котел, а для низких – барометр.

В конце XVIII века французский физик Прони предпринял попытку вывести единую формулу, которая бы описывала упругость газов, но она получилась лишком громоздкая и сложная в использовании. Дальтон решил опытным путем проверить все расчеты, используя для этого сифонный барометр. Не смотря на то что температура не во всех опытах была одинакова, результаты получились очень точными. Поэтому он опубликовал их в виде таблицы в своем учебнике по физике.

Теория испарения

тепловое линейное расширение

Тепловое расширение газов (как физическая теория) претерпевала различные изменения. Ученые пытались добраться до сути процессов, при которых получается пар. Здесь снова отличился известный уже нам физик Дальтон. Он высказал гипотезу, что любое пространство насыщается парами газа независимо от того, присутствует ли в этом резервуаре (помещении) какой-либо другой газ или пар. Следовательно, можно сделать вывод, что жидкость не будет испаряться, просто входя в соприкосновение с атмосферным воздухом.

Давление столба воздуха на поверхность жидкости увеличивает пространство между атомами, отрывая их друг от друга и испаряя, то есть способствует образованию пара. Но на молекулы пара продолжает действовать сила тяжести, поэтому ученые посчитали, что атмосферное давление никак не влияет на испарение жидкостей.

Расширение жидкостей

тепловое расширение рельса

Тепловое расширение жидкостей исследовали параллельно с расширением газов. Научными изысканиями занимались те же самые ученые. Для этого они использовали термометры, аэрометры, сообщающиеся сосуды и прочие инструменты.

Все опыты вместе и каждый в отдельности опровергли теорию Дальтона о том, что однородные жидкости расширяются пропорционально квадрату температуры, на которую их нагревают. Конечно, чем выше температура, тем больше объем жидкости, но прямой зависимости между ним не было. Да и скорость расширения у всех жидкостей была разной.

Тепловое расширение воды, например, начинается с нуля градусов по Цельсию и продолжается с понижением температуры. Раньше такие результаты опытов связывали с тем, что расширяется не сама вода, а сужается емкость, в которой она находится. Но некоторое время спустя физик Делюка все-таки пришел к мысли, что причину следует искать в самой жидкости. Он решил найти температуру ее наибольшей плотности. Однако это ему не удалось ввиду пренебрежения некоторыми деталями. Румфорт, занимавшийся изучением этого явления, установил, что максимальная плотность воды наблюдается в пределах от 4 до 5 градусов по Цельсию.

Тепловое расширение тел

закон теплового расширения

Закон теплового расширения тел сформулирован так: любое тело с линейным размером L в процессе нагревания на dT (дельта Т – разница между начальной температурой и конечной), расширяется на величину dL (дельта L – это производная коэффициента линейного теплового расширения на длину объекта и на разность температуры). Это самый простой вариант этого закона, который по умолчанию учитывает, что тело расширяется сразу во все стороны. Но для практической работы используют куда более громоздкие вычисления, так как в реальности материалы ведут себя не так, как смоделировано физиками и математиками.

Тепловое расширение рельса

тепловое расширение воды

Для прокладки железнодорожного полотна всегда привлекают инженеров-физиков, так как они могут точно вычислить, какое расстояние должно быть между стыками рельсов, чтобы при нагревании или охлаждении пути не деформировались.

Как уже было сказано выше, тепловое линейное расширение применимо для всех твердых тел. И рельс не стал исключением. Но есть одна деталь. Линейное изменение свободно происходит в том случае, если на тело не воздействует сила трения. Рельсы жестко прикреплены к шпалам и сварены с соседними рельсами, поэтому закон, который описывает изменение длинны, учитывает преодоление препятствий в виде погонных и стыковых сопротивлений.

Если рельс не может изменить свою длину, то с изменением температуры в нем нарастает тепловое напряжение, которое может как растянуть, так и сжать его. Этот феномен описывается законом Гука.

Даже небольшое тепловое расширение твердых тел может привести к серьезным последствиям. Об этом нужно помнить при обращении со стеклянной посудой, которая растрескивается при неравномерном нагревании. Явление теплового расширения учитывают при строительстве мостов, прокладывании железнодорожного полотна (рис. 2).



Рис. 2. Предотвратить разрушения металлических мостов можно, используя роликовые опоры. Принимая во внимание тепловое расширение тел, при прокладке железнодорожного полотна между стыками рельсов оставляют зазоры.


Изменение размеров движущихся частей часового механизма при колебаниях температуры привело бы к изменению хода часов. Поэтому для изготовления деталей здесь применяется особый сплав стали и никеля — инвар. Стержень из инвара удлиняется лишь на одну миллионную долю своей длины при изменении температуры на 1 °С.
На рисунке 3 изображена пластина, склепанная из двух металлических полосок — в данном случае из цинка и железа. Такая пластина называется биметаллической.


Рис. 3. Так как тепловое расширение металлов различно, то нагревание биметаллической пластины вызывает ее изгиб. Пластина замыкает цепь, в ней течет ток, лампочка загорается.


Рис. 4. Нагреваясь, биметаллическая пластина изгибается, цепь размыкается, нагревательный элемент начинает охлаждаться.


Увеличение объема тел при нагревании называется объемным расширением.

Объемное расширение характеризуется коэффициентом объемного расширения и обозначается через β .


= .

V0 – начальный объем при 0 0 С; Vt – конечный объем при t 0 С; V – изменение объема тела; t0 – начальная температура; t – конечная температура.

Величина, показывающая, на какую долю начального объема, взятого при 0 0 С, увеличивается объем тела от нагревания на 1 0 С, называется коэффициентом объемного расширения.

Если известен объем тела V1 при температуре t1, то объем V2 при температуре t2 можно находить по приближенной формуле V2~V1[1+ *(t2-t1] , а коэффициент объемного расширения ~ .

Вывод и запись формул реализуется студентами самостоятельно.

6. Значение коэффициента объемного расширения β очень малая величина.

Однако, если мы обратимся к таблицам, то увидим, что значении β для твердых тел там нет. Оказывается между коэффициентами линейного и объемного расширения существует зависимость β =3α .

Выведем это соотношение.

Допустим, что мы имеем кубик, длина ребра которого при 0 0 С равна 1 см. нагреем кубик на 1 0 С, тогда длина его ребра будет lt=1+? *1 0 =1+? . Объем нагретого кубика Vt=(1+? ) 3 . С другой стороны, объем этого же кубика можно вычислить по формуле Vt=1+? *1 0 =1+? .

Из последних равенств получим 1+? =(1+? ) 3 , отсюда 1+? =1+3? +3? 2 +? 3 .

Так как числовые значения ? очень малы – порядка миллионных долей, то 3? 2 и ? 3 подавно являются величинами чрезвычайно малыми. На этом основании, пренебрегая величинами 3? 2 и ? 3 , получим, что ? =3? .

Коэффициент объемного расширения твердого тела равен утроенному коэффициенту линейного расширения.

Выясним как изменяется плотность тел при изменении температуры. Плотность тела при 0 0 С.


, откуда m=p0*V0, где m – масса тела; V0 – объём при 0 0 С;

m = const при изменении температуры, но объём тела изменяется, значит меняется и плотность.

На этом основании можно написать, что плотность тела при температуре t = 0 0 C , т.к. Vt = V0(1+? t), то .

При расчётах нужно учитывать, что в таблицах указывается плотность вещества при 0 0 С. Плотность при других температурах, вычисляется по формуле? t.

При нагревании pt – уменьшается, при охлаждении pt – увеличивается.

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

Законы физики на службе у человека.

Расширение тел при нагревании.

Изучить тепловое расширение разных веществ при повышении температуры.

Рассмотреть различные природные явления, происходящие из-за теплового расширения.

Объяснить правильность учёта теплового расширения в строительстве мостов, линий электропередач, железных дорог и т. д.

Изготовить прибор, с помощью которого можно легко наблюдать расширение тел при нагревании.

Простые опыты и наблюдения убеждают нас, что при повышении температуры размеры тел немного увеличиваются, а при охлаждении — уменьшаются до прежних размеров. Так, например, сильно разогретый болт не входит в резьбу, в которую он свободно входит, будучи холодным. Когда болт охладится, он снова входит в резьбу. Телеграфные провода в жаркую летнюю погоду провисают заметно больше, чем

При нагревании электрическим током проволока удлиняется и провисает; по выключении тока она принимает прежнее положение
во время зимних морозов. Увеличение провисания, а следовательно, и длины натянутых проволок при нагревании легко воспроизвести на опыте, изображенном на рис. 353. Нагревая натянутую проволоку электрическим током, мы видим, что она заметно провисает, а по прекращении нагревания снова натягивается.
При нагревании увеличиваются не только длина тела, но также и другие линейные размеры. Изменение линейных размеров тела при нагревании называют линейным расширением. Если однородное тело (например, стеклянная трубка) нагревается одинаково во всех частях, то оно, расширяясь, сохраняет свою форму. Иное происходит при неравномерном нагревании. Рассмотрим такой опыт. Стеклянная трубка расположена горизонтально, и один ее конец закреплен. Если трубку нагревать снизу, как показано на рис. 354, то верхняя ее часть остается вследствие плохой Теплопроводности стекла более холодной; при этом трубка

Рис. 354. Стеклянная трубка при нагревании ее снизу заметно изгибается вверх
изгибается кверху. Легко понять, что нижняя половина изогнутой трубки сжата, так как она не может расширяться в той мере, в какой расширялась бы, если бы не составляла одно целое с верхней половиной. Верхняя половина,, наоборот, растянута.

Таким образом, при неравномерном нагревании тел в них возникают напряжения, которые могут повести к их разрушению, если напряжения сделаются слишком большими. Так, стеклянная посуда в первый момент, когда в нее налита горячая вода, находится в напряженном состоянии и иногда лопается. Это происходит вследствие того, что сперва (прогреваются и расширяются внутренние части, которые и растягивают при этом внешнюю поверхность посуды. Такого напряжения при нагревании можно избежать, если 'взять посуду со столь тонкими стенками, что они быстро прогреваются по всей толщине (химическая посуда).

По сходной причине лопается обычная стеклянная посуда, если пытаться греть в ней жидкости на огне или на электрической плитке. Существуют, однако, специальные (сорта стекла (так называемое кварцевое стекло, содержащее до 96 % кварца, SiO2), которые расширяются при нагревании настолько мало, что напряжения при неравномерном нагревании посуды, сделанной из такого стекла, не опасны. В кастрюле из кварцевого стекла можно кипятить воду. Линейное расширение различных материалов при одном и том же повышении температуры различно. Это видно, например, из такого опыта: две разнородные пластинки (например, железная и медная) склепывают между собой в нескольких местах (рис. 355, а). Если при комнатной температуре пластинки прямые, то при нагревании они искривятся, как изображено на рис. 355, б. Это показывает, что медь расширяется в большей мере, чем железо. Из этого опыта следует также, что при изменениях температуры тела, состоящего из нескольких различно расширяющихся частей, в нем тоже появляются внутренние напряжения. В опыте, изображенном на рис. 355, медная пластинка сжата, а железная — растянута. По причине неодинакового расширения железа и эмали возникают напряжения в эмалированной железной посуде; при сильном нагреве эмаль иногда отскакивает.

Напряжения, появляющиеся в твердых телах вследствие теплового расширения, могут быть очень большими. Это необходимо принимать во внимание во многих областях

Рис. 355. а) Пластинка, склепанная из медной и железной полосок, в колодном состоянии. б) Та же пластинка в нагретом состоянии (для наглядности изгиб показан преувеличенным)

Рис. 356. Компенсатор на паропроводе дает возможность трубам А и В расширяться
техники. Бывали случаи, когда части железных мостов, склепанные днем, охлаждаясь ночью, разрушались, срывая многочисленные заклепки. Во избежание подобных явлений, принимают меры к тому, чтобы части сооружений при изменении температуры расширялись или сжимались свободно. Например, железные паропроводы снабжают пружинящими изгибами в виде петель (компенсаторы, рис. 356).
Увеличение линейных размеров сопровождается увеличением объема тел (объемное расширение тел). О линейном расширении жидкостей говорить нельзя, так как жидкость не имеет определенной формы. Объемное же расширение жидкостей нетрудно наблюдать. Наполним колбу подкрашенной водой или другой жидкостью и заткнем ее пробкой со стеклянной трубкой так, чтобы жидкость вошла в трубку (рис. 357, а). Если к колбе поднести снизу сосуд с горячей водой, то в первый момент жидкость в трубке опустится, а затем начнет подниматься (рис.. 357, б и в). Понижение уровня жидкости в первый момент указывает на то, что сперва расширяется сосуд, а жидкость еще не успела прогреться. Затем прогревается и жидкость.

Рис. 357. а) Подкрашенная вода вошла из колбы в пробку. б) К колбе снизу подносится сосуд с горячей водой. В первый момент погружения колбы жидкость в трубке опускается. в) Уровень в трубке через некоторое время устанавливается выше, чем до нагревания колбы

Рис. 358. Схема устройства водяного отопления в доме. На чердаке помещен расширительный бак 1, из которого вода стекает по трубке 2
Повышение ее уровня показывает, что жидкость расширяется в большей мере, чем стекло. Различные жидкости расширяются при нагревании по-разному: например, керосин расширяется сильнее, чем вода.

Если жидкость нагревается в замкнутом сосуде, который препятствует ее расширению, то в ней, так же как и в твердых телах, появляются огромные напряжения (силы давления), действующие на стенки сосуда и могущие их разрушить. Поэтому системы труб водяного отопления всегда снабжаются расширительным баком, присоединенным к верхней части системы и сообщающимся с атмосферой (рис. 358). При нагревании воды в системе труб часть воды переходит в расширительный бак, и этим исключается напряженное состояние воды и труб.

Изменение размеров твердых тел вследствие теплового расширения приводит к появлению огромных сил упругости, если другие тела препятствуют этому изменению размеров. Например, стальная мостовая балка сечением 100 см 2 при нагревании от -40 °С зимой до +40 °С летом, если опоры препятствуют ее удлинению, создает давление на опоры (напряжение) до 1,6 • 10 8 Па, т. е. действует на опоры с силой 1,6 • 10 6 Н.

Приведенные значения могут быть получены из закона Гука и формулы (9.2.1) для теплового расширения тел.

Согласно закону Гука механическое напряжение где — относительное удлинение, a E — модуль Юнга. Согласно (9.2.1) . Подставляя это значение относительного удлинения в формулу закона Гука, получим


У стали модуль Юнга Е = 2,1 • 10 11 Па, температурный коэффициент линейного расширения α1 = 9 • 10 -6 К -1 . Подставив эти данные в выражение (9.4.1), получим, что при Δt = 80 °С механическое напряжение σ = 1,6 • 10 8 Па.

Так как S = 10 -2 м 2 , то сила F = σS = 1,6 • 10 6 Н.

Для демонстрации сил, появляющихся при охлаждении металлического стержня, можно проделать следующий опыт. Нагреем железный стержень с отверстием на конце, в которое вставлен чугунный стерженек (рис. 9.5). Затем вставим этот стержень в массивную металлическую подставку с пазами. При охлаждении стержень сокращается, и в нем возникают столь большие силы упругости, что чугунный стерженек ломается.


Тепловое расширение тел нужно учитывать при конструировании многих сооружений. Необходимо принимать меры для того, чтобы тела могли свободно расширяться или сжиматься при изменении температуры.

Нельзя, например, туго натягивать телеграфные провода, а также провода линий электропередачи (ЛЭП) между опорами. Летом провисание проводов заметно больше, чем зимой.

Металлические паропроводы, а также трубы водяного отопления приходится снабжать изгибами (компенсаторами) в виде петель (рис. 9.6).


Внутренние напряжения могут возникать при неравномерном нагревании однородного тела. Например, стеклянная бутылка или стакан из толстого стекла могут лопнуть, если налить в них горячей воды. В первую очередь происходит нагрев внутренних частей сосуда, соприкасающихся с горячей водой. Они расширяются и оказывают сильное давление на внешние холодные части. Поэтому может произойти разрушение сосуда. Тонкий же стакан не лопается при наливании в него горячей воды, так как его внутренняя и внешняя части одинаково быстро прогреваются.

Очень малый температурный коэффициент линейного расширения имеет кварцевое стекло. Такое стекло выдерживает, не трескаясь, неравномерное нагревание или охлаждение. Например, в раскаленную докрасна колбочку из кварцевого стекла можно вливать холодную воду, тогда как колба из обычного стекла при таком опыте лопается.

Разнородные материалы, подвергающиеся периодическому нагреванию и охлаждению, следует соединять вместе только тогда, когда их размеры при изменении температуры меняются одинаково. Это особенно важно при больших размерах изделий. Так, например, железо и бетон при нагревании расширяются одинаково. Именно поэтому широкое распространение получил железобетон — затвердевший бетонный раствор, залитый в стальную решетку — арматуру (рис. 9.7). Если бы железо и бетон расширялись по-разному, то в результате суточных и годовых колебаний температуры железобетонное сооружение вскоре бы разрушилось.


Еще несколько примеров. Металлические проводники, впаянные в стеклянные баллоны электроламп и радиоламп, делают из сплава (железа и никеля), имеющего такой же коэффициент расширения, как и стекло, иначе при нагревании металла стекло треснуло бы. Эмаль, которой покрывают посуду, и металл, из которого эта посуда изготовляется, должны иметь одинаковый коэффициент линейного расширения. В противном случае эмаль будет лопаться при нагревании и охлаждении покрытой ею посуды.

Значительные силы могут развиваться и жидкостью, если нагревать ее в замкнутом сосуде, не позволяющем жидкости расширяться. Эти силы могут привести к разрушению сосудов, в которых содержится жидкость. Поэтому с этим свойством жидкости тоже приходится считаться. Например, системы труб водяного отопления всегда снабжаются расширительным баком, присоединенным к верхней части системы и сообщающимся с атмосферой. При нагревании воды в системе труб небольшая часть воды переходит в расширительный бак, и этим исключается напряженное состояние воды и труб. По этой же причине в силовом трансформаторе с масляным охлаждением наверху имеется расширительный бак для масла. При повышении температуры уровень масла в баке повышается, при охлаждении масла — понижается.

Использование теплового расширения в технике

Тепловое расширение тел находит широкое применение в технике. Приведем лишь несколько примеров. Две разнородные пластинки (например, железная и медная), сваренные вместе, образуют так называемую биметаллическую пластинку (рис. 9.8).


При нагревании такие пластинки изгибаются вследствие того, что одна расширяется сильнее другой. Та из полосок (медная), которая расширяется больше, оказывается всегда с выпуклой стороны (рис. 9.9). Это свойство биметаллических пластинок широко используется для измерения температуры и ее регулирования.


Терморегулятор

На рисунке 9.10 схематически изображено устройство одного из типов регуляторов температуры. Биметаллическая дуга 1 при изменении температуры изменяет свою кривизну. К ее свободному концу прикреплена металлическая пластинка 2, которая при раскручивании дуги прикасается к контакту 3, а при закручивании отходит от него. Если, например, контакт 3 и пластинка 2 присоединены к концам 4, 5 электрической цепи, содержащей нагревательный прибор, то при соприкосновении контакта и пластинки электрическая цепь замкнется: прибор начнет нагревать помещение. Биметаллическая дуга 1 при нагревании начнет закручиваться и при определенной температуре отсоединит пластинку 2 от контакта 3: цепь разорвется, нагревание прекратится.


При охлаждении дуга 1, раскручиваясь, снова заставит включиться нагревательный прибор. Таким образом, температура помещения будет поддерживаться на данном уровне. Подобный терморегулятор устанавливают в инкубаторах, где требуется поддерживать температуру постоянной. В быту терморегуляторы установлены в холодильниках, электроутюгах и т. д. Обод (бандаж) колеса железнодорожного вагона изготавливают из стали, остальную часть колеса делают из более дешевого металла — чугуна. Бандажи на колеса надевают в нагретом состоянии. После охлаждения они сжимаются и поэтому держатся прочно.

Также в нагретом состоянии надевают шкивы, подшипники на валы, железные обручи на деревянные бочки и т. д. Свойство жидкостей расширяться при нагревании и сжиматься при охлаждении используется в приборах, служащих для измерения температуры — термометрах. В качестве жидкостей для изготовления термометров применяют ртуть, спирт и др.

При расширении или сжатии тел возникают огромные механические напряжения, если другие тела препятствуют изменению размеров. В технике используются биметаллические пластинки, изменяющие свою форму при нагревании.


Все тела состоят из молекул, которые находятся в непрерывном движении. Нам уже известно что, диффузия при более высокой температуре происходит быстрее. Это означает что скорость движения молекул и температура связаны между собой. При повышении температуры скорость движения молекул увеличивается, при понижении уменьшается. Следовательно, температура тела зависит от скорости движения молекул. Явления, связанные с нагреванием и охлаждением тел называются тепловыми. Например, охлаждение воздуха, таяние льда. Каждая молекула в теле движется по очень сложной траектории. Так, например частицы газа движутся на больших скоростях в разных направлениях, сталкиваются друг с другом и со стенками сосуда.

При нагревании амплитуда колебания молекул увеличивается, расстояние между ними возрастает, и тело заполняет больший объем. Твердые тела при нагревании расширяются во всех направлениях.

Жидкости расширяются значительно сильнее твердых тел. Они также расширяются во всех направлениях. Вследствие большой подвижности молекул жидкость принимает форму сосуда, в котором находится.

В быту и технике тепловое расширение имеет очень большое значение. На электрических железных дорогах необходимо зимой и летом сохранять постоянное натяжение провода, питающего энергией электровозы. Для этого натяжение провода создается тросом, один конец которого соединен с проводом, а другой перекинут через блок и к нему подвешен груз.

При сооружении моста один конец фермы кладется на катки. Если этого не сделать, то при расширении летом и сжатии зимой ферма будет расшатывать устои, на которые опирается мост.

При изготовлении ламп накаливания часть провода проходящего внутри стекла необходимо делать из такого материала, коэффициент расширения которого такой же как у стекла иначе оно может треснуть.

Приведенные выше примеры далеко не исчерпывают роль и различные применения теплового расширения в быту и технике.

Термометры всегда показывают собственную температуру. Только через определенное время эта температура становится равной температуре окружающей среды. Иначе говоря, термометрам свойственна определенная инерционность.

Длина столбика жидкости ртути, спирта, толуола, пентана и других служит мерой температуры. Интервал измерения ограничен температурами кипения и замерзания жидкости в термометре.

Металлический термометр представляет собой биметаллическую пластину, т. е пластинку, сваренную из полосок двух различных металлов. Вследствие разницы в тепловых расширениях металлов пластинка при нагревании будет изгибаться. Из длинной пластинки сгибают спираль. Наружный конец спирали закрепляют, а к внутреннему прикрепляют стрелку, которая указывает по шкале определённую температуру

Сопротивление металлов меняется с температурой. Сила тока в цепи зависит от сопротивления проводника, а следовательно и от его температуры. Преимущество термометра сопротивления состоит в том, что измерительный прибор и место, где измеряется температура могут быть разнесены на приличное расстояние.

Коэффициент объемного расширения слабо зависит от температуры. Вода является исключением и коэффициент расширения воды сильно зависит от температуры, а в интервале от 0 до 4 градусов С принимает отрицательное значение. Другими словами объём воды уменьшается от 0 до 4 градусов С, а затем возрастает.

Тепловое расширение воздуха играет большую роль в явлениях природы. Тепловое расширение воздуха создает движение воздушных масс в вертикальном направлении (нагретый, менее плотный воздух поднимается вверх, холодный и менее плотный вниз). Неравномерный нагрев воздуха в разных частях земли приводит к возникновению ветра. Неравномерный разогрев воды создает течения в океанах.

При нагревании и охлаждении горных пород вследствие суточных и годовых колебаний температуры (если состав породы неоднороден) образуются трещины, что способствует разрушению пород.

Читайте также: