Сообщение на тему редкоземельные металлы

Обновлено: 04.07.2024

Подборка редкоземельных металлов, в которой мы расскажем об основных характеристиках каждого из 16-ти металлов.

К лантаноидам, или редкоземельным металлам, относятся 16 элементов и подразделяются на две группы. Группа цериевых металлов включает в себя церий, лантан, неодим, празеодим, самарий. Иттриевые же содержат в себе иттрий и остальные.

Гадолиний — химический элемент, принадлежащий к лантаноидам, с которого начинается иттриевая подгруппа редкоземельных металлов. Представляет собой мягкий, вязкий материал, обладающий серебристо-белым оттенком, который хорошо растворим, однако очень токсичен. Соединения гадолиния получают в результате разделения на фракции оксидов редкоземельных металлов. К основным областям использования относятся ядерная энергетика и электроника, а также медицина, где он широко востребован как парамагнитное контрастное вещество.

Диспрозий – металл из группы редкоземельных элементов с температурой плавления в 1407°С, отличающийся серебристо-серым глянцем. В природе в чистом виде не встречается, но имеется в составе некоторых минералов, в частности, апатита, ксенотима. Служит отличным легирующим элементом цинковых сплавов в металлургии. В медицине ионы диспрозия используются в медицинских лазерах. Также без него не обойтись в электронике, ядерной энергетике.

Европий – серебристый мягкий металл из группы лантаноидов, легко окисляющийся на воздухе. Принадлежит к группе редкоземельных элементов. Вступает в реакцию с подавляющим большинством неметаллов. Без применения европия не обойтись:

  • в атомно-водородной энергетике;
  • в медицине, где его катионы используются в качестве флуоресцентных зондов при диагностике;
  • при создании лазеров (твердотельных и жидкостных);
  • в ядерной энергетике.

Индий – легкоплавкий, ковкий металл с серебристым блеском. Использование современной технологии дает возможность получать металл из отходов или промежуточных продуктов выработки цинка, олова, свинца. Содержится его в этих элементах мало — от 0,001 до 0,1%. В зависимости от химического состава индий подразделяется на несколько марок: ИН-0, ИН-00, ИН-2. Незаменим при производстве жидкокристаллических экранов, в микроэлектронике, используется как материал для фотоэлементов, как люминофор и т.д.

Иттербий – принадлежит к иттриевой подгруппе. Это металл светло-серого оттенка, получаемый после восстановления в вакууме оксида иттербия посредством лантана или углерода. Используется как технологичный лазерный материал, на его основе создаются разнообразные магнитные сплавы, применяется в атомной технике, в качестве диэлектрика в электронике.

Иттрий – это светло-серый металл, который легко реагирует с минеральными кислотами. Температурный показатель плавления – 1528°С. Обладает рядом уникальных качеств, благодаря чему широко используется в цветной и черной металлургии: для легирования алюминия, добавляют к жаростойким сплавам хрома с никелем, а также в сталь, делая ее структуру мелкозернистой.

Лантан – металл с серебристым отливом из группы редкоземельных сплавов. Отличается тягучестью, ковкостью, обладает повышенной химической активностью, слабо парамагнитен. Используется:

  • как компонент сплавов магния, никеля, кобальта;
  • в составе различных катализаторов для крекинга нефти;
  • как фторид лантана в люминофорах;
  • в качестве компонента коррозионностойких и жаропрочных сплавов;
  • в жидком состоянии для извлечения плутония из расплавленного урана.

Лютеций – серебристо-белый металл, не вызывающий затруднений при механической обработке. Среди лантаноидов является наиболее тяжелым элементом и по атомному весу, и по плотности. Его температура плавления среди всех редкоземельных элементов максимальная и составляет 1663 °C. Широко используется в металлургии, где при добавлении к хрому и его сплавам, улучшает технологичность и придает отменные механические характеристики. Также не обходятся без лютеция энергетика, ядерная физика, медицина.

Неодим – один из наиболее применяемых металлов из лантаноидов наравне с лантаном, самарием, церием. Легко окисляется на воздухе. Очень важными сферами его применения являются:

  • сельское хозяйство (для обработки семян с целью ускорения всхожести, повышения урожайности);
  • металлургия (легирование специальных конструкционных сталей, сплавов);
  • нефтехимическая отрасль (при изготовлении синтетического каучука) и др.

Празеодим – серебристый металл, принадлежащий к группе лантаноидов. Получают его в смеси с редкоземельными элементами. Медленно окисляется на воздухе, при нагревании возгорается. Используется в металлургии в качестве легирующей добавки к стали. Востребован при изготовлении магнитных сердечников, электровакуумной техники. Его сплавы с кремнием и германием применяются как сверхпроводящие материалы.

Самарий – высокоактивный твердый металлический материал, по внешнему виду напоминающий свинец. Медленно окисляется на воздухе, покрываясь темной пленкой, а в последствии, рассыпается в порошок. Растворим в кислотах. Широко применяется для производства сверхмощных магнитов, термоэлектрических и огнеупорных материалов. В ядерной энергетике необходим для управления атомными реакторами, в микроэлектронике применим в качестве диэлектрика.

Скандий – серебристый легкий металл с желтым отливом. По свойствам близок к кальцию, железу, алюминию, магнию. Создание сплавов и керамик – основная область использования материала. Алюминиево-скандиевые сплавы востребованы в аэрокосмической отрасли. Его соединения могут использоваться в производстве лазеров, МГД-генераторов, солнечных батарей, рентгеновских зеркал.

Тербий – необычный металл из ряда лантаноидов, обладающий множеством уникальных физических характеристик, как и его соединения и сплавы. Потребляется при производстве оптических, термоэлектрических, магнитных материалов, необходим в электронике в качестве люминофора. Оксид тербия используется как высокоэффективный катализатор окисления. В производстве компьютеров немалое значение имеет феррит тербия.

Тулий – серебристый блестящий металлический элемент из разряда лантаноидов. Основным источником является монацитовая руда. Отличается мягкостью, ковкостью, пластичностью, реагирует с галогенами и кислородом. Используется в ядерном реакторе в составе контрольного материала, а также применим в магнитных носителях информации, в термоэлектрических и лазерных материалах.

Церий – распространенный редкоземельный металл с серебристым блеском. Химически активный материал, хорошо соединяющийся с азотом, кислородом, водородом. При температуре свыше 300°С воспламеняется и преобразуется в диоксид церия. Широко востребован в металлургии, медицине. Используется при производстве источников света, катализаторов, огнеупорных, термоэлектрических и абразивных материалов.

Эрбий – белый металл с серебристым отливом. Содержится в монацитовых песках. Взаимодействует с минеральными кислотами, в результате чего образуются соли эрбия. При нагревании реагирует с галогенами, кислородом и другими неметаллами. Используется для изготовления высокоэффективных лазерных материалов, в качестве активатора люминофоров, при создании сверхдлинных оптических трасс. Также одно из важных направлений использования – обеспечение безопасности работы атомных реакторов.

Редкоземельные металлы составляют группу из 17 элементов. Они нашли свое применение во многих технических изделиях, включая смартфоны, бытовую технику (телевизоры, компьютеры, объективы фотоаппаратов), электромобили, ветровые турбины, медицинскую и военную технику. Некоторые из этих элементов очень редкие, другие распределены в небольших количествах по разным уголкам мира. Главная проблема редкоземельных металлов в том, что их добыча является экологически опасной, а обработка весьма дорогостоящей.


Список редкоземельных металлов и их названия

К редкоземельным металлам (сокращенно — РЗМ) относят:

10) празеодим (Pr);


В iPhone содержится 8 различных редкоземельных металлов, в некоторых других смартфонах их насчитывается 16 (за исключением радиоактивного прометия). В мобильных устройствах они отвечают за яркость экрана (тербий и диспрозий), ударопрочность, отклик тачскрина и вибрацию (неодим и диспрозий). Редкоземельные металлы также присутствуют в микросхемах и динамиках. И это только небольшая сфера их использования.

Применение редкоземельных металлов в технике

Выше мы разобрали, что такое редкоземельные металлы. Теперь рассмотрим вопрос о том, как они используются в технике и электронике.

• Неодим требуется в производстве мощных магнитов для жестких дисков и динамиков. Также находит применение в электромобилях и ветровых турбинах.

• Лантан применяется в фотокамерах и телескопических объективах, студийном освещении и кинопроекции, в аккумуляторах и водородных хранилищах.

• Церий необходим в автомобильных каталитических нейтрализаторах: он дает им возможность работать при повышенных температурах. Помимо этого, играет ключевую роль в конвертерных химических реакциях, а также в переработке сырой нефти.

• Празеодим нужен для разработки усиленных металлов и стекол, авиационных двигателей и защитных масок для сварщиков и стекольников.

• Гадолиний используется в дисплеях, рентгеновских системах и МРТ-аппаратуре.

• Иттрий, тербий и европий требуются при создании дисплеев телевизоров и компьютеров, энергоэффективных лампочек и люминесцентных ламп, а также для создания стержней управления реакторами.


Помимо индустрии электроники в значительной степени от редкоземельных металлов зависят еще две отрасли — электрический автопром и ветроэнергетика. Компания Tesla создает двигатели с постоянными магнитами на основе неодима и празеодима.

Электродвигатели с содержанием редкоземельных металлов отличаются легкостью, мощностью и экономно расходуют заряд.

Согласно исследованию Argonaut, в электроавтомобилях используется на 1 кг больше редкоземельных магнитов, чем в авто с традиционным двигателем внутреннего сгорания.

В ветроэнергетике также огромным спросом пользуются неодим и празеодим. Как ожидается, спрос на эти металлы в течение следующих лет увеличится в 2,5 раза.

В 2016 году Россия импортировала до 90% редкоземельных металлов. Теперь курс изменился: к 2020 году РФ намерена отказаться от их импорта вовсе.



Каковы экологические последствия добычи редкоземельных ископаемых?

Добыча редкоземельных металлов отрицательно сказывается на экологии. Она провоцирует выброс в атмосферу как токсинов, так и углерода. Большая часть шахт, ведущих добычу редкоземельных металлов, расположена в Китае. Страна исторически ограничивает экспорт ископаемых в ущерб производству других стран. В настоящее время горнодобывающая промышленность Китая сосредоточена в руках шести правительственных организаций.

До 2012 года стоимость редкоземельных металлов росла. Затем производители техники стали использовать альтернативные материалы в том числе и потому, что затраты на добычу РЗМ очень высоки. Однако в 2016 году цены на редкоземельные металлы снова подскочили из-за спроса со стороны автопромышленности и ветроэнергетики.


Можно ли ограничить их добычу?

Да. Одним из решений является восстановление и переработка бытовой электроники. Другим вариантом считаются модульные смартфоны, которые позволяют заменять отдельные устаревшие компоненты для более новые, не меняя само устройство. Старые компоненты могут быть переработаны или утилизированы. Но в настоящее время только 10% смартфонов отправляется на переработку. Рециркуляция редкоземельных металлов осложняется еще и тем, что их трудно извлечь из техники. Отсюда следует, что спрос на них в технологической индустрии закончится не скоро. Ученые продолжают поиски альтернатив этим достаточно дорогим ресурсам. Чем быстрее найдутся подходящие аналоги, тем будет лучше для экологии.

Редкоземельные металлы представляют собой группу из 17 химически схожих элементов, имеющих решающее значение для производства многих высокотехнологичных продуктов. Несмотря на свое название, большинство из них в изобилии, но опасны и трудны при извлечении.

Что такое редкоземельные металлы — это 17 химических элементов с неудобными названиями и необычными свойствами. Их атомные номера 57-71, 21 и 39.

Что такое редкоземельные металлы

Несмотря на свое название, они не являются геологически редкими, но широко рассеяны по всей земной коре. Редкоземельные металлы добываются в немногих местах и несколькими фирмами, как правило, не находятся в высококонцентрированной форме. Мировой рынок этих элементов является скромным (несколько миллиардов долларов в год), неустойчивым, сложным и доминирует в Китае, где не все шахты и экспорт легальны и прозрачны. Один из экспертов пришел к выводу, что около половины мирового производства 2018 года было неофициальным.

По возрастанию атомного веса редкоземельные металлы расположились следующим образом:

  • 21 Sc — Скандий
  • 39 Y — Иттрий
  • 57 La — Лантан
  • 58 Ce — Церий
  • 59 Pr — Празеодим
  • 60 Nd — Неодим
  • 61 Pm — Прометий
  • 62 Sm — Самарий
  • 63 Eu — Европий
  • 64 Gd — Гадолиний
  • 65 Tb — Тербий
  • 66 Dy — Диспрозий
  • 67 Ho — Гольмий
  • 68 Er — Эрбий
  • 69 Tm — Тулий
  • 70 Yb — Иттербий
  • 71 Lu — Лютеций.

Большинство этих элементов используются во многих различных областях.

Использование и добыча

Использование редкоземельных металлов является узкоспециализированным, но разнообразным. Эти элементы использованы в мобильных телефонах, суперсильных магнитах и, следовательно, моторах и генераторах, некоторых катализаторах нефтеперерабатывающего предприятия, лазерах и в люминесцентной лампе или плоских экранах, некоторых батареях и в сверхпроводниках и других технологиях важных в современной жизни. Некоторые редкоземельные металлы особенно полезны в энергетических приложениях.

Ученые предупреждают, что нехватка редкоземельных металлов или почти монополия Китая на них, может подавить переход на возобновляемые источники энергии и другие чистые технологии.

Может ли контроль Китая над этими важнейшими элементами (примерно 97 процентов) блокировать способность Вашингтона производить ракеты Томагавк, самолеты F-35 и очки ночного видения, как предупреждали некоторые ученые, не говоря уже об электрических транспортных средствах и ветровых турбинах?

Неодим

Используется для создания мощных магнитов, используемых в громкоговорителях и жестких дисках компьютеров, чтобы они были меньше и эффективнее. Магниты, содержащие неодим, также используются в экологически чистых технологиях, таких как производство ветровых турбин и гибридных автомобилей.

Лантан

Этот элемент используется в камерах и объективах телескопа. Соединения, содержащие лантан, широко используются в приложениях для освещения углерода, таких как студийное освещение и проекция кино.

Церий

Используется в каталитических нейтрализаторах в автомобилях, что позволяет им работать при высоких температурах и играет решающую роль в химических реакциях в конвертере. Лунтан и церий также используются в процессе переработки сырой нефти.

Иттрий

Иттрий используется в процессе создания цветных дисплеев на таких устройствах, как телевизионные экраны.

Празеодим

Используется для создания крепких металлов для использования в авиационных двигателях. Празеодим также является компонентом особого сорта стекла, используемого для изготовления козырьков для защиты сварщиков и стеклоизготовителей.

Гадолиний

Используется в рентгеновских и МРТ-системах сканирования, а также в телевизионных экранах. Исследования также проводятся в его возможное использование при разработке более эффективных холодильных систем.

Иттрий, тербий, европий

Применяется в экранах телевизоров, компьютеров и в других устройствах, которые имеют визуальные дисплеи, поскольку используются для изготовления материалов, которые выделяют разные цвета. Европий также используется для изготовления контрольных стержней в ядерных реакторах.

Рынок редкоземельных металлов

В настоящее время рынок редкоземельных металлов в упадке, и Китай планирует ограничить годовое производство до 140 000 метрических тонн, начиная с 2020 года, чтобы попытаться снова поднять цены.

Причины падения цен на редкоземельные металлы

Начнем с супермагнитов.

Неодим — редкоземельный элемент, примерно с концентрацией в земной коре, как свинец и хром, но сосредоточен в высокосортных рудах. В 1982 году Дженерал Моторс и японская компания Сумитомо обнаружили, что смешивание одной четвертой неодима по весу с тремя четвертями железа и бора может сделать самое мощное семейство супермагнетиков тогда известным, Nd2Fe14B и что свойства этих магнитов могут быть дополнительно улучшены путем добавления следов других редкоземельных металлов — празеодима плюс диспрозий или более дорогой тербий.

Китай, обладая большим количеством всех этих элементов и предпочитая добавленную стоимость экспорту сырья, создал индустрию супермагнитов, чьи низкие цены захватили большую часть мирового рынка и закрыли конкурентов. Китай также энергично проводит исследования и разработки, чтобы найти дальнейшее применение своей редкоземельной щедрости.

Даже в 2015 году, на долю Китая приходилось более 80% мирового редкоземельного производства, сейчас около 70 процентов — это неразумный баланс.

Технологические решения по уменьшению спроса

Сейчас двигатели применяют современную управляющую программу и силовую электронику из кремния, самого распространенного твердого элемента на Земле.

Первый вид — это асинхронный двигатель, изобретенный Николой Теслой 130 лет назад и используемый в каждом электромобиле Приус и Тесла сегодня. Без магнитов изготавливают двигатели не только в электрических автомобилях, но также в ветротурбинах, что освобождает тонны неодима. То, что некоторые ветряные турбины и производители используют генераторы с постоянными магнитами, не означает, что другие должны их изготавливать также.

Точно также красные люминофоры в компактных люминесцентных лампах традиционно используют европий. Но эти лампы теперь в значительной степени вытеснены белыми светодиодами, которые используют примерно на 96 процентов меньше европия. Кроме того, новые красные люминофоры не используют редкоземельные металлы, в то время как последний зеленый люминофор сокращает использование тербия более чем на 90 процентов.

Эрбий в волоконно-оптических ретрансляторах — еще один редкоземельный элемент. Эрбий необходим чтобы увеличить емкость волокна. Ширина полосы частот сейчас увеличена путем передачи по мултиплексу и беспроволочными рационализаторствами.

Некоторые гибридные автомобили, такие как Honda Insight 2001 года, использовали никель-металл-гидридные батареи, содержащие лантан, но теперь они в значительной степени заменены более легкими литиевыми батареями, которые обычно не используют лантан. Кроме того, электромобилям с литиевыми батареями требуется в два—три раза меньше батарей по массогабаритным характеристикам.

Лидирующие на рынке литиевые батареи электромобиля в мире, как и их двигатели, вообще не используют редкие металлы. Количество электромобилей в мире растет. Появляются новые технологии в виде мощных потенциальных заменителей батарей (в частности, графеновые суперконденсаторы).

Редкоземельные металлы – группа из 17 химических элементов таблицы Менделеева. Они обладают одинаковым строением атомов, а также имеют схожие химические и физические свойства. Редкоземельные элементы применяются в различных промышленных сферах: в радиоэлектронике, атомной энергетике, машиностроении, химической промышленности и металлургии.

Редкоземельные металлы

Металлы, составляющие группу редкоземельных

По состоянию на 2019 г., в список редкоземельных металлов входят следующие химические элементы:

Редкоземельный металл лантан является одним из самых дорогих химических элементов. При взаимодействии с алюминием он образует вещества с повышенной интенсивностью поглощения углерода и азота. Благодаря низкой активности по отношению к H2, его можно применять для изоляции водорода от окружающих газов.

Лантан

Редкоземельные соединения отличаются между собой по химической активности. Этот параметр возрастает от скандия до лантана. До лютеция химическая активность снижается до минимальных значений. Это явления обусловлено постепенным снижением расстояния между атомами и энергетическими уровнями.

В научной литературе редкоземельные металлы имеют следующие обозначения:

  1. TR: аббревиатура, обозначающая “редкие земли” (Terrae rarae).
  2. REE: сокращение английского словосочетания Rare-earth elements (редкоземельные элементы).
  3. REM: сокращение английского словосочетания Rare-earth metals (редкоземельные металлы).

В российских учебниках редкоземельные элементы обозначаются аббревиатурами РЗЭ или РЗМ.

История открытия редкоземельных металлов

Впервые редкоземельные металлы были изучены финским химиком Юханом Гадолином в конце XVIII столетия. В 1794 г. ученый во время изучения рудных образцов, найденных вблизи деревни Иттербю, открыл “редкую землю”, названную иттриевой. В начале XIX в. немецкий химик Мартин Клапрот создал первую классификацию редкоземельных соединений. Он раздел эти элементы 2 группы: иттриевые и цериевые.

Иттрий

Спустя несколько десятилетий шведский химик Мосандер выявил наличие новых редкоземельных металлов. В 1840-х г. ученый выделил из образцов “редких земель” окись церия, тербиевую и эрбиевую земли. К концу XIX столетия в мире было открыто 16 редкоземельных элементов. В XX в. был открыт последний редкоземельный металл — прометий. Ее исследованием занимались русские химики Маринский и Гленделин. На основе их экспериментов были проведены опыты по использованию осколков деления атомов урана в ядерном реакторе. По состоянию на 2019 г. группа редкоземельных металлов состоит из 17 химических соединений. В таблице Менделеева они расположены в ячейках 21, 39 – 57, 57 – 61.

Запасы редкоземельных элементов

Общее количество по массе редкоземельных металлов в природе составляет не более 0,02%. Чаще всего в недрах Земли находятся церий, лантан и неодим. Наименее распространенным соединением является Европий. Ее процентное содержание в недрах Земли составляет не более 0,0013% от его общей массе.

Запасы редкоземельных элементов

В мире редкоземельные металлы находятся в 240 минеральных веществах: фторидах, силикатах и фосфатах. 62 минерала используются в качестве промышленного сырья: монацит, апатит, бастнезит и эвксенит. Процентное соотношение РЗЭ в составе минеральных веществ неодинаково. В бастнезитах содержатся преимущественно представители цериевой подгруппы, в апатитах – иттриевой.

Редкоземельные элементы содержаться в естественной среде совместно, образуя сульфиды или галоидные соединения. Валентность веществ составляет не более 3+. В природе церий может образовывать четырехвалентные соединения, что обусловлено особенностями строения его электронной оболочки.

Основные запасы редкоземельных металлов содержатся в следующих странах:

  • США: 13000000 т;
  • Австралия: 1600000 т;
  • Бразилия: 36000 т;
  • Китай: 55000000 т;
  • Индия: 3100000 т;
  • Малайзия: 30000 т.

В России 90% редкоземельных элементов импортируется из других стран. Это обусловлено тем, что на российском рынке наблюдается низкий спрос на данные соединения. Из-за развития научно-технического прогресса наибольшее количество редкоземельных ресурсов потребляется развитыми странами Европы и Северной Америки.

Добыча

Добыча редкоземельных металлов из отходов фосфорных удобрений является одной из самых инновационных технологий. Наличие в породном отвале большого количества гипса обуславливает высокую водостойкость и механическую прочность сырья. Эта технология извлечения РЗМ позволяет добыть до 800 000 ценных химических элементов и утилизировать отходы при производстве фосфорных удобрений. Она представляет собой замкнутый цикл. В результате переработки минеральных удобрений выделяются строительный гипс и оксиды редкоземельных металлов: неодима, тербия, церия, диспрозия, празеодима и лантана.

Существуют 3 метода переработки отходов от производства удобрений:

  1. Разложение материала с помощью плавиковых или серных кислот: позволяет удалять из веществ оксиды азота в процессе реакции обмена.
  2. Хлорирование: атомы неметаллов сменяются на хлор в результате химической реакции замещения.
  3. Сплавление гидроксидами, растворимыми в воде: в результате реакции гидролиза из РЗМ удаляются сульфированные поверхностно-активные вещества.
  4. Химическое восстановление кальцием: осуществляется в бескислородной среде или в атмосфере аргона. Эта процедура позволяет избавиться от самых прочных химических окислов.

В результате образуется хлориды, сульфаты и оксиды, из которых извлекаются редкоземельные соединения. Для очистки РЗЭ от примесей используются технологии вакуумного переплава или дистилляции.

Добыча РЗМ

Наибольшее количество РЗМ добывается на территории США, Канады, Австралии и КНР. С 2010 г. спрос на эти химические соединения растет во многих индустриальных отраслях: машиностроении, электронике, ядерной энергетике и химической промышленности. Одним из крупнейших месторождений редкоземельных металлов является Bayan Obo, расположенное в Китае. Здесь содержится 44 млн. оксидов. Китай экспортирует сырье во многие страны Европы, Азии, Северной Америки и Африки. С 2010 г. КНР сокращает экспорт РЗМ, что связано с ростом потребления на внутреннем рынке. В результате во многих странах возникла физическая нехватка редкоземельных ресурсов.

В Российской Федерации добыча РЗМ из горных пород является нерентабельным занятием, что обусловлено низким потреблением этих металлов. Наибольшее количество редкоземельных элементов используют государственная корпорация “Ростехнологии” и предприятия оборонной промышленности. В России РЗМ добываются на территории Мурманской области и Республики Саха (Якутии). В данных регионах находятся крупнейшие месторождения редкоземельных металлов: Ловозерское и Томторское. С 2016 г. в РФ действует госпрограмма по созданию отраслевых предприятий, обеспечивающих российскую промышленность редкоземельными элементами. Она позволила улучшить методы добычи РЗМ и ликвидировала зависимости экономики России от импортных материалов.

Свойства редкоземельных металлов

Редкоземельные металлы имеют серебристый или желтый окрас. Они поддаются механической обработке и проводят электрический ток. Свойства РЗМ могут изменяться при переходе веществ из металлического состояния в парообразное. При высоком давлении и большой разнице в энергии атомные радиусы уменьшаются, что приводит к увеличению плотности простых веществ.

Тепловые свойства РЗМ

Физические свойства

Плотность РЗЭ составляет 6000–7000 кг/м 3 . Температура плавления вещества равняется 900 °С. Переход веществ в газообразное состояние осуществляется при температуре от 3500 °С. Наибольшим захватом тепловых нейтронов обладают гадолиний, самарий и европий. При нагревании до высоких температур элементы становятся пластичными и легко поддаются прокатке или ковке.

РЗМ обладают магнитными свойствами. Они относятся к классу парамагнетиков. Магнитная восприимчивость соединений зависит от их температуры. Гадолиний, Диспрозий и Гольмий располагают ферромагнитными свойствами. Они могут увеличить свое магнитное поле в несколько раз при нагреве до критических температур. В естественной среде большая часть редкоземельных металлов являются сверхпроводниками. Переход сверхпроводящее состояние осуществляется при охлаждении веществ до температуры -268,15 °С. Величина данного показателя зависит от избыточного давления.

Механические свойства

Механические свойства РЗЭ находятся в зависимости от количества примесей, содержащихся в веществе: кислорода, серы, азота и углерода. Ими обладают большинство представителей иттриевой и цериевой подгрупп. Чистые металлы, в которых содержится меньше 1% примесей, имеют твердость 500 Мпа. Этот показатель зависит от температуры химического соединения. При охлаждении вещества до 800 °С твердость элемента составляет 30 МПа. Если понизить температуру вещества до 550 °С, то оно полностью размягчится, что обусловлено полиморфным превращением.

Физические свойства лантаноидов

При температурах 20-800 °С повышается пластичность редкоземельных металлов. Во время нагревания внутренняя структура элементов переходит на кубическую модификацию. Во время растяжения РЗМ полностью разрушаются при давлении в 150 Мпа. При более низких значениях этого показателя соединения деформируются. Удельное растяжения металлов составляет не менее 12%.

Химические свойства

При взаимодействии с молекулами кислорода РЗЭ покрываются тонкой оксидной пленкой, защищающей металлы от физических деформаций и воздействия иных химических элементов. При высокой влажности вещества начинаются окисляться с большей интенсивностью и превращаются в щелочи. Данный химический процесс осуществляется при температурах до 250 °С. При дальнейшем нагревании в кислородной среде металлы начнут окисляться с выделением большого количества тепловой энергии.

Наибольшей реакционной способностью располагают скандий и иттрий. При нагревании до 400 °С они вступают в реакции с водородом, образуя гидриды. Полученные вещества имеют высокую плотность и могут взаимодействовать с солями. Церий обладает свойством пирофорности. При разрезании этого элемента на воздухе образуется множество искр. В этом случае выделяется до 220 ккал тепла.

Химические свойства РЗЭ

Степень окисления редкоземельных соединений равняется +3. Поэтому эти способы образовывать тугоплавкие, твердые и крепкие оксиды. При взаимодействии с водой РЗМ образуют малорастворимые гидроксиды. Растворимость элементов зависит от ряда активности и свойств амфотерности. Из-за высокой активности металлов, соли редкоземельных соединений быстро растворяются в сильных кислотах, относящихся к минеральной группе химических веществ. При взаимодействии РЗМ с неметаллами VI – VII групп получаются галогены. РЗЭ могут вступать в реакцию с селеном, бромом, йодом при нагревании. Они инертны к большинству растворимых гидроксидов.

Применение редкоземельных металлов

Редкоземельные металлы нашли применение в следующих областях:

  1. Производство винчестеров и звуковых динамиков.
  2. Изготовление фотокамер, телескопических объективов, проекторов, приспособлений для студийного освещения и аккумуляторов.
  3. Переработка сырой нефти.
  4. Разработка усиленных металлов и стекол, применяющихся в авиационных моторах и защитных масках для строителей.
  5. Создание жидкокристаллических дисплеев, аппаратов для МРТ, рентгеновских систем, энергосберегающих ламп и ядерных реакторов.

Применение РЗМ

Также РЗЭ используются для изготовления добавок и эмалей, необходимых для модификации материалов. Они улучшают пластичность и прочность сырья, что увеличивает срок службы различных аппаратов и металлических устройств. Благодаря повышенной скорости поглощения окисей углерода и азота, РЗМ могут применяться в водородных тиратронах в качестве изолирующего материала.

Применение редкоземельных элементов оказывает негативное влияние на экологию планеты. В результате добычи и производства РЗЭ в атмосферу выбрасывается большое количество вредных веществ и токсинов, включая углерод. В настоящее время разрабатываются технология определения токсичности РЗМ при помощи биотестирования. Ученые создают биосенсоры, определяющие влияние металлов на организм человека при помощи специальных биосенсоров. При изготовлении тестовых приспособлений используются экологически чистые материалы: Paramecium Bursaria и водоросли Chlorella.

Вы можете изучить и скачать доклад-презентацию на тему Редкоземельные металлы. Презентация на заданную тему содержит 19 слайдов. Для просмотра воспользуйтесь проигрывателем, если материал оказался полезным для Вас - поделитесь им с друзьями с помощью социальных кнопок и добавьте наш сайт презентаций в закладки!

500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500

Редкоземельные металлы (или редкие земли, сокр. REE) — группа из 17 элементов, включающая скандий, иттрий и лантаноиды. Все они металлы серебристо-белого цвета, при том все имеют сходные химические свойства (наиболее характерна степень окисления +3).

Иттрий — металл светло-серого цвета. Это редкоземельный химический элемент, имеющий атомный номер 39. Плотность (при н. у.) 4,47 г/см Температура плавления 1795 K Температура кипения 3 611 K Химические свойства. На воздухе иттрий покрывается плотной защитной оксидной плёнкой. При 370—425 °C образуется плотная чёрная пленка оксида. Интенсивное окисление начинается при 750 °C. Применение. Предел прочности на разрыв для нелегированного чистого иттрия — около 300 МПа (30 кг/мм2).Очень важным качеством как металлического иттрия, так и ряда его сплавов является то обстоятельство, что, будучи активным химически, иттрий при нагревании на воздухе покрывается плёнкой оксида и нитрида, предохраняющих его от дальнейшего окисления до 1000 °C.

Лантан Лантан- — блестящий металл серебристо-белого цвета Температура кипения лантана 3447°C, плотность La 6,162 кг/дм3. tпл 920°C. Химические свойства. На воздухе лантан быстро окисляется с образованием гидратированного оксикарбоната. Лантан — основа геттерных сплавов с никелем, легирующая добавка к алюминиевым и другим сплавам; LaCrO3 — материал высокотемпературных электропроводящих керамических изделий; Применение. Лантан применяется как компонент сплавов никеля, магния, кобальта

Це́рий. Церий представляет собой серебристо-белый вязкий и ковкий металл, легко поддаётся ковке и механической обработке при комнатной температуре. Плотность (при н. у.) 6,757 г/см³. Температура плавления 1072 K. Химические свойства Редкоземельный металл, неустойчив на воздухе, постепенно окисляется, превращаясь в белый оксид и карбонат церия. При нагревании до +160…+180 °C на воздухе загорается; неустойчив на воздухе, постепенно окисляется, превращаясь в белый оксид и карбонат церия. Применение В современной технике широко используют способность церия модифицировать сплавы на основе железа, магния, добавления 1% церия к магнию резко увеличивает прочность последнего на разрыв и сопротивление ползучести. Легирование конструкционных сталей церием значительно повышает их прочность

Празеодим Празеодим — светло-серый металл. Температура кипения 3785 K, Температура плавления 1204 K плотность 6,773 г/см3. Химические свойства На воздухе празеодим медленно окисляется, при нагревании возгорается. Применение. Монотеллурид празеодима применяется в небольших (пока) количествах для регулировки свойств (ЭДС, сопротивления, прочности) у некоторых термоэлектрических сплавов на основе редких земель (коэффициент термо-ЭДС 52—55 мкВ/К). Сплавы празеодима с германием и кремнием используются как сверхпроводящие материалы. Празеодим применяется для производства магнитных сердечников и повышения эффективности катодов (электровакуумная техника).

Неодим Неодим — один из наиболее широко применяемых металлов из группы лантаноидов наряду с самарием, церием, лантаном и др Плотность (при н. у.) 7,007 г/см³ Температура плавления 1294 K Температура кипения 3341 K Химические свойства К окислению неодим менее устойчив, чем тяжелые лантаноиды. При нагревании на воздухе быстро окисляется, образуя оксид Nd2O3. Бурно реагирует с кипящей водой с выделением водорода и образованием гидроксида . Применения Неодим — один из наиболее широко применяемых металлов из группы лантаноидов наряду с самарием, церием, лантаном и др.

ПРОМЕ́ТИЙ ПРОМЕ́ТИЙ - радиоактивный металл серебристо-белого цвета Температура плавления 1170°C, температура кипения 3000°C, плотность 7,26 кг/дм3. По химическим свойствам — типичный редкоземельный металл. На воздухе медленно окисляется. Применение Прометий-147 (период полураспада 2,64 года) используется для производства радиоизотопных источников тока, где он применяется в виде оксида Pm2O3, и благодаря тому, что в его излучении при распаде отсутствуют гамма-лучи, он сравнительно безопасен.

Самарий. Самарий — серебристо-желтый металл Температура плавления 1350 K Температура кипения 2064 K Плотность Sm 7,536 кг/дм3 Химические свойства. Самарий — высокоактивный металл. На воздухе медленно окисляется, сначала покрываясь тёмной плёнкой трёхвалентного оксида Sm2O3 и затем полностью рассыпаясь в порошок жёлтого оттенка. Применение. Самарий широко используется для производства сверхмощных постоянных магнитов, в сплаве самария с кобальтом и рядом других элементов. И хотя в этой области в последние годы наблюдается вытеснение самарий-кобальтовых магнитов магнитами на основе неодима, тем не менее, возможности сплавов самария далеко не исчерпаны.

Европий Европий — серебристо-белый металл. В чистом виде — мягкий серебристо-белый металл, легко поддаётся механической обработке в инертной атмосфере. Приобретает сверхпроводящие свойства при температуре 1,8 К и давлении 80 Гпа Плотность (при н. у.)5,243 г/см3. Температура плавления 1099 К (826 °C) Температура кипения 1802 K ​(1529 °C) Химические свойства. На воздухе быстро окисляется, на поверхности металла всегда есть оксидная пленка. Очень активен, может вытеснять из растворов солей почти все металлы. Применение. Европий используется в ядерной энергетике в качестве поглотителя нейтронов. Оксид европия применяется при термохимическом разложении воды в атомно-водородной энергетике. Моноокись европия, а также сплав моноокиси европия и моноокиси самария применяются в виде тонких пленок в качестве магнитных полупроводниковых материалов для функциональной электроники

Гадолиний Плотность (при н. у.) 7,900 г/см³ Температура плавления 1586 K Температура кипения 3539 K Химические свойства. Гадолиний медленно окисляется на воздухе, быстро — выше 100 °C. При нагревании металлический гадолиний реагирует с галогенами, азотом, водородом. Применение. Гексаборид гадолиния применяется для изготовления катодов мощных электронных пушек и рентгеновских установок.

Тербий Плотность (при н. у.) 8,229 г/см³ Температура плавления 1 629 K Температура кипения 3 296 K Применение. Тербий — весьма необычный металл из ряда лантаноидов и обладает значительным спектром уникальных физических характеристик. Оксид тербия применяется в качестве высокоэффективного катализатора окисления.

Диспрозий Плотность (при н. у.) 8,55 г/см³ Температура плавления 1685 K Температура кипения 2835 K Физико-химические свойства. Диспрозий — серебристо-серый металл. Ниже 1384 °C устойчив α-Dy с гексагональной решеткой, а = 0,35603 нм, с = 0,56465 нм, выше 1384 °C — β-Dy с кубической решеткой. На воздухе окисляется медленно, выше 100 °C — быстро. При нагревании металлический диспрозий реагирует с галогенами, азотом, водородом. Взаимодействует с минеральными кислотами (кроме HF), образуя соли Dy (III), не взаимодействует с растворами щелочей. Применение. Металлургия. Диспрозий служит отличным легирующим компонентом цинковых сплавов. Добавление диспрозия к цирконию резко улучшает его технологичность (но увеличивает сечение захвата тепловых нейтронов). Так, легированный диспрозием цирконий легко поддается обработке давлением (прессование прутков. Применяется в качестве эффективного катализатора

Гольмий Плотность (при н. у.) 8,795 г/см³ Температура плавления 1 747 K Температура кипения 2 968 K Химические свойства Медленно окисляется на воздухе, образуя Ho2O3. Взаимодействует с кислотами (кроме HF), образуя соли Ho3+. Реагирует при нагревании с хлором, бромом, азотом и водородом. Устойчив к действию фтора. Применение. Получение сверхсильных магнитных полей: гольмий сверхвысокой чистоты применяется для изготовления полюсных наконечников сверхпроводящих магнитов для получения сверхсильных магнитных полей. В этом же отношении важное значение играет сплав гольмий-эрбий. Металлургия: добавлением гольмия к сплавам алюминия резко уменьшают газосодержание в них

Эрбий Плотность (при н. у.) 9,06 г/см³ Температура плавления 1 802 K Температура кипения 3 136 K Химические свойства. Эрбий взаимодействует с минеральными кислотами, образуя соли эрбия(III). Ионы Er3+ окрашивают раствор в розовый цвет Применение. Оксид эрбия добавляют в кварцевый расплав при производстве оптических волокон, работающих на сверхдальних расстояниях. Оксид эрбия добавляют в кварцевый расплав при производстве оптических волокон, работающих на сверхдальних расстояниях.

Тулий Температура плавления 1818 K Температура кипения 2220 K Плотность (при н. у.) 9,321 г/см³ Физические и химические свойства Тулий — мягкий серебристо-серый металл. Существует в одной модификации с гексагональной кристаллической решеткой типа Mg, а = 0,35375 нм, с = 0,55546 нм. Температура плавления 1545°C, кипения 1947°C, плотность 9,318 кг/дм3. На воздухе компактный Tm устойчив. С галогенами (см. ГАЛОГЕНЫ) реагирует при нагревании, образуя TmF3 и TmCl3. Тулий взаимодействует с минеральными кислотами с образованием солей тулия(III). Сильными восстановителями Tm3+ восстанавливается до Tm2+. Прокаливая на воздухе при 800—900°C нитрата Tm(NO3)3, оксалата Tm2(C2O4)3, сульфата Tm2(SO4)3 и других соединений Tm (III) образуется оксид тулия Tu2O3. Применение Тулий используют как активатор некоторых люминофоров и лазерных материалов, применяют при синтезе искусственных гранатов.

Иттербий Температура плавления 1097 K Температура кипения 1466 K Плотность (при н. у.) 6,9654 г/см Физические и химические свойства Иттербий — светло-серый металл. Ниже 792 °C устойчива a-модификация: кубическая решетка типа Cu, а = 0,54862 нм. Выше 792 °C устойчива b-модификация: кубическая решетка типа a-Fe. Температура плавления 824 °C, температура кипения 1211 °C, плотность 7 кг/дм3. Иттербий слабо окисляется на воздухе, быстро — при 400 °C, превращаясь в смесь оксида и карбоната. Реагирует с минеральными кислотами при комнатной температуре. При нагревании выше 100 °C металлический иттербий реагирует с галогенами, азотом и водородом. Оксид Yb2О3 обладает основными свойствами. Сильное основание Yb(ОН)3 образуется при действии щелочей на водорастворимые соли Yb(III). Применение Иттербий в смеси с другими редкоземельными металлами действует как раскислитель и модификатор сталей

Лютеций Температура плавления 1936 K Температура кипения 3668 K Плотность (при н. у.) 9,8404 г/см Физические и химические свойства Лютеций серебристо-серый металл. Имеет гексагональную решетку с параметрами а = 0,35031 нм и с =.0,55509 нм. Температура плавления 1660°C, температура кипения 3410°C, плотность 9,849 кг/дм3. На воздухе покрывается плотной устойчивой оксидной пленкой. При 400°C лютеций реагирует с кислородом, галогенами, серой и другими неметаллами. Реагирует с минеральными кислотами. Оксид Lu2О3 обладает слабоосновными свойствами. Основание Lu(ОН)3 — слабое, поэтому в водных растворах ионы Lu3+ в значительной степени гидролизованы. К растворимым солям лютеция относятся хлорид, нитрат, ацетат и сульфат. Оксалат, фторид, карбонат и фосфат лютеция — плохо растворимы Применение Оксид лютеция используется как добавка к высокотемпературным керамикам. Фторид лютеция используют для получения фторидных лазерных материалов

Читайте также: