Сообщение на тему пути сокращения потерь энергии

Обновлено: 04.07.2024

В отличие от зарубежных коллег, российские компании не имеют отдельной строки в бюджете на энергосбережение. Например, в Бразилии закон обязывает производителя энергии 0,5% выручки направлять на мероприятия по повышению энергоэффективности клиента (потребителя энергии). В случае невыполнения предписания нарушителю выписывают штраф, значительно превышающий эту сумму. В итоге производителю энергии выгодно экономить энергоресурсы клиента, так как он сможет продать высвободившуюся энергию по рыночным ценам.

Оглавление

Введение
1 Причины потерь электроэнергии
2 Мероприятия по снижению потерь электроэнергии
Заключение
Библиографический список

Файлы: 1 файл

Реферат.docx

1 Причины потерь электроэнергии

2 Мероприятия по снижению потерь электроэнергии

Один из основных способов снижения потребления энергоресурсов – это снижение их потерь. Но для того, чтобы бороться с потерями, необходимо их обнаружить. Ведущие европейские специалисты полагают, что основные источники потерь – жилые здания и транспорт. Но в России, конечно, все не так.

По оценкам специалистов, суммарные потери при выработке и транспортировке электроэнергии в среднем составляют 20%. Впрочем, нами не раз отмечались случаи, когда потери только при транспортировке доходили до 15%.

На освещение Россия тратит менее 15% потребления электроэнергии, таким образом, такая популярная мера, как установка люминесцентных и диодных ламп, проблему энергосбережения не решит.

Безусловно, с потерями, возникающими на разных стадиях производственных цепочек, можно и нужно бороться. Ведь в основном мы все еще используем невозобновляемые источники энергии, терять которые непростительно. Совершенно очевидно, что основной упор в этой борьбе следует делать не на конечного потребителя. Такие методы, как сертификация жилых домов, разработка стандартов энергосбережения для них, маркировка бытовых приборов и т.д., в перспективе позволят снизить потери потребителей, однако для эффективного решения проблемы необходимо минимизировать потери энергоресурсов, которые приходятся сегодня на энергетический сектор. По прогнозам специалистов, даже небольшой успех в этом отношении позволит снизить себестоимость единицы энергии, сократить выбросы парниковых газов, снизить негативное воздействие на окружающую среду и здоровье человека.

Одним из инструментов борьбы с потерями энергоресурсов является энергоаудит, позволяющий не только обнаружить источники этих потерь, но и разработать методику по их эффективному устранению.

В отличие от зарубежных коллег, российские компании не имеют отдельной строки в бюджете на энергосбережение. Например, в Бразилии закон обязывает производителя энергии 0,5% выручки направлять на мероприятия по повышению энергоэффективности клиента (потребителя энергии). В случае невыполнения предписания нарушителю выписывают штраф, значительно превышающий эту сумму. В итоге производителю энергии выгодно экономить энергоресурсы клиента, так как он сможет продать высвободившуюся энергию по рыночным ценам.

1 Причины потерь электроэнергии

Высокие потери электроэнергии в сетях, как правило, говорят либо о каких-либо накапливающихся проблемах сетей электропередачи, либо о неэффективной работе оборудования (к примеру, исчерпывающего свой ресурс). По сути, любые потери электроэнергии в сетях, выходящие за рамки некой минимальной планки — это сигнал для специалиста, означающий, что требуется реконструировать или же технически переоснащать имеющийся комплекс.

Если уровень потерь электроэнергии слишком высок, это говорит об очевидных проблемах, связанных со следующими вопросами:

  • Медленное развитие электросети;
  • Устаревшее техническое оборудование;
  • Несовершенство методов управления сетью;
  • Несовершенство методов учета электроэнергии;
  • Неэффективность процесса сбора платы за поставляемую электроэнергию.

Международная практика показывает, что при распределении электроэнергии от источников до конечных потребителей потери при нормальном уровне работы оборудования и удовлетворительном состоянии всех элементов обычно составляют 3-5 процентов. При потерях электроэнергии в сетях до 10 процентов, как правило, срочных специальных мер не предпринимается: такой уровень считается максимально допустимым с точки зрения физики передачи. Однако в нашей стране зачастую даже простые экономические подсчёты показывают, что внедрение новых систем позволяют существенно снизить потери и избежать дополнительных расходов: внедрение таких решений просто необходимо во множестве ситуаций. К сожалению, расчёт потерь электроэнергии проводится далеко не везде, поэтому в этом плане говорить о высокой эффективности работы большей части отечественных электросетей не приходится. Повсеместно можно встретить устаревшее оборудование, устройства, работающие на пределе своего ресурса, а также узлы, просто не соответствующие системе по передаваемой мощности. Результат — высокие экономические потери и повышение вероятности различных аварийных ситуаций, которых можно избежать только своевременной модернизацией имеющихся комплексов.

Разумеется, в идеальном состоянии потери электроэнергии в сетях должны полностью отсутствовать, однако всегда существуют невосполнимые технические потери (из-за физических процессов передачи электроэнергии, её трансформации и распределения), определяемые расчётно с некоторой погрешностью. В случае, если погрешность высока, как правило, такая сеть малоэффективна, так как вызывает высокие коммерческие потери.

Основной причиной сложившейся ситуации является рост коммерческих потерь, которые можно разбить на четыре основные группы:

1. потери из-за погрешностей системы учета электроэнергии, обусловленные:
- классами точности и ненормированными условиями работы трансформаторов тока (ТТ), напряжения (ТН) и счетчиков, в т.ч. их недогрузкой, перегрузкой, работой с ненормированным коэффициентом мощности и т.п.;
- неверными схемами подключения счетчиков, ТТ и ТН;
- неисправными счетчиками, ТТ, ТН;
- ошибками в снятии показаний счетчиков или умышленными искажениями записей;

2. потери при выставлении счетов, обусловленные:
- неточностью данных о потребителях электроэнергии, в том числе недостаточной или ошибочной информацией о заключенных договорах на пользование электроэнергией; ошибками в коэффициентах пересчета показаний счетчиков в электроэнергию и т.п.;
- ошибками при выставлении счетов, в том числе: невыставленными счетами потребителям из-за отсутствия точной информации о потребителях и постоянного контроля за актуализацией этой информации; отсутствием контроля и ошибками в выставлении счетов клиентам, пользующимся специальными тарифами, и т.п.;

3. потери при востребовании оплаты, обусловленные оплатой позже установленной даты, долговременными или безнадежными долгами и неоплаченными счетами из-за неудовлетворительной процедуры востребования оплаты; плохого учета неоплаченных счетов и управления оплатой и т.п.;

4. потери из-за хищений электроэнергии, обусловленные несанкционированным подключением потребителей, нарушением целостности цепей и приборов учета, искажением показаний и т.п.

В российских энергосистемах главными причинами наличия коммерческих потерь традиционно являются недостаточный и недостоверный учет, хищения электроэнергии не только в коммунально-бытовом, но и в промышленном секторе. В годы перестройки в электроэнергетике в условиях роста тарифов на электроэнергию и уменьшения платежеспособности населения в ряде регионов страны, особенно в сельской местности, увеличились трудности с оплатой электроэнергии коммунально-бытовыми потребителями. Кроме того, появилась мотивация к применению все более изощренных методов и средств хищений электроэнергии и соответственно к росту объемов этих хищений, появились бесхозные электрические сети, поселки, которые никто не хочет брать на баланс и обслуживание.

2 Мероприятия по снижению потерь электроэнергии

Типовой перечень мероприятий по снижению потерь электроэнергии в электрических сетях достаточно хорошо известен и включен в отраслевую инструкцию.

Как показывают расчеты, основной эффект в снижении технических потерь электроэнергии может быть получен за счет технического перевооружения, реконструкции, повышения пропускной способности и надежности работы электрических сетей, сбалансированности их режимов, т.е. за счет внедрения капиталоемких мероприятий. Эти мероприятия нашли отражение в концепциях развития и техперевооружения электрических сетей.

Основными из этих мероприятий для системообразующих электрических сетей 110 кВ и выше являются:

Очевидно, на ближайшую и удаленную перспективу останутся актуальными оптимизация режимов электрических сетей по активной и реактивной мощности, регулирование напряжения в сетях, оптимизация загрузки трансформаторов, выполнение работ под напряжением и т.п.

К приоритетным мероприятиям по снижению технических потерь электроэнергии в распределительных электрических сетях 0,4-35 кВ относятся:

  • использование 10 кВ в качестве основного напряжения распределительной сети;
  • увеличение доли сетей напряжением 35 кВ;
  • применение самонесущих изолированных и защищенных проводов;
  • использование максимального допустимого сечения провода в электрических сетях 0,4-10 кВ с целью адаптации их пропускной способности к росту нагрузок в течение всего срока службы;
  • разработка и внедрение нового более экономичного электрооборудования, в частности, распределительных трансформаторов с уменьшенными активными и реактивными потерями холостого хода;
  • применение столбовых трансформаторов малой мощности 6-10/0,4 кВ для сокращения протяженности сетей 0,4 кВ и потерь электроэнергии в них;
  • более широкое использование устройств автоматического регулирования напряжения под нагрузкой, вольтодобавочных трансформаторов, средств местного регулирования напряжения для повышения качества электроэнергии и снижения ее потерь;
  • комплексная автоматизация и телемеханизация электрических сетей, применение коммутационных аппаратов нового поколения, средств дистанционного определения мест повреждения в электрических сетях для сокращения длительности неоптимальных ремонтных и послеаварийных режимов, поиска и ликвидации аварий;
  • повышение достоверности измерений в электрических сетях на основе использования новых информационных технологий, автоматизации обработки телеметрической информации.

Основным и наиболее перспективным решением проблемы снижения коммерческих потерь электроэнергии является разработка, создание и широкое применение автоматизированных систем контроля и учета электроэнергии (АСКУЭ), в том числе для бытовых потребителей, тесная интеграция этих систем с программным и техническим обеспечением автоматизированных систем диспетчерского управления (АСДУ), обеспечение АСКУЭ и АСДУ надежными каналами связи и передачи информации, метрологическая аттестация АСКУЭ.

Однако эффективное внедрение АСКУЭ – задача долговременная и дорогостоящая, решение которой возможно лишь путем поэтапного развития системы учета, ее модернизации, метрологического обеспечения измерений электроэнергии, совершенствования нормативной базы.

Виды и структура потерь

Под потерями подразумевается разница между отпущенной потребителям электроэнергией и фактически поступившей к ним. Для нормирования потерь и расчетов их фактической величины, была принята следующая классификация:

  • Технологический фактор. Он напрямую зависит от характерных физических процессов, и может меняться под воздействием нагрузочной составляющей, условно-постоянных затрат, а также климатических условий.
  • Расходы, затрачиваемые на эксплуатацию вспомогательного оборудования и обеспечение необходимых условий для работы техперсонала.
  • Коммерческая составляющая. К данной категории относятся погрешности приборов учета, а также другие факторы, вызывающие недоучет электроэнергии.

Ниже представлен среднестатистический график потерь типовой электрокомпании.

Примерная структура потерь

Примерная структура потерь

Как видно из графика наибольшие расходы связаны с передачей по воздушным линиям (ЛЭП), это составляет около 64% от общего числа потерь. На втором месте эффект коронированния (ионизация воздуха рядом с проводами ВЛ и, как следствие, возникновение разрядных токов между ними) – 17%.

Коронный разряд на изоляторе ЛЭП

Коронный разряд на изоляторе ЛЭП

Исходя из представленного графика, можно констатировать, что наибольший процент нецелевых расходов приходится на технологический фактор.

Основные причины потерь электроэнергии

Разобравшись со структурой, перейдем к причинам, вызывающим нецелевой расход в каждой из перечисленных выше категорий. Начнем с составляющих технологического фактора:

  1. Нагрузочные потери, они возникают в ЛЭП, оборудовании и различных элементах электросетей. Такие расходы напрямую зависят от суммарной нагрузки. В данную составляющую входят:
  • Потери в ЛЭП, они напрямую связаны с силой тока. Именно поэтому при передаче электроэнергии на большие расстояния используется принцип повышения в несколько раз, что способствует пропорциональному уменьшению тока, соответственно, и затрат.
  • Расход в трансформаторах, имеющий магнитную и электрическую природу ( 1 ). В качестве примера ниже представлена таблица, в которой приводятся данные затрат на трансформаторах напряжения подстанций в сетях 10 кВ.

Нецелевой расход в других элементах не входит в данную категорию, ввиду сложностей таких расчетов и незначительного объема затрат. Для этого предусмотрена следующая составляющая.

Гололед на ЛЭП

  1. Категория условно-постоянных расходов. В нее входят затраты, связанные со штатной эксплуатацией электрооборудования, к таковым относятся:
  • Холостая работа силовых установок.
  • Затраты в оборудовании, обеспечивающем компенсацию реактивной нагрузки.
  • Другие виды затрат в различных устройствах, характеристики которых не зависят от нагрузки. В качестве примера можно привестисиловую изоляцию, приборы учета в сетях 0,38 кВ, змерительные трансформаторы тока, ограничители перенапряжения и т.д.
  1. Климатическая составляющая. Нецелевой расход электроэнергии может быть связан с климатическими условиями характерными для той местности, где проходят ЛЭП. В сетях 6 кВ и выше от этого зависит величина тока утечки в изоляторах. В магистралях от 110 кВ большая доля затрат приходится на коронные разряды, возникновению которых способствует влажность воздуха. Помимо этого в холодное время года для нашего климата характерно такое явление, как обледенение на проводах высоковольтных линий, а также обычных ЛЭП. Гололед на ЛЭП

Учитывая последний фактор, следует учитывать затраты электроэнергии на расплавление льда.

Расходы на поддержку работы подстанций

К данной категории отнесены затраты электрической энергии на функционирование вспомогательных устройств. Такое оборудование необходимо для нормальной эксплуатации основных узлов, отвечающих за преобразование электроэнергии и ее распределение. Фиксация затрат осуществляется приборами учета. Приведем список основных потребителей, относящихся к данной категории:

  • системы вентиляции и охлаждения трансформаторного оборудования;
  • отопление и вентиляция технологического помещения, а также внутренние осветительные приборы;
  • освещение прилегающих к подстанциям территорий;
  • зарядное оборудование АКБ;
  • оперативные цепи и системы контроля и управления;
  • системы обогрева наружного оборудования, например, модули управления воздушными выключателями;
  • различные виды компрессорного оборудования;
  • вспомогательные механизмы;
  • оборудование для ремонтных работ, аппаратура связи, а также другие приспособления.

Коммерческая составляющая

Под данными затратами подразумевается сальдо между абсолютными (фактическими) и техническими потерями. В идеале такая разница должна стремиться к нулю, но на практике это не реально. В первую очередь это связано с особенностями приборов учета отпущенной электроэнергии и электросчетчиков, установленных у конечных потребителей. Речь идет о погрешности. Существует ряд конкретных мероприятий для уменьшения потерь такого вида.

К данной составляющей также относятся ошибки в счетах, выставленных потребителю и хищения электроэнергии. В первом случае подобная ситуация может возникнуть по следующим причинам:

  • в договоре на поставку электроэнергии указана неполная или некорректная информация о потребителе;
  • неправильно указанный тариф;
  • отсутствие контроля за данными приборов учета;
  • ошибки, связанные с ранее откорректированными счетами и т.д.

Что касается хищений, то эта проблема имеет место во всех странах. Как правило, такими противозаконными действиями занимаются недобросовестные бытовые потребители. Заметим, что иногда возникают инциденты и с предприятиями, но такие случаи довольно редки, поэтому не являются определяющими. Характерно, что пик хищений приходится на холодное время года, причем в тех регионах, где имеются проблемы с теплоснабжением.

Различают три способа хищения (занижения показаний прибора учета):

Понятие норматива потерь

Под данным термином подразумевается установка экономически обоснованных критериев нецелевого расхода за определенный период. При нормировании учитываются все составляющие. Каждая из них тщательно анализируется отдельно. По итогу производятся вычисления с учетом фактического (абсолютного) уровня затрат за прошедший период и анализа различных возможностей, позволяющих реализовать выявленные резервы для снижения потерь. То есть, нормативы не статичны, а регулярно пересматриваются.

Под абсолютным уровнем затрат в данном случае подразумевается сальдо между переданной электроэнергией и техническими (относительными) потерями. Нормативы технологических потерь определяются путем соответствующих вычислений.

Кто платит за потери электричества?

Все зависит от определяющих критериев. Если речь идет о технологических факторах и расходах на поддержку работы сопутствующего оборудования, то оплата потерь закладывается в тарифы для потребителей.

Совсем по иному обстоит дело с коммерческой составляющей, при превышении заложенной нормы потерь, вся экономическая нагрузка считается расходами компании, осуществляющей отпуск электроэнергии потребителям.

Способы уменьшения потерь в электрических сетях

Снизить затраты можно путем оптимизации технической и коммерческой составляющей. В первом случае следует принять следующие меры:

Уменьшить коммерческие затраты можно следующим образом:

  • регулярный поиск несанкционированных подключений;
  • создание или расширение подразделений, осуществляющих контроль;
  • проверка показаний;
  • автоматизация сбора и обработки данных.

Методика и пример расчета потерь электроэнергии

На практике применяют следующие методики для определения потерь:

  • проведение оперативных вычислений;
  • суточный критерий;
  • вычисление средних нагрузок;
  • анализ наибольших потерь передаваемой мощности в разрезе суток-часов;
  • обращение к обобщенным данным.

Полную информацию по каждой из представленных выше методик, можно найти в нормативных документах.

В завершении приведем пример вычисления затрат в силовом трансформаторе TM 630-6-0,4. Формула для расчета и ее описание приведены ниже, она подходит для большинства видов подобных устройств.

Как рассчитать потери в силовом трансформаторе

Расчет потерь в силовом трансформаторе

Для понимания процесса следует ознакомиться с основными характеристиками TM 630-6-0,4.

Параметры TM 630/6/0,4

Параметры TM 630/6/0,4

Теперь переходим к расчету.

Итоги расчета

Итоги расчета

В основном наиболее эффективными мероприятиями по снижению потерь электрической энергии в распределительных сетях являются мероприятия, направленные на снижение коммерческих потерь. ᚠᛟᛋ Такие мероприятия снижают фактические потери электроэнергии, а, следовательно, и финансовые затраты сетевых предприятий на компенсацию сверхнормативных потерь. Основным и самым эффективным мероприятием по снижению технических потерь электрической энергии является компенсация реактивной мощности в электросетях и у потребителей, а также ряд других работ, которые окупаются в сроки, приемлемые для инвесторов, участвующих в программах снижения потерь.

В настоящее время наметилась тенденция на переход от традиционных программ снижения потерь электрической энергии в сетях к бизнесс-процессам управления и планирования потерь. Это существенно повышает ответственность за практическую реализацию подобных бизнес-процессов.

Все мероприятия делятся на мероприятия по снижению нетехнических потерь, организационные мероприятия и мероприятия по снижению технических потерь.


В статье представлены основные проблемы электроэнергетики, такие как потери электрической энергии. Проведён анализ источников потерь в электрических сетях.

Ключевые слова: электроэнергия, электрическая сеть, источники энергии, нагрузки сети, мощность энергии.

Электрическая энергия является единственным видом продукции, для перемещения которого от мест производства до мест потребления не используются другие ресурсы. Для этого расходуется часть самой передаваемой электроэнергии, поэтому ее потери неизбежны, задача состоит в определении их экономически обоснованного уровня. Снижение потерь электроэнергии в электрических сетях до этого уровня одно из важных направлений энергосбережения [1]. Рост потерь энергии в электрических сетях определен действием вполне объективных закономерностей в развитии всей энергетики в целом. Основными из них являются: тенденция к концентрации производства электроэнергии на крупных электростанциях; непрерывный рост нагрузок электрических сетей, связанный с естественным ростом нагрузок потребителей и отставанием темпов прироста пропускной способности сети от темпов прироста потребления электроэнергии и генерирующих мощностей. Потери электроэнергии в электрических сетях являются экономическим показателем состояния сетей. По мнению международных экспертов, в области энергетики относительные потери электроэнергии при ее передаче в электрических сетях не должны превышать 4 %. Потери электроэнергии на уровне 10 % можно считать максимально допустимыми [2]. На основании уровня потерь электроэнергии можно сделать выводы о необходимости и объеме внедрения энергосберегающих мероприятий. Фактические потери определяют как разность электроэнергии, поступившей в сеть отпущенной из сети потребителям, их можно разделить на три составляющие: 1) технические потери электроэнергии, обусловленные физическими процессами в проводах и электрооборудовании, происходящими при передаче электроэнергии по электрическим сетям, включают в себя расход электроэнергии на собственные нужды подстанций; 2) потери электроэнергии, обусловленные погрешностью системы учета, как правило, представляют недоучет электроэнергии, обусловленный техническими характеристиками и режимами работы приборов учета электроэнергии на объекте; 3) коммерческие потери, обусловленные несанкционированным отбором мощности электроэнергии, несоответствием оплаты за электроэнергию бытовыми потребителями показаниям счетчиков и другими причинами в сфере организации контроля за потреблением энергии. Коммерческие потери не имеют самостоятельного математического описания и, как следствие, не могут быть рассчитаны автономно. Их значение определяют как разницу между фактическими потерями и суммой первых двух составляющих, представляющих собой технологические потери. Потери электроэнергии в сетях определяются тремя основными факторами [1]: 1. За счёт погрешности измерений фактически отпущенной в сеть энергии и полезно отпущенной электроэнергии для потребителей. 2. За счёт занижения полезного отпуска в результате технических потерь. 3. За счёт неучтённых подключений потребителей (в частности, хищений электроэнергии). Высокие потери электроэнергии в сетях, как правило, говорят либо о каких-либо накапливающихся проблемах сетей электропередачи, либо о неэффективной работе оборудования. По сути, любые потери электроэнергии в сетях, выходящие за рамки некой минимальной планки — это сигнал для специалиста, означающий, что требуется реконструировать или же технически переоснащать имеющийся комплекс. Если уровень потерь электроэнергии слишком высок, это говорит об очевидных проблемах, связанных со следующими вопросами: 1. Медленное развитие электросети; 2. Устаревшее техническое оборудование; 3. Несовершенство методов управления сетью; 4. Несовершенство методов учета электроэнергии; 5. Неэффективность процесса сбора платы за поставляемую электроэнергию. Разумеется, в идеальном состоянии потери электроэнергии в сетях должны полностью отсутствовать, однако всегда существуют невосполнимые технические потери (из-за физических процессов передачи электроэнергии, её трансформации и распределения), определяемые расчётом с некоторой погрешностью [2]. В случае, если погрешность высока, как правило, такая сеть малоэффективна, так как вызывает высокие коммерческие потери.

Способы борьбы с потерями: Первый способ основан на снижении сопротивления нулевого провода. Как известно ток течет по двум проводам: нулевому и фазному. Если увеличение сечения фазного провода достаточно затратное (стоимость меди или алюминия плюс работы по демонтажу и монтажу), то сопротивление нулевого провода можно уменьшить достаточно просто и очень дешево. Этот способ использовался с момента прокладки первых линий электропередач, но в настоящее время часто не используется. Заключается он в повторном заземлении нулевого провода на каждом столбе электролинии или (и) на каждой нагрузке. В этом случае параллельно сопротивлению нулевого провода подключается сопротивление земли между нулем трансформатора подстанции и нулем потребителя. Второй простейший способ тоже основан на снижении сопротивления. Только в этом случае необходимо проверять оба провода ноль и фазу. В процессе эксплуатации воздушных линий из-за обрыва проводов образуется места локального повышения сопротивления — скрутки, сростки и т. д. В процессе работы в этих местах происходит локальный разогрев и дальнейшая деградация провода, грозящая разрывом. Такие места видны ночью из-за искрения и свечения. Необходимо периодически визуально проверять электролинию и заменять особо плохие ее отрезки или линию целиком. Для ремонта лучше всего применить самонесущие алюминиевые изолированные кабели СИП. Они называются самонесущими, т. к. не требуют стального троса для подвески и не рвутся под тяжестью снега и льда. Такие кабели долговечны, есть специальные аксессуары для легкого и удобного крепления их к столбам и зданиям. Третьим способом является замена отслужившей воздушной линии на новую. 4. Способ основан на применении специальных стабилизаторов напряжения на входе в дом или другой объект. Такие стабилизаторы бывают как однофазного, так и трехфазного типа. Они увеличивают cos φ и обеспечивают стабилизацию напряжения на выходе в пределах ±5 %, при изменении напряжения на входе ±30 %. Их мощностной ряд может быть от сотен Вт до сотен кВт [1]. 5. Способ компенсации потерь электроэнергии. Это способ использования устройств компенсации реактивной мощности. Если нагрузка индуктивная, например, различные электромоторы, то это конденсаторы, если емкостная, то это специальные индуктивности Самым эффективным решением является вынос электросчетчика из здания и установка его на опоре линии электропередачи в специальном герметичном боксе. В этом же боксе устанавливаются вводный автомат с пожарным УЗО и разрядники защиты от перенапряжений. Этот способ снижения потерь за счет использования трехфазного подключения. При таком подключении снижаются токи по каждой фазе, а, следовательно, потери в линии и можно равномерно распределить нагрузку.

  1. Артемьев А. В., Савченко О. В. Расчет, анализ и нормирование потерь электроэнергии в электрических сетях: Руководство для практических расчетов. — М.: Изд-во НЦ ЭНАС, 2004. — С. 280.: ил.
  2. Железко Ю. С. Потери электроэнергии. Реактивная мощность. Качество электроэнергии: Руководство для практических расчетов. — М.: ЭНАС, 2009. — С. 456.

Основные термины (генерируются автоматически): нулевой провод, потеря электроэнергии, сеть, потеря, снижение сопротивления, электрическая энергия.

Читайте также: