Сообщение на тему прогноз землетрясений

Обновлено: 04.07.2024

Прогноз землетрясений — предположение о том, что землетрясение определённой магнитуды произойдет в определённом месте в определённое время (или в определённом диапазоне времени). Несмотря на значительные усилия сейсмологов в исследованиях, пока не возможно дать такой прогноз с точностью до дня или месяца. [1]

Учёные до сих пор не знают всех деталей физических процессов, связанных с землетрясениями, и методы, какими их можно точно предсказывать. Ряд явлений рассматриваются сейчас как возможные предвестники землетрясений: изменения в ионосфере, различные типы электромагнитных индикаторов, включая инфракрасные и радиоволны, выбросы радона, странное поведение животных.

По мнению Сейсмологического сообщества Америки, заявляемый метод прогноза, который бы был подтверждён как верный, должен обеспечить ожидаемую магнитуду с определённым доспустимым отклонением, хорошо определённую зону эпицентра, диапазон времени, в которое произойдет это событие, и вероятность того, что оно действительно произойдет. Данные, на которых основан прогноз, должны поддаваться проверке и результат их обработки должен быть воспроизводим.

Достижение успеха в долгосрочных прогнозах (на годы или десятилетия) гораздо вероятнее достижения прогноза с точностью до месяца. Точные краткосрочные прогнозов (от часов до дня) на данный момент невозможны.

Содержание

Проблема прогноза землетрясений

В рамках научных работ с целью предсказания землетрясений сейсмологисты исследовали свзяь предстоящего землетрясения с движением земной коры [2] [3] , изменением уровня грунтовых вод в скважинах [4] , выпуском радона или водорода [5] [6] , изменением ускорения сейсмических волн [7] электромагнитными полями (сейсмоэлектромагнетизм), [8] , масштабные изменения температуры почвы [9] , изменения в концентрации ионов в ионосфере. [9]

Тайна процессов землетрясений часто сподвигает необученных специально для этого людей заявлять о том, что им удалось найти решение проблемы прогноза землетрясений. Их фантастические теории прогноза землетрясений включают погодные условия и необычные облака, фазы луны. [10] Но это всё — псевдонаучные теории. [11]

История исследовательских программ

В США

В Соединённых Штатах проблема прогноза землетрясений была поднята в середине 1960-х годов. Совместно с Японией было проведено множество конференций, но никаких серьёзных результатов не последовало вплоть до создания в 1977 Национальной программы снижения опасности землетрясений (англ. National Earthquake Hazards Reduction Program ). [12] . Одной из его задач стала разработка техник прогноза землетрясений и систем раннего предупреждения. [13] Однако, акценты были смещены с прогноза на смягчение ущерба в 1990 году [14]

В Японии

В Японии программа по предсказанию землетрясений стартовала в 1964 [18] с пятилетним планом. [19] В 1978 программа занялась прогнозом землетрясения магнитудой выше 8 в Токае, близ Токио, который мог бы стать крупнейшим бедствием в истории Японии и всей мировой экономики. Сейчас Япония обладает лучшей в мире системой записи сейсмических волн, обнаружения деформаций земной коры, изучения свойств грунтовых вод, электромагнитных изменений. [20] Всё это — часть огромных усилий в попытке понять процессы подготовки землетрясений.

Предвестники

Форшоки

Форшоки — умеренные землетрясения, которые предшествуют сильному. Высокая форшоковая активность в сочетании с другими явлениями может служить оперативным предвестником. Так, например, Китайское сейсмологическое бюро на этом основании начало эвакуацию миллиона человек за день до сильного землетрясения [21] в 1975 году. [1]

Хотя половине крупных землетрясений предшествуют форшоки, из общего числа землетрясений форшоками являются только 5-10 %. Это часто порождает ложные предупреждения. [1] [22] [23]

Попытки прогнозов

Италия

20 сентября 2011 г. шесть итальянских геофизиков-вулканологов предстали перед судом по обвинению в неспособности предсказать катастрофические последствия землетрясения в Л’Акуиле (2009) [1].

Китай

Хайчэнская эвакуация

После серии форшоков (некоторые из которых смогли нанести некоторый ущерб зданиям) некоторые местные руководители эвакуировали население. Через некоторое время произошло крупное землетрясение с M7.3. И хотя разговоры о возможности такого землетрясения на северо-востоке Китая были ещё несколько лет назад, конкретного прогноза сформулировано не было. [24]

Тем не менее, Таншаньское землетрясение, по официальным данным унесшее жизни 242 тысяч человек, предсказать не удалось. На некоторое время это поставило под сомнение исследования по прогнозу землетрясений.

Япония

В 1892 году японское правительство основало Имперский комитет по исследованию землетрясений в ответ на разрушительное Землетрясение Ноби (1891) (Мино-Овари) с M8.0. [25]

Гост

ГОСТ

Прогнозирование землетрясений

Прогнозировать землетрясение достаточно сложно, но, тем не менее, ученые эти прогнозы делают. Для повышения их точности важно представлять механизмы накопления в земной коре напряжений, крипа, деформаций в районах разломов.

Важно знать, в какой зависимости находятся между собой тепловые потоки, идущие из земных недр и географией землетрясений, закономерности их повторяемости в зависимости от магнитуды.

В тех районах планеты, где вероятность сильных землетрясений большая, проводятся геодинамические наблюдения. Их цель заключается в том, чтобы обнаружить предвестников надвигающейся катастрофы.

Особое внимание уделяется изменению сейсмической активности, деформации земной коры, изменению свойств горных пород, геохимическим аномалиям, атмосферным явлениям, биологическим предвестникам.

Для исследований подобного рода используются специальные геодинамические полигоны, например:

Паркфилдский полигон в Канаде, Гармский полигон в Таджикистане и др.

Сейсмические станции, работающие с 1960 г, имеют самое современное и высокочувствительное оборудование, мощные компьютеры, позволяющие быстро обрабатывать данные и определять положение очагов землетрясения.

К сожалению, ни один предвестник не может быть надежным, поэтому задача прогноза землетрясений далека от решения.

Специалисты выделяют долгосрочный, среднесрочный и краткосрочный прогнозы:

По поводу долгосрочного прогноза споров меньше всего, их составляют сроком от нескольких месяцев до нескольких лет и за это время изучаются изменения напряжения в литосфере, её сейсмическая прозрачность. В основе среднесрочного прогноза лежат наблюдения за геофизическими полями, и землетрясение предсказывается за несколько месяцев до его начала. Правда, они не совсем успешны, но достаточно ценны. Что касается краткосрочных прогнозов, то к ним предъявляют большие требования, потому что от их точности зависит жизнь тысяч людей.

Готовые работы на аналогичную тему

В 50-е годы советские ученые начали программу по прогнозу землетрясений, и в ходе исследований было получено много новой и интересной информации.

Предсказать реальную угрозу не удалось, и первая попытка ученых оказалась неудачной. Вторую попытку предпринял Китай и достиг определенных результатов.

Например, землетрясение в 1975 г было очень точно предсказано, и за два часа до его начала прошла эвакуация людей в безопасное место.

Второе землетрясение тоже в Китае в следующем году – ученые побоялись ложной тревоги и в результате погибли сотни тысяч человек.

Методы прогнозирования не исключают ошибок, но зато дают ученым возможность понять природу и характер землетрясений, а также изучить возможности сокращения масштабов разрушений.

Ряд специалистов считают, что разрушительных последствий можно избежать, если создавать небольшие искусственные толчки взрывчатыми материалами.

Небольшие землетрясения в некоторых районах удалось предотвратить затоплением разломов.

Над решением проблем, связанных с землетрясениями работают сейсмологи всего мира и удачные попытки предсказания нескольких землетрясений были, но, основное количество не поддавалось их прогнозу.

Предвестники землетрясений

Наблюдения за состоянием подземных пород, в общем, дает возможность предсказать землетрясение.

Механические напряжения, появляющиеся в недрах планеты, приводят к изменению свойств пород, которые становятся аномальными. Аномалии могут быть упругие, электрические, магнитные и др.

При сильных механических нагрузках, например, в веществе может возникнуть электрическое поле. Значит, электризацию пород можно рассматривать как один из предвестников землетрясения.

Распространение волн в упругих напряженных породах идет иначе, влияет напряжение и на циркуляцию подземных вод, на заполнение водами трещин и скважин.

С нарастанием механических напряжений при формировании очага землетрясения в подземных водах увеличивается концентрация гелия, неона, аргона, криптона, увеличивается их концентрация и в газовых потоках, что определяется с помощью химического метода прогнозирования, а это значит, что химический анализ газа или воды в специальных скважинах, может выявить его назревание.

Одним из предвестников землетрясения является необычное поведение птиц и животных. Китайское землетрясение 1975 г в значительной степени основывалось на народных приметах и необычном поведении домашних животных.

Прогнозировать землетрясение интенсивностью от 4 и выше баллов могут 70 видов животных, но, ученые не нашли научного обоснования их чувствительности. Возможно, что животные перед землетрясением реагируют на возникающие звуки, включая инфразвуки и ультразвуки, реагируют на изменение магнитного и электрического полей, на выделяющиеся из почвы газы и др. Вопросы, связанные с аномальным поведением животных перед землетрясением, находятся в поле зрения сейсмологов мира.

Рисунок 1. Предвестники землетрясений. Автор24 — интернет-биржа студенческих работ

Используются для прогнозирования землетрясения и спутниковые данные. При изучении атмосферных процессов было обнаружено, что в ионосфере перед землетрясением увеличивается концентрация электронов, что было выявлено за несколько дней до землетрясения в Японии.

Все примеры прогнозирования землетрясений не гарантируют его начало, но, тем не менее, ученые работают над всеми вопросами и делают попытку найти истину.

Прогноз возможен, но…

Примером этого является катастрофа 2004 г, произошедшая в Юго-Восточной Азии, когда от огромной волны цунами погибли 300 тыс. человек. В режиме реального времени весь мир наблюдал распространение цунами в Индийском океане на экранах своих компьютеров. Но, предупредить эту катастрофу и предпринять какие-либо конкретные действия хотя бы по уменьшению её последствий, ни одно пострадавшее государство так и не смогло.

Вторым примером катастрофы, меньшей по масштабу, но, большей по числу жертв, является Китай. Во время землетрясения 1560 г в Шенси погибло 830 тыс. человек, можно попытаться понять причины этого – люди жили в пещерах, которые обвалились во время землетрясения, похоронив большую их часть. При Тянь-шаньском землетрясении 1976 г, почти таком же по масштабу, погибли сотни тысяч человек, только произошло оно на 400 лет позже.

Население Китая всегда было многочисленным, может быть, поэтому жизнь человека ничего не стоила. С другой стороны, Китай всегда был впереди по уровню научно-технической мысли – изобретение бумаги, пороха, компаса, шелка, фарфора, механических часов, технологии горячей обработки металлов, добыча нефти и газа – всё это впервые появилось именно в этой стране.

Евгений Рогожин

Геолог Евгений Рогожин о причинах возникновения сейсмических волн, прогнозировании землетрясений и их проявлениях

FAQ: Землетрясения: причины и прогнозы

FAQ: Землетрясения: причины и прогнозы

Над материалом работали

Евгений Рогожин

доктор геолого-минералогических наук, заместитель директора по научной работе Института физики Земли им. О.Ю.Шмидта РАН

Землетрясением называются вызванные происходящими в литосфере процессами упругие колебания земной коры. Они представляют собой быстро распространяющиеся сейсмические волны. Их действие может ощущаться, при особенно сильных землетрясениях, на расстоянии около полутора тысяч километров от очага.

Очаг (гипоцентр, фокус) землетрясения – место, где возникают подземные колебания. Область на поверхности Земли, находящаяся над очагом, является эпицентром землетрясения.


Большая часть землетрясений происходит в горной местности, вблизи высоких гор, так как земная кора на данных территориях особенно подвижна, ведь ещё продолжает формироваться. Нередкими являются также толчки на дне Мирового океана, которые, в случае большой силы колебаний, могут спровоцировать цунами, но чаще всего людьми просто не ощущаются.

Существует отдельная наука, которая изучает как сами землетрясения, так и сопряжённые с ними явления – сейсмология. Прибор, улавливающий колебания земной коры, порой даже незначительные, называется сейсмографом, а его запись – сейсмограммой.

Ежедневно на планете происходят сотни, даже тысячи землетрясений. Большинство из них не ощущается людьми, так как слабые колебания способны зафиксировать только специализированные датчики. Однако время от времени случаются и сильные толчки, обладающие разрушительной силой.

Вплоть до середины 19 века землетрясения не имели достоверных описаний, природа их для человека была окутана тайнами, мифами и суевериями, а все знания о явлении основывались на сомнительных наблюдениях. Одним из первых сугубо научных описаний землетрясения стал отчёт, составленный Р. Малле в 1857 году.

Причины возникновения землетрясений

В зависимости от характера процессов, происходящих в очаге, в результате которых возникают колебания, учёные выделяют несколько видов землетрясений.

Тектонические землетрясения

Чаще всего землетрясения возникают вследствие сдвига тектонических плит, сопровождающегося движением горных пород с возникновением внутреннего напряжения. При накоплении значительного количества такой энергии, происходит деформация поверхности Земли – возникают трещины, вспучивания, проседает почва. Образуется ударная волна, вызывающая колебания земной поверхности, область распространения которой зависит от силы землетрясения и может достигать тысячи километров.

Вулканические землетрясения

Землетрясения такого типа являются слабыми, но продолжительными и многократными – вплоть до нескольких месяцев. Сами по себе опасности для людей они не представляют, но чаще всего являются предвестниками скорого извержения вулкана. Причины возникновения – резкое перемещение раскалённой лавы и давление на поверхность Земли газов. Это ведёт к накоплению напряжения в вулкане с последующим возникновением разрывов и сейсмических волн, которые ощущаются как толчки.

Обвальные землетрясения

Такие землетрясения происходят при обрушении больших масс верхнего слоя поверхности Земли в результате образования под землёй пустот, которые формируются под воздействием подземных рек и грунтовых вод. Колебания обычно несильные, волны распространяются на небольшие расстояния.

Искусственные и техногенные землетрясения

Подземные толчки могут быть вызваны не только естественными природными процессами. Спровоцировать колебания способен своей деятельностью и человек.

Техногенные землетрясения возникают в результате воздействия человека на природу при осуществлении каких-либо работ, связанных с ослаблением горных пород. Увеличение числа подземных толчков фиксируется в районах, где располагаются карьеры и шахты, а также добываются газ и нефть. К учащению колебаний ведёт также строительство водохранилищ, так как вода разрушительно воздействует на породы, и так подверженные высокому давлению из-за накопленной толщи воды.

Искусственное землетрясение может произойти, например, при сильных подземных или наземных взрывах, ядерных испытаниях.

Классификация землетрясений

Землетрясения классифицируются в зависимости от глубины возникновения, то есть расположения очага. Условно выделяют 3 группы:

  • Поверхностные (мелкофокусные) – от 0 до 60 км;
  • Промежуточные (среднефокусные) – от 60 до 400 км;
  • Глубокие (глубокофокусные) – более 400 км.

Чем глубже располагается гипоцентр, тем меньше сила колебаний. Чаще всего происходят землетрясения, очаг которых располагается на глубине не более 30 километров, но в некоторых районах глубина, где зарождаются колебания, может достигать 700 километров. Глубокофокусные землетрясения на данный момент наименее изучены.

Где на Земле чаще всего происходят землетрясения

Процесс геологического преобразования Земли беспрерывен. Ежегодно происходит несколько сотен тысяч колебаний. Большинство из них проходят незаметно для людей, но фиксируются чувствительным оборудованием. На основании многолетних наблюдений, учёные сделали вывод о существовании двух основных сейсмических поясов Земли – Средиземноморском-трансазиатском и Тихоокеанском.

Средиземноморско-трансазиатский пояс

Пояс растянут вдоль экватора, начинаясь в Персидском заливе и заканчиваясь в Атлантическом океане. За это он получил своё второе название – широтный.

В соответствии со своим основным названием, пояс тянется через Средиземное море, захватывая прилегающие европейские горные массивы, которые располагаются в южной части континента. Проходя через горы на западе Азии и в Северной Африке, сейсмический пояс направляется к Ирану, Кавказу, вплоть до Гималаев.


Наиболее сейсмоактивными наземными областями являются территории вблизи Карпат, расположенных в Румынии, Иран и территории от Белуджистана до Бирмы. Самая активная сейсмически часть пояса проходит под водами Индийского океана, сквозь Аравийский полуостров и заканчивается лишь в юго-западных областях Антарктиды.

Подводные области данного пояса захватывают сразу три океана:

  • Северный Ледовитый,
  • Индийский,
  • Атлантический.

Тихоокеанский пояс

Второе название данного пояса – меридиональный, так как он пролегает перпендикулярно широтному поясу. Он проходит через множество действующих вулканов, которые извергаются в Тихом океане. Именно на территориях данного пояса случаются 85% всех землетрясений, происходящих на Земле.

Восточная часть пояса, являющаяся самой масштабной, начинается у Камчатских берегов и, через запад Северной и Южной Америки , тянется к Антильским островам. Также на Камчатке начинается западная часть Тихоокеанского пояса, которая проходит через Японию. Наиболее сейсмоактивной является северная дуга пояса, протянувшаяся через Центральную и Южную Америку.

Второстепенные пояса

К ним относятся области, куда доходят только отголоски землетрясений, хотя сами они считаются сейсмически безопасными. Они тянутся через Индийский, Тихий и Атлантический океаны к Арктике , через Тихий океан, от Филиппин к Антарктиде.

Таким образом, к странам, которые наиболее подвержены землетрясениям, относятся:

  • Турция;
  • Индонезия;
  • Пакистан;
  • Мексика;
  • Сальвадор;
  • Филиппины;
  • Эквадор;
  • Япония;
  • Непал;
  • Индия.

Где на земле не бывает землетрясений

К территориям, где возникновение землетрясения наименее вероятно, относятся Северная и Центральная Канада , Австралия , Западная Африка и Сибирь . Это связано с тем, что ранее перечисленные пояса сейсмической активности чётко разделяют части материков и океанов на области, где, при удалении от границ этих зон, колебаний земной поверхности практически не бывает, а отголосков отдалённых толчков не ощущается.

Территории в России, на которых часто бывают землетрясения

К сейсмоактивным зонам относится 25% территории России, из которых 7% предрасположено к возникновению опаснейших 7-9 бальных землетрясений.

Также к районам, где чаще всего происходят землетрясения, относятся территории Кавказа , Черноморское и Каспийское побережье. Сила землетрясений здесь не настолько пугающая – в основном колебания достигают силы 4-5 баллов. Однако здесь случались землетрясения с губительной силой в 8 баллов.

Жители Центральной России также могут ощутить на себе силу подземных толчков из-за распространения ударной волны крупных землетрясений.

Магнитуда и шкалы измерения землетрясений

Учёными не раз предпринимались попытки классифицировать землетрясения по степени и воздействия на земную поверхность. В 1883 году Д. Меркалли была разработана 12 балльная шкала силы землетрясений, оценивающая мощность толчков в данной точке, без учёта интенсивности в эпицентре. Одним баллом в ней характеризовались колебания, которые не заметны для людей, двенадцатью – катастрофические разрушения с изменением поверхности земли, смещениями вдоль трещин.

Позже, уже в 1935 году, американским сейсмологом Ч. Рихтером была представлена усовершенствованная шкала, основывающаяся на магнитудах. Магнитуда землетрясения – это показатель, характеризующий энергетическую силу сейсмических волн, которые вызывают колебания. Данная величина является безразмерной и условной. Она определяется инструментальными наблюдениями сейсмических станций.

Диапазон шкалы Рихтера – от 1 до 9,5 единиц. Описание последствий колебаний различной силы с помощью шкалы магнитуд выглядит следующим образом:

  • 2-3 – толчки слабые, почти не ощущаются;
  • 4-5 – колебания могут привести к небольшим повреждениям, ощутимые;
  • 6 – повреждения средней степени, ощущаются явно;
  • 8,5 – максимальная зафиксированная сила землетрясения, катастрофические повреждения.

Прогнозирование землетрясений

Под прогнозированием землетрясений понимается как выявление его предвестников, так и максимально приближенное определение областей, где может оказаться гипоцентр.

Существуют различные по времени виды прогнозов:

  • долгосрочные – на 10 и более лет;
  • среднесрочные – на несколько лет;
  • краткосрочные – на несколько месяцев или дней;
  • оперативные – на несколько минут или часов.

При составлении прогнозов во внимание принимаются определённые явления, которые происходят перед землетрясением – предвестники. Таковых на данный момент насчитывается огромное количество. Условно они разделены на 2 группы:

  • Геофизические. Прогнозы составляются на основании поведения геофизических полей на различных этапах, предшествующих непосредственно началу землетрясения. Это наиболее изученная категория предвестников. С её помощью делаются прогнозы практически на любой промежуток времени.
  • Основанные на необычности поведения биологических объектов. Возможны только краткосрочные или оперативные прогнозы.

Несмотря на большое число предвестников, точно определить место, интенсивность и время начала землетрясения невозможно, все прогнозы носят вероятностный характер.

Как вести себя при землетрясении

Если толчки застали в помещении, необходимо быстро покинуть здание, причём лифтом пользоваться категорически запрещено. При выходе из дома, если есть возможность, нужно перекрыть газ и воду, отключить электричество.


В случае, если здание покинуть не получается, необходимо выбрать максимально безопасное место в помещении – в дверном проёме, в углу у несущей стены, под достаточно крепкой мебелью. Если есть возможность, лучше прикрыть голову чем-то мягким. Как только ощутимые колебания закончатся, покинуть здание следует незамедлительно.

Находясь на улице, следует избегать мостов, высоких деревьев, оград, высоких построек, электрических проводов. При нахождении в прибрежной зоне, от водоёмов лучше удалиться. Безопасным местом при землетрясениях является метро.

Самые разрушительные землетрясения

Землетрясение в Сирии (1138 г.)

Это одно из самых разрушительных землетрясений, о которых известно человечеству. Из записей летописца того времени известно, что произошло оно 11 октября 1138 года и унесло жизни более 230 тысяч человек. Многие города превратились в руины, количество населения восстановилось до прежнего уровня только к началу 19 века.

Землетрясение в Шэньси, Китай (1556 г.)

В результате землетрясения 800 тысяч человек погибли, население двух провинций Китая (Шэньси и Шаньси) уменьшилось более чем в половину. Города были полностью разрушены. Колебания повторялись несколько раз в месяц ещё полгода.

Землетрясение в Ашхабаде, Туркменистан (1948 г.)

Очаг землетрясения находился практически под городом, поэтому для полного его уничтожения понадобилось всего несколько секунд. Пострадало множество населённых пунктов в округе. Погибли более 160 тысяч человек. Сила колебаний оценивалась в 7 единиц по шкале Рихтера.

Землетрясение на Гаити (2010 г.)

Землетрясение, произошедшее 12 января 2010 года, состояло из одного основного, самого сильного, толчка в 7 единиц и множества последующих колебаний, магнитуда которых уже не превышала 6 единиц. Очаг находился в непосредственной близости к столице, что повлекло катастрофические разрушения с ущербом в 6 млрд. евро. Погибли более 300 тысяч человек, пострадало не менее трёх миллионов.

Первое место в этом мрачном списке занимает Великое китайское землетрясение, случившееся в январе 1556 г. в провинции Шэньси, где жители имели обыкновение селиться в лессовых пещерах. Тогда погибло 830 тыс. человек.

Землетрясение в Лиссабоне

7 июня 1692 г. таким же образом была стерта с лица земли столица британской колонии Ямайка — Порт-Ройал. Разрушительную работу подземных толчков довершили цунами.

Слабым утешением служит то, что Порт-Ройал не был столь уж крупным городом, его население составляло 6,5 тыс. человек. Некоторым даже удалось спастись.

В 1693 г. около 100 тыс. человек погибло во время землетрясения на Сицилии, в 1737 г. — 300 тыс. человек в Калькутте. Первого ноября 1755 г. был превращен в руины Лиссабон, число жертв оценивали от 60 тыс. до 100 тыс. человек. Именно после Лиссабонской катастрофы было найдено, наконец, научное объяснение для этих страшных разрушительных явлений. Его нашел йоркширский священник Джон Митчелл.

В круг интересов скромного слуги Божьего входили геология, астрономия и различные области физики. В частности, в 1783 г. он впервые теоретически предсказал существование черных дыр, а незадолго до своей смерти в 1793 г. построил прототип прибора для измерения массы Земли, но сейчас нас интересует другая его работа. После Лиссабонского землетрясения Митчелл сопоставил показания очевидцев, собранные по приказу премьер-министра Португалии маркиза Помбала, и попробовал объяснить землетрясения с точки зрения ньютоновской механики.

Он также предположил, что местоположение центра землетрясения можно вычислить путем сопоставления данных о времени прибытия волн. Выведенный им закон стал основой современного метода определения эпицентра. Так процесс изучения землетрясений встал на научные рельсы.

В XX в. сейсмологи научились отслеживать и записывать землетрясения по всей планете из одной точки и добились значительных успехов в описании их природы. Тем не менее с 1980 г. по 2012 г. включительно от последствий землетрясений погибло около миллиона человек. Многие из них могли выжить, если бы о предстоящем катаклизме стало известно заранее. Так что успешное предсказание подобных бедствий — весьма животрепещущая задача для человечества.

карта крупнейших землетрясений

Одним из первых методов прогноза стал мониторинг поведения слабых землетрясений сейсмическими станциями. Он начал использоваться еще в 30-х гг. XX в., но, увы, до сих пор не отличается большой точностью. Земная кора — чрезвычайно сложное образование, и никогда нельзя быть уверенным, как именно выплеснется накопившееся в ней напряжение. Грубо говоря, таким образом можно предсказать, что примерно через пять лет в таком-то районе землетрясение может произойти с вероятностью в 50 %. То есть, как в том анекдоте, или произойдет, или нет. Ну не совсем так, конечно, но риски неправильного предсказания велики, а последствия ошибки в любую сторону весьма неприятны. Причем именно в густонаселенных промышленно развитых районах, где землетрясения наиболее опасны, убытки от ложного сигнала тревоги будут наибольшими. Эвакуация крупного промышленного центра влетит в копеечку и может повлечь за собой значительный спад экономики в регионе. Не каждый рискнет взять на себя ответственность за подобный прогноз.

Несколько лет назад шестеро итальянских сейсмологов и один чиновник предстали перед судом, потому что не решились выдать прогноз о возможном землетрясении в городе Аквиле в 2009 г. Они посчитали, что информация недостаточно надежна, вероятность стихийного бедствия низкая, а эвакуация повлечет за собой негативные экономические последствия наверняка, и не рискнули. Сейсмологи получили по шесть лет лишения свободы. Дебаты о справедливости этого приговора до сих пор ведутся. Тысячи ученых со всего мира вступились за коллег, заявляя, что те действительно не имели возможности дать достоверный прогноз.

Таким образом, вопрос поиска дополнительных признаков, указывающих на приближение землетрясения, приобрел дополнительную актуальность. Большим подспорьем стали космические аппараты, регистрирующие изменения температуры земной поверхности и приповерхностного слоя воздуха, вариации силы тяжести и магнитного поля. Кроме того, землетрясения научились предсказывать, наблюдая не только за Землей, но и за небом, а точнее, за ионосферой Земли. Этим занимались на основе данных, полученных с навигационных спутниковых систем GPS и ГЛОНАСС.

строение атмосферы, землетрясение

Концентрация свободных электронов — величина непостоянная. В определенных пределах она колеблется под воздействием самых разнообразных факторов. Однако в ходе изучения ионосферы было замечено, что крупным землетрясениям предшествовали довольно специфические изменения этой величины. Причем происходили они не где-нибудь, а в слое F2 вблизи от эпицентра землетрясений.

В принципе изменения ионосферных параметров фиксируются и наземными методами, но последние не дают необходимой точности прогноза. Множество сложностей связано с тем, что изменения электронной плотности ионосферы, предвещающие сильные землетрясения, имеют тот же порядок величины, а иногда даже меньше по амплитуде, чем те, что связаны с обычной изменчивостью ионосферы. Но отличить их можно, причем лучше всего это делать космическими радиофизическими методами.

В ходе исследований было установлено примерно следующее:

  • ионосферные предвестники представляют собой вариации плотности ионосферной плазмы (отклонения от невозмущенного значения), наблюдаемые за 1–5 суток;
  • длительность вариации одного знака невелика и составляет 4–6 часов. Только в случае очень сильных землетрясений она может быть значительной ~ 12 часов;
  • в среднем сейсмоионосферные вариации имеют ту же амплитуду, что и ежедневная изменчивость ионосферы (15–25 %), но в определенные моменты местного времени они могут превышать 100 %;
  • знак и форма сейсмоионосферных вариаций зависят от местного времени. По всей видимости, эти зависимости различны для разных регионов планеты и требуют дополнительного исследования в каждом конкретном случае;
  • размер модифицированной области ионосферы на высоте максимума слоя F2 зависит от магнитуды землетрясения;
  • положение максимума модифицированной области в ионосфере не совпадает с вертикальной проекцией эпицентра будущего землетрясения.

В эпицентральной области за 3–5 суток наблюдается рост электронной концентрации в максимуме слоя F2 с дальнейшим ее уменьшением за 1–3 суток.

Скажем, за несколько дней до 21 сентября 2004 г., когда произошло землетрясение в Калининграде, спутники системы GPS показали, что с 16 по 18 сентября 2004 г. (за 3–5 дней до землетрясения) начинается общий рост максимальной электронной концентрации слоя F2 ионосферы. Начиная с утренних часов 19 сентября 2004 г., за два дня до землетрясения, выявлен резкий спад (~ в 1,7 раза) электронной концентрации по сравнению с аналогичным временем 18 сентября 2004 г. Этот спад сменяется резким подъемом максимума 20 сентября 2004 г. (за день до землетрясения). При этом сейсмическая и геомагнитная обстановка в этом районе накануне события выглядела спокойной, заметных подземных толчков не наблюдалось.

Читайте также: