Сообщение на тему органические кислоты в производстве

Обновлено: 17.05.2024

Методы производства органических кислот: бродильный, с участием молочнокислых бактерий, ферментации, их особенности. Промышленные масштабы получения органических кислот: глюконовой, яблочной, салициловой; характеристика процессов. Применение аминокислот.

Рубрика Химия
Вид реферат
Язык русский
Дата добавления 08.02.2009
Размер файла 39,2 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Міністерство освіти і науки України

Дніпропетровський національний університет

Кафедра мікробіології та вірусології

Перевірив доктор біол. наук,

Вінніков Альберт Іванович

1. Производство органических кислот

1.1. Бродильное производство уксусной кислоты

1.2. Получение молочной кислоты при участии молочнокислых бактерий

1.3. Производство лимонной кислоты методом ферментации

2. Получение в промышленных масштабах других органических кислот

2.1. Процесс образования глюконовой кислоты при участии бактерий

2.2. Яблочная кислота, получаемая из фумаровой кислоты или путем ферментации специфических бактерий

2.3. Представители родов Pseudomonas, Corynebacterium способны к образованию салициловой кислоты

3. Производство аминокислот при помощи бактерий и их мутантов

3.1. Производство аминокислот из биосинтетических предшественников

3.2. Синтез аминокислот с помощью ферментов

3.3. Применение аминокислот

Биомасса представляет собой сложную химическую систему, а большинство процессов и продуктов биотехнологии имеют биохимическую природу, будь то производство веществ, используемых как горючее, получение путем брожения продуктов питания и напитков, синтез биополимеров, использование организмов, участвующих в круговороте химических веществ на Земле, применение сложных химических соединений в медицине или сельском хозяйстве. Речь пойдет главным образом о прин-ципах, перспективах и технологии получения химической про-дукции на базе биотехнологии. Основное внимание будет уделено химическим процессам и соединениям. Корни современной прикладной микробиологии и соответст-венно биотехнологии уходят в химическую промышленность начала нынешнего века: именно тогда были разработаны основы промышленного производства ряда химических веществ (например, ацетона, этилового спирта, бутандиола, бутанола и изопропанола) из углеводов растений[2] . На смену этой важной отрасли промышленности пришла быстро развившаяся нефтехимическая промышленность. Однако сейчас запасы ископаемого сырья стали предметом конкуренции, так как оно требуется для производства химических веществ, энергии и даже пищевых продуктов; все это усугубляется повышением цен на нефть и уголь. В таких условиях применение процессов нового типа при производстве химических веществ из возобновляемой биомассы становится все более перспективным. Идет переоценка возможностей использования модернизированных процессов, по сути своей подобных разработанным в начале века[6]. В этом направлении уже сделаны первые шаги. Так, глицерол получают с помощью водорослей; активно ведется работа по изучению возможности использования лигнина древесины. С технической точки зрения это сложная проблема: решение ее откроет новый путь получения многих ценных ароматических соединений, играющих столь важную роль в современной химической промышленности.

Помимо новых способов получения химических веществ из биомассы биотехнология дает нам также более эффективные и производительные катализаторы для осуществления химических взаимопревращений. Они могут использоваться двояким путем. Во-первых, специфичность действия фермента (или ферментов) может применяться при катализе in vivo или in vitro простых, но технически трудно осуществимых превращений. Примером такого рода служит гидроксилирование стероидов при синтезе лекарственных веществ[8]. Во-вторых, с их помощью можно осуществлять полный биосинтез сложных и дорогостоящих тонких химических продуктов из простых составных частей, например образование антибиотиков в ходе вторичного метаболизма у грибов. Многообещающей областью дальнейшего развития представляется производство ценных веществ из растений [среди которых упомянем терпены (ароматические вещества) и алкалоиды (используемые при производстве лекарств)] путем массового культивирования клеток растений[1].

1. Производство органических кислот

1.1 Бродильное производство уксусной кислоты

Среди органических кислот самая важная -- уксусная. На рынок США ее ежегодно поступает около 1,4 млн. т общей стоимостью до 500 млн. долл. (без учета уксуса). В прошлом основную часть уксусной кислоты получали путем микробиологического окисления этанола, но сегодня, за исключением производства уксуса, этот процесс по экономическим соображениям не применяется. Впрочем, в результате ведущихся исследований термофильных бактерий, способных превращать целлюлозу в уксусную кислоту, а также штаммов Acetobacter и Clostridium, способных синтезировать ее из водорода и углекислого газа, этот метод, может быть, восстановит свои позиции[2]. Техническая уксусная кислота используется при выработке многих химических веществ, включая каучук, пластмассы, волокна и инсектициды. При обычном способе производства микробиологическая конверсия этанола в уксусную кислоту при участии штаммов Acetobacter и Gluconobacter идет в аэробных условиях и поэтому, строго говоря, не является процессом брожения. Уксус по праву считается важнейшим продуктом микробиологической промышленности [5].

1.2 Получение молочной кислоты при участии молочнокислых бактерий

В конце XIX в. началось промышленное производство молочной кислоты при участии молочнокислых бактерий Lactobacillus delbrueckii, L. leichmannii и L. bulgaricus. Это был один из первых процессов, где применялась частичная стерилизация среды нагреванием. Этот микроаэрофильный процесс осуществ-ляется при высокой температуре (45--50°). В нем используют содержащее крахмал сырье, которое предварительно обрабатывают ферментами или подвергают кислотному гидролизу. L. bulgaricus активно сбраживает лактозу и может поэтому использовать молочную сыворотку в качестве питательного субстрата[9]. В других случаях конверсии подвергается сахароза (концентрация 12--18%, вес/объем). Процесс идет 3-- 4 суток; при этом в больших количествах выделяется углекислый газ, что облегчает создание в среде оптимальных полуаэробных условий. Описаны также способы конверсии 1,2-пропандиола в молочную кислоту при помощи Arthrobacter oxydans, Alcaligenes faecalis или Fusarium solani. Эти микроорганизмы в основном образуют L( + )-изомер молочной кислоты, но некоторые штаммы L. leichmanii синтезируют D(--)-изомер. Было изучено образование молочной кислоты при непрерывном куль-тивировании. В одностадийном процессе выход в случае L. delbrueckii составлял 89 г/л в сутки[10]. При использовании препаратов молочнокислых бактерий, иммобилизованных в альгинатных гелях, степень конверсии достигала 97%. Доля L( + )-изомера составляла 90%, а время полужизни--100 суток. В этих процессах молочную кислоту получают в форме кальциевой соли; чтобы выделить конечный продукт, ее обрабатывают серной кислотой. Молочную кислоту используют в качестве добавки к безалкогольным напиткам, эссенциям, фруктовым сокам, джемам и сиропам, для декальцификации кожи в дубильной промышленности, а также при производстве пластмасс, когда L( + )-форму полимеризуют в полилактат, применяемый для производства пластиковых оберток. Соли молочной кислоты используются в медицине[6].

1.3 Производство лимонной кислоты методом ферментации

Производство лимонной кислоты методом ферментации при участии грибов также принадлежит к числу давних биотехнологических процессов; оно было налажено в 1893 г. Его развитие шло в тесной связи с разработкой многих фундаментальных аспектов микробиологии. Вначале основные проб-лемы были связаны с микробным загрязнением. В поисках их решения было найдено, что процесс можно вести при очень низких рН, и это почти не сказывается на образовании кислоты грибами. В таких условиях создавать и поддерживать стерильность гораздо проще. За 1 -- 2 недели ферментации при высоких концентрациях сахара в сырье выход достигал 60%. Наиболь-ший выход получали, когда тем или иным способом ограничивали рост мицелия[8]. Первоначальный вариант процесса основывался на поверхностной ферментации, но в 1950 г. было внесено важное изменение -- освоено глубинное культивирование. Было показано, что стабильный процесс глубинной ферментации воз-можен только в том случае, если он осуществляется в две стадии: на первой идет рост мицелия, а на второй (в несодержащей фосфор среде) -- образование лимонной кислоты. За короткий срок были разработаны схемы, основанные на использовании дешевого углеводного сырья: мелассы, крахмала и глюкозного сиропа. Наличие ионов металлов в исходном сырье приводит к резкому падению выхода; их нужно удалять либо путем осаждения гексацианоферратом, либо пропусканием через ионообменные смолы, либо применением солей четвертичного аммония[5]. Для устранения вредного влияния этих примесей широко используется также метанол и другие низшие спирты. Механизм их действия неизвестен.

Возможно, они как-то влияют на цитоплазматическую мембрану[4]. В 60-х годах для производства лимонной кислоты был предложен новый процесс на основе н-парафинов (Сэ-3о) и штаммов Corynebacterium, Arthrobacter и Brevibacterium, но рыночной продукции с его помощью получено не было. Изучалось также образование лимонной кислоты дрожжами Candida. Они синтезируют смесь лимонной и изолимонной кислот в соотношении, зависящем как от генетических факторов, так и от условий ферментации. Было найдено, что ключевую роль здесь играет аконитат-гидролаза: мутанты с малой активностью этого фермента продуцировали больше лимонной кислоты. Растущие на углеводородах дрожжи также способны синтезировать лимонную кислоту из глюкозы. Гриб Trichoderma vlride образует большое количество цитрата из глюкозы; это позволяет вырабатывать лимонную кислоту из целлюлозы. С помощью некоторых видов Penicillium можно вести ферментацию с образованием Ls-алло-изолимонной кислоты, диастереомера изолимонной кислоты[8].

В промышленном производстве лимонной кислоты в основном используется Aspergillus niger, но применяется также и А. wentii. Процесс ферментации очень сложен, так как лимонная кислота является продуктом первичного метаболизма этих грибов, и любое сколько-нибудь существенное выделение этого промежуточного соединения обмена веществ в окружающую среду свидетельствует о сильном нарушении метаболизма, воз-никающем вследствие его дисбаланса или генетических нарушений. Рост грибов обычно регулируют путем изменения состава среды (Р, Mn, Fe, Zn)[1]. Субстрат должен легко усваиваться; негидролизованные полимеры обычно не используют, так как в этом случае внеклеточный гидролиз будет лимитировать скорость всего процесса.

Сверхпродукция лимонной кислоты является ответной реакцией на недостаток фосфата, но при выраженной нехватке металлов лимитирующим фактором не обязательно является фосфат. Роль металлов при этом до конца еще не понята. Оптимум рН составляет 1,7--2,0; в более щелочной среде происходит образование заметных количеств щавелевой и глюконовой кислот. Таким образом, тщательный контроль за культуральной средой позволяет обойти регуляторные системы обмена и создает оптимальный фон для образования лимонной кислоты. Видимо, в этих условиях стимулируется гликолиз и обеспечивается неограниченное поступление углерода в реакции промежуточного метаболизма. Уровень накопления цитрата зависит при этом от поступления оксалоацетата[7].

В промышленном производстве лимонной кислоты применяется несколько вариантов процесса. Традиционным твердофазным вариантом является процесс Коджи; он имеет много общего с процессом поверхностной ферментации. Глубинная ферментация с технической точки зрения сложнее, чем поверхностная, но возможна в разных вариантах: периодическом с подпиткой и непрерывном[1]. Периодическая ферментация используется при работе с глюкозосодержащими субстратами, а ее вариант с подпиткой чаще применяется при переработке мелассы. Непрерывное культивирование, дающее наибольший выход продукта, также возможно, но применение этого способа в промышленности в обозримом будущем маловероятно. Для процесса характерно два максимума скорости: роста и образования продукта. На первом этапе образуется значительное количество продукта, зависящее от скорости роста. На втором этапе рост отсутствует, а предельное количество образующегося продукта определяется концентрацией биомассы. В конце ферментации массу мицелия отделяют фильтрованием и промывают. Затем при рН


ИСПОЛЬЗОВАНИЕ ОРГАНИЧЕСКИХ КИСЛОТ В ПИЩЕВОЙ ПРОМЫШЛЕННОСТИ

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

Органические кислоты используют в кондитерской и консервной промышленности, а также при производстве безалкогольных напитков в качестве пищевых добавок, в частности, регуляторов кислотности пищевых систем. Так, лимонную, винно-каменную, яблочную, молочную и уксусную кислоты в небольших количествах применяют в кондитерской, безалкогольной, ликерно-водочной и консервной промышленности для улучшения вкуса продуктов.

Яблочная кислота (малоновая) представляет собой органическое вещество в виде бесцветного гигроскопичного порошка с приятным вкусом, без специфического запаха. Она относится к семейству фруктовых кислот и является важнейшим промежуточным продуктом обмена веществ, не обладает вредным токсическим воздействием на человеческий и животный организмы. Данный химический реактив имеет органическую природу, так как ее получают из растительного сырья, но также может быть произведена синтетическим способом.

Данное вещество содержится в:

табаке и махорке в виде солей никотина;

вегетативных органах растений: молодиле, агаве, кактусе;

плодах: барбарисе, сливе, незрелых яблоках, вишне, винограде, рябине, малине;

бобовых семенах и злаках;

Я́блочная кислота́, химическая формула НООС-СН₂-СН-СООН — двухосновная оксикарбоновая кислота. Соли и сложные эфиры яблочной кислоты называются малатами.

Рис.1. Структурная формула яблочной кислоты

Представляет собой бесцветные гигроскопичные кристаллы, хорошо растворимые в воде, этиловом спирте и диэтиловом эфире .

Способ производства яблочной кислоты предусматривает гидратацию малеиновой кислоты путем ее нагревания до 145 - 155°С и выдержки при указанной температуре под избыточным давлением 2,3 - 2,8 ати в течение 19 - 21 ч. При этом нагревают малеиновую кислоту и создают избыточное давление при помощи острого пара. Полученную реакционную массу повергают двухэтапному упариванию с промежуточным центрифугированием для очистки яблочной кислоты от примесей фумаровой и малеиновой кислот.

При этом на первом этапе раствор упаривают до плотности при 50°С не более 1.31 г/см3 , а на втором - до плотности не более 1.26 г/см3 . Установка для производства яблочной кислоты включает отделение синтеза и отделение очистки.

Отделение синтеза оборудовано реактором-растворителем для получения раствора малеиновой кислоты и реактором синтеза, выполненным из титана и оснащенным трубопроводом для подачи в него острого пара. Отделение очистки оборудовано сообщенными продуктопроводами, реактором-выделителем для отделения раствора яблочной кислоты, двумя реакторами-кристаллизаторами, центрифугой для выделения примесей фумаровой и малеиновой кислот, центрифугой для отделения кристаллической яблочной кислоты и сушилкой для ее высушивания.

В пищевой промышленности яблочная кислота или вкусовая добавка E296 применяется в качестве консервирующего вещества, регулятора кислотности, стабилизатора, антисептика при производстве следующих продуктов:

кондитерских изделий: желе, мармелада, пастилы;

безалкогольных газированных напитков и соков;

замороженных изделий: щербеты, мороженого;

Так как данная кислота менее кислая, чем виннокаменная и лимонная, в продукты ее добавляют на 15-30 % больше.

Яблочная кислота является важным лечебно-оздоровительным компонентом:

способствует профилактике заболеваний почек, гипертонии;

улучшает усвоение и восприимчивость лекарственных средств;

снижает губительное воздействие противораковых лекарств на эритроциты;

поддерживает нормальное пищеварение;

образует гликоген (специальный энергетический резерв).

Широко используется в качестве компонента инъекций аминокислот, напрямую принимающее участие в обменных процессах организма (цикл Кребса). Однако основное применение – составной элемент слабительных средств и лекарств от хрипоты. Данная кислота, как пищевая добавка, безвредна, поэтому медики не определили пределы допустимой суточной нормы употребления ее в пищу.


Кислоты в пищевой промышленности применяются для консервации и придания кондитерским продуктам, напиткам и консервам приятного кисловатого вкуса. Все органические кислоты, допущенные к производству пищевых продуктов, безопасны для здоровья.

Общая характеристика и свойства

Пищевые кислоты — это довольно обширное понятие, которое объединяет вещества неорганической и органической природы. Все они имеют различные свойства и применяются в пищевой промышленности в качестве добавок, регулирующих те или иные качества производимой продукции.

К пищевым относят следующие кислоты:

  • Аскорбиновую.
  • Уксусную.
  • Винную.
  • Фумаровую.
  • Глюконовую.
  • Яблочную.
  • Лимонную.
  • Щавелевую.
  • Молочную.
  • Муравьиная.
  • Ортофосфорную.

Большинство из них получают путем переработки различного растительного сырья. Во фруктах и ягодах кислоты могут содержаться не только в чистом виде, но и в форме растворимых солей.

Однако если пищевые кислоты сами по себе не несут вреда для организма, то различные примеси, содержащиеся в них, могут серьезно навредить. Поэтому существуют строгие требования, ограничивающие количество солей тяжелых металлов, свободных соляной и серной кислот, а также мышьяка в составе органической кислоты.

Лимонная кислота

Лимонная кислота — одна из самых распространенных добавок в пищевой промышленности. Это довольно слабая кислота, изначально получаемая путем переработки недозревших лимонов и стеблей махорки. В настоящее время ее научились синтезировать из сахарозы.

Лимонная кислота

Промышленное название - Е 330. Благодаря ярко выраженным антиокислительным свойствам, добавка получила широкое распространение в производстве пищевых продуктов.

Лимонную кислоту в качестве консерванта используют для производства плавленых сыров, в сочетании с содой — как разрыхлитель теста при изготовлении кондитерских изделий, в роли усилителя вкуса — в винно-водочной промышленности и в безалкогольных напитках, как фиксатор цвета — в колбасном производстве.

При неосторожном обращении эта пищевая кислота может вызвать ожог слизистых оболочек, кожи или дыхательных путей.

Уксусная кислота

Второй по популярности кислотой, используемой в промышленности и домашнем хозяйстве, является уксусная. Это одно из веществ, известное человеку еще с древности, вероятнее всего, было обнаружено совершенно случайно в скисшем вине.

Эта пищевая кислота получается в результате реакции брожения в винах, соках, а также водных растворах спиртов. В пищевой промышленности уксусная кислота имеет индекс Е 260 и используется для приготовления маринадов и консервации. Она также эффективно показала себя в качестве средства против накипи и известкового налета.

Уксусная кислота бывает разных концентраций. Наиболее распространенные виды – 80 % эссенция и 3–9 % столовый уксус.

Щавелевая кислота

Безобидная, если судить по названию, щавелевая кислота на самом деле — токсичное вещество, используемое в металлургии, химической и деревоперерабатывающей промышленности, бытовой химии и косметологии.

Щавелевая кислота

В естественном виде она содержится в таких растениях, как щавель, шпинат, карамбола и ревень. Однако для промышленных нужд ее получают путем окисления углеводов, гликолей и спиртов.

Применение щавелевой кислоты достаточно широко. Она может использоваться для очищения различных металлов от коррозии, входит в состав порошков и моющих средств, применяется при изготовлении пластмасс и пиротехники. В косметологии является составной частью отбеливающих смесей, например, для удаления веснушек.

Щавелевая кислота — токсичное, горючее вещество. При работе с ней необходима резиновая защита — сапоги, перчатки, очки, прорезиненные фартуки и респираторы.

Виннокаменная кислота

Виннокаменная или винная кислота — вещество, содержащееся во фруктах и ягодах. Особенно много ее присутствует в винограде, вишне, черешне, бруснике, смородине, гранате и айве. Для промышленных нужд винную кислоту, имеющую название Е 334, добывают путем добавления в яблочный ангидрид перекиси водорода. Существует и второй способ — ферментативное воздействие на янтарную кислоту.

Винная кислота

Винная кислота является безопасной для человека добавкой. Она обладает высокими антиокислительными свойствами, что делает актуальным ее применение при производстве продуктов питания длительного хранения, например, соков, желе, вареньях, джемах, безалкогольных газированных напитках.

Яблочная кислота

Яблочная (оксиянтарная) кислота или пищевая добавка Е 296. Это вещество добывается путем сбраживания свежевыжатого сока различных ягодно-плодовых культур. Особенно богаты на нее незрелые яблоки, малина, виноград, апельсины, барбарис, лимон и рябина.

Яблочная кислота

Употребление яблочной кислоты способствует улучшению работы желудочно-кишечного тракта, ускорению обмена веществ, заживлению ран, снятию усталости. Несмотря на то что верхняя граница нормы потребления оксиянтарной кислоты не установлена, врачи и диетологи не рекомендуют есть больше 3–4 яблок в день.

Благодаря своим антиоксидантным свойствам, добавка Е 296 широко используется в пищевой промышленности, медицине, фармакологии и косметологии. В качестве консерванта ее применяют при изготовлении мармелада, пастилы, желе, в молочных фруктовых напитках.

Ортофосфорная кислота

Ортофосфорная кислота — это неорганический продукт, получаемый путем химической реакции между фосфатами и серной кислотой. Применяется в металлургии, стоматологии и сельском хозяйстве.

Молочная кислота

Молочную кислоту или добавку-консервант Е 270 получают при помощи молочнокислой ферментации. Ее образуют грамположительные микроаэрофильные или анаэробные лактобактерии из молочного сахара.

Молочная кислота

В пищевой промышленности молочная кислота используется при производстве йогуртов, сыров, кефиров, майонезов и некоторых других кисломолочных продуктов. Она обладает низкой кислотностью, и это делает возможным ее использование в мясоперерабатывающей, маслобойной и консервной отрасли.

В организме человека молочная кислота образуется при распаде глюкозы во время повышенных нагрузок и вызывает мышечные боли.

Муравьиная кислота

В природе муравьиная кислота встречается в хвое, крапиве, выделениях муравьев, пчел и некоторых других насекомых. Впервые она была открыта и описана в 1671 году. Производство пищевой кислоты было начато лишь 200 лет спустя, когда француз Марселен Бертелло сумел синтезировать ее из окиси углерода.

Муравьиная кислота

Сегодня муравьиная кислота, известная в пищевой промышленности как добавка Е 236, используется при производстве консервированных овощей, безалкогольных напитков, соков и пюре.

Органические кислоты

Органические кислоты – это продукты распада веществ, образующиеся в процессе реакций обмена. В состав молекулы входит карбоксильная группа.

Эти соединения выступают промежуточными элементами и основными компонентами метаболического преобразования энергии, основанного на производстве аденозинтрифосфата, цикле Кребса.

Концентрация органических кислот в организме человека отражает уровень функционирования митохондрий, окисления жирных кислот и обмена углеводов. Помимо этого, соединения способствуют восстановлению кислотно-щелочного баланса крови. Дефекты метаболизма митохондрий вызывают отклонения в обменных реакциях, развитие нервно-мышечных патологий и изменение концентрации глюкозы. Более того, они могут повлечь гибель клетки, что связано с процессами старения и появлением бокового амиотрофического склероза, болезнями Паркинсона, Альцгеймера.

Классификация

Органические кислоты человеческий организм получает не только из продуктов питания в процессе переваривания пищи, но и вырабатывает самостоятельно. Такие соединения растворимы в спирте, воде, выполняют обеззараживающую функцию, улучшая самочувствие, восстанавливают здоровье.

Роль органических кислот

Главная функция карбоновых соединений – поддержание кислотно-щелочного равновесия в организме.

Органические вещества увеличивают уровень рh среды, что улучшает поглощение питательных веществ внутренними органами и выведение шлаков. Дело в том, что иммунная система, полезные бактерии в кишечнике, химические реакции, клетки лучше функционируют в щелочной среде.

Закисление организма, наоборот, – это идеальные условия для процветания болезней, в основе которых лежат следующие причины: агрессивное воздействие кислот, нарушающее работу клеток, деминерализация, ферментативная недостаточность. В результате человек испытывает недомогание, постоянную усталость, повышенную эмоциональность; появляются кислая слюна, отрыжка, спазмы, гастрит, трещины на эмали, гипотония, бессонница, неврит. В итоге ткани пытаются за счет внутренних резервов нейтрализовать лишнюю кислоту. Человек теряет мышечную массу, ощущает нехватку жизненных сил.

Органические кислоты участвуют в следующих процессах пищеварения, ощелачивая организм:

  • активируют перистальтику кишечника;
  • нормализуют ежедневный стул;
  • замедляют рост гнилостных бактерий, брожение в толстом кишечнике;
  • стимулируют выделение желудочного сока.

Функции некоторых органических соединений:

Винная кислота в винограде

  1. Муравьиная кислота. Обладает асептическим действием, замедляет процессы распада, гниения, поэтому используется в качестве антибактериального консервирующего агента при заготовке корма. Может применяться в пчеловодстве для борьбы с паразитами, как отбеливатель при дублении кожи, в протравном крашении шерсти, при консервировании фруктов, сквашивании овощей, производстве соков, безалкогольных напитков. В природе встречается в яблоках, малине, черешне, крапиве, пчелином меде. . В качестве пищевой добавки используется при изготовлении кондитерских изделий, фруктовых вод. В медицине применяется для создания лекарств от запора, в косметологии – для смягчения и обеззараживания продукции. Содержится в рябине, барбарисе, малине, незрелых яблоках, винограде.
  2. Винная кислота. Применяется в аналитической химии, медицине, пищевой промышленности для обнаружения сахаров, альдегидов, при изготовлении безалкогольных напитков, соков. Выступает антиоксидантом. В наибольшем количестве содержится в винограде.
  3. Молочная кислота. Обладает бактерицидным действием, используется в пищевой промышленности для подкисления кондитерских изделий и безалкогольных напитков. Образуется при молочнокислом брожении, накапливается в кисломолочных продуктах, квашеных, соленых, моченых плодах и овощах.
  4. Щавелевая кислота. Стимулирует работу мышц, нервов, улучшает усвоение кальция. Если в процессе обработки становится неорганической, образуемые ее соли (оксалаты) вызывают образование камней, разрушают костную ткань. В результате у человека развиваются артрит, артроз, импотенция. Помимо этого, щавелевая кислота используется в химической промышленности (для производства чернил, пластмасс), металлургии (для очистки котлов от оксидов, ржавчины, накипи), в сельском хозяйстве (в качестве инсектицида), косметологии (для отбеливания кожи). В природе содержится в бобах, орехах, ревене, щавеле, шпинате, свекле, бананах, батате, спарже.
  5. Лимонная кислота. Активирует цикл Кребса, ускоряет метаболизм, проявляет дезинтоксикационные свойства. Применяется в медицине для улучшения энергетического обмена, в косметологии – с целью регулирования рН, отшелушивания мертвых клеток эпидермиса, разглаживания морщин. Служит консервантом для кремов, пенок, гелей и прочей продукции. В пищевой промышленности (в хлебопечении, для производства шипучих напитков, ликероводочных, кондитерских изделий, желе, кетчупа, майонеза, джема, плавленого сыра, холодного тонизирующего чая, рыбных консервов) используется как регулятор кислотности для защиты от брожения, скисания, порчи, придает продукции характерный кисловатый вкус. Источники соединения: китайский лимонник, незрелые апельсины, лимоны, грейпфруты, свити. . Обладает антисептическими свойствами, поэтому ее применяют как противогрибковое, противомикробное средство при кожных заболеваниях. Соль бензойной кислоты (натриевая) – отхаркивающее средство. Помимо этого, органическое соединение используют для консервации пищевых продуктов, синтеза красителей, создания парфюмерной воды. Для продления срока годности, Е210 входит в состав жевательной резинки, варенья, джема, повидла, конфет, пива, ликера, мороженого, фруктовых пюре, маргарина, молочной продукции. Природные источники: клюква, брусника, черника, йогурт, простокваша, мед, гвоздичное масло.
  6. Сорбиновая кислота. Является природным консервантом, обладает антимикробным действием, поэтому используется в пищевой промышленности для обеззараживания продуктов. Кроме того, она предотвращает потемнение сгущеного молока, плесневение безалкогольных напитков, хлебопекарных, кондитерских изделий, плодовоягодных соков, полукопченых колбас, зернистой икры. Полезные свойства сорбиновая кислота проявляет исключительно в кислой среде (при рН ниже 6,5). Наибольшее количество органического соединения обнаружено в плодах рябины. Уксусная кислота. Участвует в обмене веществ, используется для приготовления маринада, консервации. Содержится в соленых/квашеных овощах, пиве, вине, соках.
  7. Урсоловая, олеиновая кислоты расширяют венозные сосуды сердца, препятствуют атрофии скелетных мышц, снижают количество глюкозы в крови. Тартроновая замедляет превращение углеводов в триглицериды, предупреждая атеросклероз и ожирение, уроновая выводит из организма радионуклиды, соли тяжелых металлов, а галловая оказывает противовирусный, противогрибковый эффект.

Органические кислоты – вкусовые компоненты, которые в свободном состоянии или в виде солей входят в состав пищевых продуктов, определяя их вкус. Данные вещества увеличивают срок годности продуктов, улучшают усвояемость и переваривание пищи. Энергетическая ценность органических кислот – три килокалории энергии на грамм. Карбоновые и сульфоновые соединения могут образовываться во время производства продуктов переработки или быть природной частью сырья. Для улучшения вкуса, запаха органические кислоты добавляют в блюда в процессе приготовления (в выпечку, джемы). Помимо этого, они снижают pH среды, тормозят процессы гниения в ЖКТ, активируют перистальтику кишечника, стимулируют сокоотделение в желудке, оказывают противовоспалительное, антимикробное действия.

Суточная норма, источники

Для сохранения кислотно-щелочного баланса в пределах нормы (рН 7,36-7,42) важно ежедневно употреблять продукты, содержащие органические кислоты.

Для большинства овощей (огурцы, болгарский перец, капуста, лук репчатый) количество соединения на 100 грамм съедобной части составляет 0,1-0,3 грамма. Повышенное содержание полезных кислот в ревене (1 грамм), грунтовых томатах (0,8 грамма), щавеле (0,7 грамма), фруктовых соках, квасе, творожной сыворотке, кумысе, кислых сортах вин (до 0,6 грамм). Лидерами по уровню органических веществ выступают ягоды и фрукты:

  • лимон – 5,7 грамма на 100 грамм продукта;
  • клюква – 3,1 грамма;
  • красная смородина – 2,5 грамма;
  • черная смородина – 2,3 грамма;
  • рябина садовая – 2,2 грамма;
  • вишня, гранат, мандарины, грейпфрут, земляника, рябина черноплодная – до 1,9 грамма;
  • ананас, персики, виноград, айва, алыча – до 1,0 грамма.

До 0,5 грамм органических кислот содержат молоко, кисломолочные продукты. Их количество зависит от свежести и вида изделия. При длительном хранении происходит закисление такой продукции, в результате она становится непригодной к употреблению в диетическом питании.

Учитывая, что каждый вид органической кислоты обладает особым действием, суточная надобность организма во многих из них варьирует в пределах от 0,3 до 70 грамм. При хронической усталости, пониженной секреции желудочного сока, авитаминозах потребность возрастает. При заболеваниях печени, почек, повышенной кислотности желудочного сока, наоборот, снижается. Показания к дополнительному приему природных органических кислот: низкая выносливость организма, хроническое недомогание, снижение тонуса скелетной мускулатуры, головные боли, фибромиалгия, спазмы в мышцах.

Вывод

Органические кислоты – группа соединений, которая ощелачивает организм, участвует в энергетическом обмене и содержится в растительных продуктах (корнеплодах, зелени, ягодах, фруктах, овощах). Недостаток данных веществ приводит к серьезным заболеваниям. Повышается кислотность, снижается усвоение жизненно необходимых минералов (кальция, натрия, калия, магния). Возникают болезненные ощущения в мышцах, суставах; развиваются остеопороз, болезни мочевого пузыря, сердечно-сосудистой системы, падает иммунитет, нарушается обмен веществ.

При повышенной кислотности (ацидозе) в мышечной ткани накапливается молочная кислота, возрастает риск наступления сахарного диабета, образования злокачественной опухоли. Избыток фруктовых соединений приводит к появлению проблем с суставами, пищеварением, нарушает работу почек.

Органические кислоты нормализуют кислотно-щелочное равновесие организма, сохраняют здоровье и красоту человека, оказывая благотворное влияние на кожу, волосы, ногти, внутренние органы. Поэтому в природном виде они должны ежедневно присутствовать в вашем рационе.

Специальность: терапевт, невролог .

Общий стаж: 5 лет .

Образование: Орловский государственный университет имени И.С. Тургенева .

Читайте также: