Сообщение на тему медь по химии

Обновлено: 14.05.2024

Медь – это металл, который в отличие от многих других металлов, кроме золота, осмия и цезия, имеет не серую или серебристую окраску, а золотистый цвет с розовым оттенком. При окислении цвет меди становится желто-красным. При долгом воздействии окружающей среды на поверхности медного изделия появляется патина (карбонат меди) – тонкая пленка зеленовато-голубого цвета. В природе медь встречается гораздо чаще, чем такие металлы как железо, серебро и золото. Ее можно обнаружить как в самородном виде, так и в соединениях.

Еще за два тысячелетия до нашей эры на территории России появились медные рудники. Благодаря своей доступности и малой температурой плавления, а также своей пластичности, медь и ее сплавы издавна используется человеком во многих сферах деятельности. Например, при соединении меди с оловом получается сплав, называемый бронзой. В бронзовом веке из этого сплава делали оружие, украшения и посуду, так как бронза отличалась высокой прочностью и хорошей ковкостью.

Промышленная выплавка меди была освоена в восьмом веке, но только в пятнадцатом веке она достигла совершенства. Из бронзы стали отливать орудия, колокола, красивые статуи. В восемнадцатом-девятнадцатом веках, когда было открыто электричество, медь, для которой характерно низкое удельное сопротивление, стали использовать в электротехнике. Из нее стали изготавливать провода, кабели, медные трубки для систем охлаждения и другие проводники. А такое качество меди, как высокая теплопроводность, нашло применение при производстве систем кондиционирования и отопления, при изготовлении радиаторов охлаждения, тепловых трубок и компьютерных кулеров. Высокая прочность меди получила применение в транспортировке жидкостей и газов.

Благодаря своей легкоплавкости медь давно имеет огромное значение, как в чистом виде, так и в различных соединениях. Например, в ювелирном искусстве для увеличения прочности ювелирных украшений, медь добавляют в золото. А сплав меди с цинком, оловом и алюминием используется в автомобилестроении, судостроении и даже ракетостроении.

Бактерицидные свойства меди сделали ее привлекательной для изготовления всех предметов, к которым очень часто прикасаются руки человека – дверных и оконных ручек, перил, столешниц, поручней кроватей. Во многих странах из меди делают мелкую разменную монету. Высокая коррозионная стойкость меди позволяет изготавливать из нее прочные капсулы для захоронения радиоактивных и токсичных отходов.

Вариант №2

Медь – это минерал из класса самородных элементов с золотисто - розовым окрасом. При окислении цвет металла становится желто-красным. При долгом воздействии с окружающей среды на поверхности медного изделия образуется патина (карбонат меди) – тонкое пленочное покрытие зеленовато-голубого оттенка.

Медь можно встретить намного чаще, чем иные металлы, например: железо, серебро или золото. Так же медь входит в семёрку металлов, узнаваемых человеку еще со старых времён. Из-за собственной доступности и низкой температуре при плавлении, и легкой пластичности, медь с давних времен применяется человеком почти во всех видах деятельности. К примеру, при соединении меди с оловом получается сплав, который называется - бронзой.

В период бронзового столетия из этого метала, выплавляли орудия, ювелирные украшения и столовые приборы. Бронза отличается высочайшей прочностью и неплохой ковкостью. Промышленная выплавка меди была освоена еще в 8 столетие, но только в 15 столетие она достигла универсальности и совершенства. С помощью бронзы стали выплавлять колокола, благовидные статуи. Из-за невысокого удельного сопротивления, медь очень часто применяют в электронике для производства электрических кабелей и проводов.

Медный кабель, часто используют в обмотках для электроприборов и электросиловых трансформаторов, еще одним полезным свойством меди является высокая теплопроводимость. Это позволяет использовать медь в разных теплоотводных устройствах, теплообменниках, к которым относятся такие устройства как: кондиционеры, секционные радиаторы для отопления.

Вследствие легкоплавкости этот металл издавна имеет огромное значение, как в чистом виде, так и в разных соединениях. К примеру, в ювелирном искусстве для прочности украшений, этот металл соединяют с золотом. А соединение меди с цинком, алюминием очень часто используют в автомобилестроении, кораблестроении и даже в ракетостроении.

Антибактериальные свойства меди сделали ее более заманчивой для производства некоторых предметов, которыми зачастую пользуется человек, например: дверные и оконные ручки, перила, столешницы. Почти во всех государствах мира из меди высекают обменные монеты. Высочайшая коррозионная устойчивость меди дает возможность производить из нее крепкие капсулы с целью захоронения радиоактивных и ядовитых отходов.

Медь

Махачкала - столица Дагестана, город в котором проживают очень отзывчивые и гостеприимные люди. Численность населения на сегодняшний день составляет более 600 000 тысяч человек. Большую часть населения занимают молодые семьи.

Фазиль Абдулович Искандер родился 6 марта 1926 года в Абхазии. Это известный писатель, сценарист и прозаик. Творчество Фазиля Искандера проникает в глубину души каждого, кто с ним сталкивался. Хороший философ,

Смерчем или торнадо называют вихрь, который обязательно образуется в грозовом облаке, а затем спускается вниз до поверхности земли или воды. Когда он прекращает свое существование, то его воронка уменьшается и отрывается от земли, возвращаясь

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

Государственное бюджетное образовательное учреждение

средняя общеобразовательная школа №225 Адмиралтейского района Санкт-Петербурга

Школа БИОТОП Лаборатории непрерывного математического образования

Медь: ее свойства, значение и применение

Краткая характеристика меди стр. 4

Производство меди стр. 4

Применение меди стр. 4

Биологмческое значение меди стр. 5

Заключение стр. 6

Библиография стр. 7

Медь – один из главных и широко распространенных химических элементов. Это металл, который обладает ценными свойствами и благодаря этому активно используется в разных областях. Именно этот элемент одним из первых обнаружили и начали применять для своих целей первобытные люди, так как он встречается в виде самородков, которые можно добыть с помощью примитивных орудий, либо относительно легко выплавить из руды.

Медь также является важной составляющей многих сплавов – бронза, латунь (медь с цинком), мельхиор (медь с никелем). Первой бронзой был сплав меди с мышьяком, но при переплавке ядовитый мышьяк испарялся, что сказывалось на здоровье кузнецов. Даже бог-кузнец Гефест в мифах изображался хромым. В дальнейшем мышьяк заменили на олово.

В древности медь и ее сплавы использовались при производстве оружия, а также некоторых предметов быта. По мере развития человечества из нее стали отливать более сложные предметы – артиллерийские орудия, колокола, статуи. В наше время спектр применения этого металла еще более широк.

Медь также содержится и в живых организмах и является необходимым веществом для протекания многих жизненно-важных процессов и реакций.

В этом реферате я хотела бы рассмотреть подробно вопросы производства и применения меди в современном мире и ее биологического значения.

Краткая характеристика меди

Медь – это элемент 11-й группы периодической системы Менделеева с атомным номером 29. Обозначают символом Cu (Cuprum). Это пластичный металл золотисто-розового цвета, который на воздухе покрывается оксидной пленкой (патиной). Пленка на просвет имеет зеленовато-голубой цвет. Патина бывает естественной, образующейся под воздействием окружающей среды, и искусственной, создаваемой с помощью кислот или других окислителей, с целью придания предметам старинного вида.

Медь образует кубическую решетку. Модель представляет из себя куб из восьми атомов в углах и шести атомов, расположенных в центре шести граней. Медь обладает высокой тепло- и электропроводностью (второе место по электропроводности среди металлов после серебра). Температура плавления меди – 1084 градуса по Цельсию, а кипит она при температуре 2600 градусов по Цельсию.

Производство меди

В наши дни медь получают из медных руд и минералов путем электролиза, а также при помощи пирометаллургии и гидрометаллургии. Электролиз проходит в ваннах, где анод – это медь огневого рафинирования, а катод – тонкие листы чистой меди. Электролит – раствор серной кислоты с медным купоросом. В ходе электролиза происходит повышение концентрации серной кислоты, под воздействием постоянного тока анод растворяется, медь переходит в раствор и осаждается на катодах.

Пирометаллургичесикй способ представляет собой несколько этапов – обогащение, обжиг, плавку и рафинирование. Гидрометталургический способ – это выщелачивание меди слабым раствором серной кислоты и ее выделение из раствора.

Применение меди

Медь является хорошим проводником, поэтому она используется для изготовления проводов и кабелей. Здесь нужна чистая медь, так как примеси резко снижают электрическую проводимость. Благодаря высокой теплопроводности медь используется в разных теплообменниках и теплоотводных устройствах: радиаторах, компьютерных кулерах и пр. Благодаря прочности и пригодности к механической обработке медь и ее сплавы также применяются в производстве труб.

Наряду с чистой медью, широко используются и ее сплавы. Инструменты и детали из этих материалов не создают искр, поэтому применяются на огнеопасных и взрывоопасных производствах.

Медь широко используется в архитектуре (медные крыши, кровли и фасады служат до 100-150 лет) и при производстве памятников; для производства медных духовых инструментов (трубы, валторны, саксофоны, тромбоны и корнеты); для производства бытовой посуды (медные тазы и сковороды), а также столовых приборов – мельхиор, сплав меди и никеля, иногда называют немецким серебром.

Биологическое значение меди

Медь является необходимым элементом для всех высших растений и животных. В организме взрослого человека содержание меди составляет примерно 100-200 мг, при этом около 50% находится в мышцах, а еще 10% - в печени. 1

Медь входит в состав многих ферментов, участвует в метаболизме железа, повышает усвоение белков и углеводов, участвует в образовании гемоглобина и созревании эритроцитов, то есть необходима для снабжения организма кислородом. Медь также поддерживает эластичность стенок кровеносных сосудов и кожи, обладает противовспалительным действием.

Белок гемоцианин, переносящий кислород у членистоногих и моллюсков, также содержит медь. Кровь у моллюсков голубая и благодаря меди, и из-за строения самого белка.

Недавно ученые установили, что в тех водоемах, где имеется медь, карпы вырастают особенно крупными. Там, где ее нет, развивается вредоносный для этих рыб грибок. 2

1 Спектор А.А. Увлекательная наука химия, - Москва, АСТ, 2017 - стр. 73

2 Спектор А.А. Увлекательная наука химия, - Москва, АСТ, 2017 - стр. 73

Несмотря на то, что медь была одним из самых первых открытых человеком металлов, масштабы и способы ее потребления только возрастают. Благодаря развитию науки и прогрессу, ученые открывают все новые свойства металла и, соответственно, новые области его применения.

Мне кажется, что применение этого металла в производственных сферах человечеством изучено подробно, тогда как ее роль в физиологических и биологических процессах, происходящих в организмах, еще только предстоит исследовать в полной мере.

Медь

Медь – это пластичный золотисто-розовый металл с характерным металлическим блеском. В периодической системе Д. И. Менделеева этот химический элемент обозначается, как Сu (Cuprum) и находится под порядковым номером 29 в I группе (побочной подгруппе), в 4 периоде.

По данным историков, знакомству общества с медью около девяти тысячелетий. Самые древние медные изделия найдены во время археологических раскопок на местности современной Турции. Археологи обнаружили маленькие медные бусинки и пластинки для украшения одежды. Находки датируются рубежом VIII-VII тыс. до нашей эры. Из меди в древности изготавливали украшения, дорогую посуду и различные инструменты с тонким лезвием.

Великим достижением древних металлургов можно назвать получение сплава с медной основой – бронзы.

Основные свойства меди

1. Физические свойства.

На воздухе медь приобретает яркий желтовато-красный оттенок за счёт образования оксидной плёнки. Тонкие же пластинки при просвечивании зеленовато-голубого цвета. В чистом виде медь достаточно мягкая, тягучая и легко прокатывается и вытягивается. Примеси способны повысить её твёрдость.

Высокую электропроводность меди можно назвать главным свойством, определяющим её преимущественное использование. Также медь обладает очень высокой теплопроводностью. Такие примеси как железо, фосфор, олово, сурьма и мышьяк влияют на базовые свойства и уменьшают электропроводность и теплопроводность. По данным показателям медь уступает лишь серебру.

Медь обладает высокими значениями плотности, температуры плавления и температуры кипения. Важным свойством также является хорошая стойкость по отношению к коррозии. К примеру, при высокой влажности железо окисляется значительно быстрее.

Медь хорошо поддаётся обработке: прокатывается в медный лист и медный пруток, протягивается в медную проволоку с толщиной, доведённой до тысячных долей миллиметра. Этот металл является диамагнетиком, то есть намагничивается против направления внешнего магнитного поля.

Свойства меди

2. Химические свойства.

Медь является сравнительно малоактивным металлом. В нормальных условиях на сухом воздухе её окисления не происходит. Она легко реагирует с галогенами, селеном и серой. Кислоты без окислительных свойств не оказывают воздействия на медь. С водородом, углеродом и азотом химических реакций нет. На влажном воздухе происходит окисление с образованием карбоната меди (II) – верхнего слоя платины.
Медь обладает амфотерностью, то есть в земной коре образует катионы и анионы. В зависимости от условий, соединения меди проявляют кислотные или основные свойства.

Химические свойства

Способы получения меди

В природе медь существует в соединениях и в виде самородков. Соединения представлены оксидами, гидрокарбонатами, сернистыми и углекислыми комплексами, а также сульфидными рудами. Самые распространённые руды - это медный колчедан и медный блеск. Содержание меди в них составляет 1-2%. 90% первичной меди добывают пирометаллургическим способом и 10% гидрометаллургическим.

1. Пирометаллургический способ включает в себя такие процессы: обогащение и обжиг, плавка на штейн, продувка в конвертере, электролитическое рафинирование.
Обогащают медные руды методом флотации и окислительного обжига. Сущность метода флотации заключается в следующем: частицы меди, взвешенные в водной среде, прилипают к поверхности пузырьков воздуха и поднимаются на поверхность. Метод позволяет получить медный порошкообразный концентрат, который содержит 10-35% меди.

Следующий этап пирометаллургического способа получения меди – это плавка на штейн. Если в качестве сырья используется кусковая медная руда с большим количеством серы, то плавку проводят в шахтных печах. А для порошкообразного флотационного концентрата применяют отражательные печи. Плавка происходит при температуре 1450 °С.

В горизонтальных конвертерах с боковым дутьём медный штейн продувается сжатым воздухом для того, чтобы произошли процессы окисления сульфидов и феррума. Далее образовавшиеся окислы переводят в шлак, а серу в оксид. В конвертере образуется черновая медь, которая содержит 98,4-99,4% меди, железо, серу, а также незначительное количество никеля, олова, серебра и золота.

Черновая медь подлежит огневому, а далее электролитическому рафинированию. Примеси удаляют с газами и переводят в шлак. В результате огневого рафинирования образуется медь с чистотой до 99,5%. А после электролитического рафинирования чистота составляет 99,95%.

2. Гидрометаллургический способ заключается в выщелачивании меди слабым раствором серной кислоты, а затем выделении металлической меди непосредственно из раствора. Такой способ применяется для переработки бедных руд и не допускает попутного извлечения драгоценных металлов вместе с медью.

Получение меди

Применение меди

Благодаря ценным качествам медь и медные сплавы используются в электротехнической и электромашиностроительной отрасли, в радиоэлектронике и приборостроении. Существуют сплавы меди с такими металлами, как цинк, олово, алюминий, никель, титан, серебро, золото. Реже применяются сплавы с неметаллами: фосфором, серой, кислородом. Выделяют две группы медных сплавов: латуни (сплавы с цинком) и бронзы (сплавы с другими элементами).

Медь обладает высокой экологичностью, что допускает её использование в строительстве жилых домов. К примеру, медная кровля за счёт антикоррозионных свойств, может прослужить больше ста лет без специального ухода и покраски.

Медь в сплавах с золотом используется в ювелирном деле. Такой сплав увеличивает прочность изделия, повышает стойкость к деформированию и истиранию.

Для соединений меди характерна высокая биологическая активность. В растениях медь принимает участие в синтезе хлорофилла. Поэтому её можно увидеть в составе минеральных удобрений. Недостаток меди в организме человека может вызвать ухудшение состава крови. Она есть в составе многих продуктов питания. К примеру, этот металл содержится в молоке. Однако важно помнить, что избыток соединений меди может вызвать отравление. Именно поэтому нельзя готовить пищу в медной посуде. Во время кипячения в пищу может попасть большое количество меди. Если же посуда внутри покрыта слоем олова, то опасности отравления нет.

В медицине медь используют, как антисептическое и вяжущее средство. Она является компонентом глазных капель от конъюнктивита и растворов от ожогов.

Медь — один из первых металлов, хорошо освоенных человеком из-за доступности для получения из руды и малой температуры плавления. Этот металл встречается в природе в самородном виде чаще, чем золото, серебро и железо. Одни из самых древних изделий из меди, а также шлак — свидетельство выплавки её из руд — найдены на территории Турции, при раскопках поселения Чатал-Гююк. Медный век, когда значительное распространение получили медные предметы, следует во всемирной истории за каменным веком. Экспериментальные исследования С. А. Семёнова с сотрудниками показали, что, несмотря на мягкость меди, медные орудия труда по сравнению с каменными дают значительный выигрыш в скорости рубки, строгания, сверления и распилки древесины, а на обработку кости затрачивается примерно такое же время, как для каменных орудий

В древности медь применялась также в виде сплава с оловом — бронзы — для изготовления оружия и т. п., бронзовый век пришёл на смену медному. Сплав меди с оловом (бронзу) получили впервые за 3000 лет до н. э. на Ближнем Востоке. Бронза привлекала людей прочностью и хорошей ковкостью, что делало её пригодной для изготовления орудий труда и охоты, посуды, украшений. Все эти предметы находят в археологических раскопах. На смену бронзовому веку относительно орудий труда пришёл железный век.

Первоначально медь добывали из малахитовой руды, а не из сульфидной, так как она не требует предварительного обжига. Для этого смесь руды и угля помещали в глиняный сосуд, сосуд ставили в небольшую яму, а смесь поджигали. Выделяющийся угарный газ восстанавливал малахит до свободной меди:

На Кипре уже в 3 тысячелетии до нашей эры существовали медные рудники и производилась выплавка меди.

На территории России и сопредельных стран медные рудники появились за два тысячелетия до н. э. Остатки их находят на Урале (наиболее известное месторождение — Каргалы), в Закавказье, в Сибири, на Алтае, на территории Украины.

В XIII—XIV вв. освоили промышленную выплавку меди. В Москве в XV в. был основан Пушечный двор, где отливали из бронзы орудия разных калибров. Много меди шло на изготовление колоколов. Из бронзы были отлиты такие произведения литейного искусства, как Царь-пушка (1586 г.), Царь-колокол (1735 г.), Медный всадник (1782 г.), в Японии была отлита статуя Большого Будды (храм Тодай-дзи) (752 г.).

С открытием электричества в XVIII—XIX вв. большие объёмы меди стали идти на производство проводов и других связанных с ним изделий. И хотя в XX в. провода часто стали делать из алюминия, медь не потеряла значения в электротехнике.

Латинское название меди Cuprum (древн. Aes cuprium, Aes cyprium) произошло от названия острова Кипр, где было богатое месторождение.

У Страбона медь именуется халкосом, от названия города Халкиды на Эвбее. От этого слова произошли многие древнегреческие названия медных и бронзовых предметов, кузнечного ремесла, кузнечных изделий и литья. Второе латинское название меди Aes (санскр. ayas, готское aiz, герм. erz, англ. ore) означает руда или рудник.

Среднее содержание меди в земной коре (кларк) — (4,7-5,5)·10−3% (по массе). В морской и речной воде содержание меди гораздо меньше: 3·10−7% и 10−7% (по массе) соответственно.

Медь встречается в природе как в соединениях, так и в самородном виде. Промышленное значение имеют халькопирит CuFeS2, также известный как медный колчедан, халькозин Cu2S и борнит Cu5FeS4. Вместе с ними встречаются и другие минералы меди: ковеллин CuS, куприт Cu2O, азурит Cu3(CO3)2(OH)2, малахит Cu2CO3(OH)2. Иногда медь встречается в самородном виде, масса отдельных скоплений может достигать 400 тонн. Сульфиды меди образуются в основном в среднетемпературных гидротермальных жилах. Также нередко встречаются месторождения меди в осадочных породах — медистые песчаники и сланцы. Наиболее известные из месторождений такого типа — Удокан в Забайкальском крае, Жезказган в Казахстане, меденосный пояс Центральной Африки и Мансфельд в Германии. Другие самые богатые месторождения меди находятся в Чили (Эскондида и Кольяуси) и США (Моренси).

Большая часть медной руды добывается открытым способом. Содержание меди в руде составляет от 0,3 до 1,0 %.

Медь — золотисто-розовый пластичный металл, на воздухе быстро покрывается оксидной плёнкой, которая придаёт ей характерный интенсивный желтовато-красный оттенок. Тонкие плёнки меди на просвет имеют зеленовато-голубой цвет.

Наряду с осмием, цезием и золотом, медь — один из четырёх металлов, имеющих явную цветовую окраску, отличную от серой или серебристой у прочих металлов. Этот цветовой оттенок объясняется наличием электронных переходов между заполненной третьей и полупустой четвёртой атомными орбиталями: энергетическая разница между ними соответствует длине волны оранжевого света. Тот же механизм отвечает за характерный цвет золота.

Медь образует кубическую гранецентрированную решётку, пространственная группа F m3m, a = 0,36150 нм, Z = 4.

Медь обладает высокой тепло- и электропроводностью (занимает второе место по электропроводности среди металлов после серебра). Удельная электропроводность при 20 °C: 55,5-58 МСм/м. Медь имеет относительно большой температурный коэффициент сопротивления: 0,4 %/°С и в широком диапазоне температур слабо зависит от температуры. Медь является диамагнетиком.

Существует ряд сплавов меди: латуни — с цинком, бронзы — с оловом и другими элементами, мельхиор — с никелем и другие.

Атомная плотность меди (N0) = 8,52 * 10 28 (атом/м³).

В электротехнике
Из-за низкого удельного сопротивления (уступает лишь серебру, удельное сопротивление при 20 °C: 0,01724-0,0180 мкОм·м/), медь широко применяется в электротехнике для изготовления силовых и других кабелей, проводов или других проводников, например, при печатном монтаже. Медные провода, в свою очередь, также используются в обмотках электроприводов (быт: электродвигателях) и силовых трансформаторов. Для этих целей металл должен быть очень чистый: примеси резко снижают электрическую проводимость. Например, присутствие в меди 0,02 % алюминия снижает её электрическую проводимость почти на 10 %.

Теплообмен
Система охлаждения из меди на тепловых трубках в ноутбуке
Другое полезное качество меди — высокая теплопроводность. Это позволяет применять её в различных теплоотводных устройствах, теплообменниках, к числу которых относятся и широко известные радиаторы охлаждения, кондиционирования и отопления, компьютерных кулерах, тепловых трубках.

Для производства труб
В связи с высокой механической прочностью и пригодностью для механической обработки медные бесшовные трубы круглого сечения получили широкое применение для транспортировки жидкостей и газов: во внутренних системах водоснабжения, отопления, газоснабжения, системах кондиционирования и холодильных агрегатах. В ряде стран трубы из меди являются основным материалом, применяемым для этих целей: во Франции, Великобритании и Австралии для газоснабжения зданий, в Великобритании, США, Швеции и Гонконге для водоснабжения, в Великобритании и Швеции для отопления.

Сплавы на основе меди

Сплавы, в которых медь значима

Повреждённая пожаром дюралевая деталь дирижабля Гинденбург (LZ 129)
Дюраль (дюралюминий) определяют как сплав алюминия и меди (меди в дюрали 4,4 %).

Ювелирные сплавы
В ювелирном деле часто используются сплавы меди с золотом для увеличения прочности изделий к деформациям и истиранию, так как чистое золото — очень мягкий металл и нестойко к механическим воздействиям.

Соединения меди
Оксиды меди используются для получения оксида иттрия-бария-меди (купрата) YBa2Cu3O7-δ, который является основой для получения высокотемпературных сверхпроводников. Медь применяется для производства медно-окисных гальванических элементов и батарей.

Другие сферы применения
Медь — самый широко употребляемый катализатор полимеризации ацетилена. Из-за того ,что медь является катализатором полимеризации ацетилена (образует соединения меди с ацетиленом), трубопроводы из меди для транспортировки ацетилена можно применять только при содержании меди в сплаве материала труб не более 64 %.

Широко применяется медь в архитектуре. Кровли и фасады из тонкой листовой меди из-за автозатухания процесса коррозии медного листа служат безаварийно по 100—150 лет. В России использование медного листа для кровель и фасадов нормируется федеральным Сводом Правил СП 31-116-2006.

Прогнозируемым новым массовым применением меди обещает стать её применение в качестве бактерицидных поверхностей в лечебных учреждениях для снижения внутрибольничного бактериопереноса: дверей, ручек, водозапорной арматуры, перил, поручней кроватей, столешниц — всех поверхностей, к которым прикасается рука человека.

Пары меди используются в качестве рабочего тела в лазерах на парах меди, на длинах волн генерации 510 и 578 нм.

Мировая добыча меди в 2000 году составляла около 15 млн т, a в 2004 году — около 14 млн тонн. Мировые запасы в 2000 году составляли, по оценке экспертов, 954 млн т, из них 687 млн т — подтверждённые запасы, на долю России приходилось 3,2 % общих и 3,1 % подтверждённых мировых запасов. Таким образом, при нынешних темпах потребления запасов меди хватит примерно на 60 лет.

Производство рафинированной меди в России в 2006 году составило 881,2 тыс. тонн, потребление — 591,4 тыс. тонн. Основными производителями меди в России являлись:

Компания тыс. тонн %
Норильский никель 425 45 %
Уралэлектромедь 351 37 %
Русская медная компания 166 18 %

Лидерами производства были:

Чили (5,560 млн т в 2007 г. и 5,600 млн т в 2008 г.),
США (1,170/1,310),
Перу (1,190/1,220),
КНР (0,946/1,000),
Австралия (0,870/0,850),
Россия (0,740/0,750),
Индонезия (0,797/0,650),
Канада (0,589/0,590),
Замбия (0,520/0,560),
Казахстан (0,407/0,460),
Польша (0,452/0,430),
Мексика (0,347/0,270).
По объёму мирового производства и потребления медь занимает третье место после железа и алюминия.

Разведанные мировые запасы меди на конец 2008 года составляют 1 млрд т, из них подтверждённые — 550 млн т. Причём, оценочно, считается, что глобальные мировые запасы на суше составляют 3 млрд т, а глубоководные ресурсы оцениваются в 700 млн т.

Сейчас известно более 170 минералов, содержащих медь, но из них только 14—15 имеют промышленное значение. Это — халькопирит (он же медный колчедан), малахит, встречается и самородная медь. В медных рудах часто в качестве примесей встречаются молибден, никель, свинец, кобальт, реже — золото, серебро. Обычно медные руды обогащаются на фабриках, прежде чем поступают на медеплавильные комбинаты. Богаты медью Казахстан, США, Чили, Канада, африканские страны — Заир, Замбия, Южно-Африканская Республика. Эскондида — самый большой в мире карьер, в котором добывают медную руду (расположен в Чили). В зависимости от глубины залегания, руда добывается открытым или закрытым методом.

90 % первичной меди получают пирометаллургическим способом, 10 % — гидрометаллургическим. Гидрометаллургический способ — это получение меди путём её растворения в слабом растворе серной кислоты и последующего выделения металлической (черновой) меди из раствора. Пирометаллургический способ состоит из нескольких этапов: обогащения, обжига, плавки на штейн, продувки в конвертере, рафинирования.

Для обогащения медных руд используется метод флотации (основан на использовании различной смачиваемости медьсодержащих частиц и пустой породы), который позволяет получать медный концентрат, содержащий от 10 до 35 % меди.

Медные руды и концентраты с большим содержанием серы подвергаются окислительному обжигу. В процессе нагрева концентрата или руды до 700—800 °C в присутствии кислорода воздуха, сульфиды окисляются и содержание серы снижается почти вдвое от первоначального. Обжигают только бедные (с содержанием меди от 8 до 25 %) концентраты, а богатые (от 25 до 35 % меди) плавят без обжига.

После обжига руда и медный концентрат подвергаются плавке на штейн, представляющий собой сплав, содержащий сульфиды меди и железа. Штейн содержит от 30 до 50 % меди, 20—40 % железа, 22—25 % серы, кроме того, штейн содержит примеси никеля, цинка, свинца, золота, серебра. Чаще всего плавка производится в пламенных отражательных печах. Температура в зоне плавки — 1450 °C.

С целью окисления сульфидов и железа полученный медный штейн подвергают продувке сжатым воздухом в горизонтальных конвертерах с боковым дутьём. Образующиеся окислы переводят в шлак. Температура в конвертере составляет 1200—1300 °C. Интересно, что тепло в конвертере выделяется за счёт протекания химических реакций, без подачи топлива. Таким образом, в конвертере получают черновую медь, содержащую 98,4—99,4 % меди, 0,01—0,04 % железа, 0,02—0,1 % серы и небольшое количество никеля, олова, сурьмы, серебра, золота. Эту медь сливают в ковш и разливают в стальные изложницы или на разливочной машине.

Далее, для удаления вредных примесей, черновую медь рафинируют (проводят огневое, а затем электролитическое рафинирование). Сущность огневого рафинирования черновой меди заключается в окислении примесей, удалении их с газами и переводе в шлак. После огневого рафинирования получают медь чистотой 99,0—99,7 %. Её разливают в изложницы и получают чушки для дальнейшей выплавки сплавов (бронзы и латуни) или слитки для электролитического рафинирования.

Электролитическое рафинирование проводят для получения чистой меди (99,95 %). Электролиз проводят в ваннах, где анод — из меди огневого рафинирования, а катод — из тонких листов чистой меди. Электролитом служит раствор раствор серной кислоты с медным купоросом. В ходе электролиза происходит повышение концентрации серной кислоты. При пропускании постоянного тока анод растворяется, медь переходит в раствор, и, очищенная от примесей, осаждается на катодах. Примеси оседают на дно ванны в виде шлама, который идёт на переработку с целью извлечения ценных металлов. При получении 1000 тонн электролитической меди можно получить до 3 кг серебра и 200 г золота. Катоды выгружают через 5—12 дней, когда их масса достигнет от 60 до 90 кг. Их тщательно промывают, а затем переплавляют в электропечах.

Читайте также: