Сообщение на тему гипербола в математике

Обновлено: 30.06.2024

Презентация и урок на тему:
"Гипербола, определение, свойство функции"

Гипербола, определение

Ребята, сегодня мы с вами изучим новую функцию и построим ее график.
Рассмотрим функцию: $y=\frac$, $k≠0$.
Коэффициент $k$ – может принимать любые действительные значения, кроме нуля. Для простоты начнем разбор функции со случая, когда $k=1$.
Построим график функции: $y=\frac$.
Как всегда начнем с построения таблицы. Правда в этот раз придется разделить нашу таблицу на две части. Рассмотрим случай, когда $x>0$.
Нам нужно отметить шесть точек с координатами $(x;y)$, которые приведены в таблице и соединить их линией.
Теперь посмотрим, что у нас получается при отрицательных х. Поступим тем же образом, отметим точки и соединим их линией. Два кусочка графика мы построили, давайте объединим их.

Свойства гиперболы

Согласитесь, график выглядит довольно-таки красиво, и он симметричен относительно начала координат. Если провести любую прямую, проходящую через начало координат, из первой в третью четверть, то она пересечет наш график в двух точках, которые будут одинаково отдалены от начала координат.
Гипербола состоит из двух, симметричных относительно начала координат, частей. Эти части называются, ветвями гиперболы.
Ветви гиперболы в одном направлении (влево и вправо) все больше и больше стремятся к оси абсцисс, но никогда не пересекут ее. В другом направлении (вверх и вниз) стремятся к оси ординат, но также никогда не пересекут ее (так как на ноль делить нельзя). В таких случаях, соответствующие линии называются асимптотами. График гиперболы имеет две асимптоты: ось х и ось у.

У гиперболы есть не только центр симметрии, но и ось симметрии. Ребята, проведите прямую $y=x$ и посмотрите, как разделился наш график. Можно заметить, что если часть, которая расположена выше прямой $y=x$, наложить на часть, которая располагается ниже, то они совпадут, это и означает симметричность относительно прямой.

Мы построили график функции $y=\frac$, но что будет в общем случае $y=\frac$, $k>0$.
Графики практически не будут отличаться. Будет получаться гипербола с теми же ветвями, только чем больше $k$, тем дальше будут удалены ветви от начала координат, а чем меньше $k$, тем ближе подходить к началу координат.

Например, график функции $y=\frac$ выглядит следующим образом. График стал "шире", отдалился от начала координат.
А как быть в случае отрицательных $k$? График функции $y=-f(x)$ симметричен графику $y=f(x)$ относительно оси абсцисс, нужно перевернуть его "вверх ногами".
Давайте воспользуемся этим свойством и построим график функции $y=-\frac$.

Обобщим полученные знания.
Графиком функции $y=\frac$, $k≠0$ является гипербола, расположенная в первой и третье (второй и четвертой) координатных четвертях, при $k>0$ ($k 0$

1. Область определения: все числа, кроме $х=0$.
2. $y>0$ при $x>0$, и $y 0$ при $x 0$.
3. Функция возрастает на промежутках $(-∞;0)$ и $(0;+∞)$.
4. Функция не ограничена ни сверху, ни снизу.
5. Наибольшего и наименьшего значений нет.
6. Функция непрерывна на промежутках $(-∞;0)U(0;+∞)$ и имеет разрыв в точке $х=0$.
7. Область значений: $(-∞;0)U(0;+∞)$.

  • Что такое гипербола в математике
  • Асимптоты и фокусы гиперболы
  • Как построить график функции гиперболы
  • Эксцентриситет гиперболы
  • Равнобочная (равносторонняя) гипербола
  • Касательная и нормаль
  • Сопряженные гиперболы
  • Свойства гиперболы
  • Использование
  • Заключение

Перед вами родственные кривые, полученные при сечении конуса плоскостью. Парабола, эллипс (окружность), гипербола.

Гипербола

Что такое гипербола в математике

Это геометрическое место точек M, физическая разница расстояний от которых до выбранных (F1, F2), называемых фокусами, постоянна.

200

Фокусы гиперболы

Оговоримся, что все сказанное относится к Евклидовой плоскости, где параллельные прямые не пересекаются.

Но если из отрезка |F1F2| соорудить координатную прямую X, за начальную точку взять середину (она же будет центром гиперболы) отрезка, то получим декартову систему координат. Где кривая описывается алгебраическим уравнением II-го порядка.

Получим классическую формулу аналитической геометрии:

где a – действительная полуось, b – мнимая.

Особенности:

поскольку x и y связаны квадратной зависимостью, обе оси будут осями симметрии;

пересечения с осью абсцисс (фокусов) с координатами ±a называются вершинами гиперболы, и расстояние между ними является минимальной дистанцией между ветвями (о последних ниже);

Асимптоты и фокусы гиперболы

Асимптоты гиперболы

Умозрительно очевидно, что сечение конуса состоит из двух кривых. Называются они ветвями гиперболы. Также не подлежит сомнению то, что ветви ограничены воображаемой поверхностью. Фокусы всегда находятся внутри ветвей.


Как построить график функции гиперболы

Существует много ресурсов, где можно онлайн наблюдать, как строится функция. Но нужно все уметь самому. Итак, давайте учиться.

Построим для примера график уравнения

По формуле выше выстраиваем асимптоты.

Отмечаем вершины х = ±2 (А1, А2). Приблизительный вид уже ясен.

При х = ±3, y = ±3,5 (примерно).

205

Эксцентриситет гиперболы

Эксцентриситетом считают величину:

Или, в иной записи:

Является параметром, характеризующим отклонение конического сечения от окружности:

кривые с равным эксцентриситетом подобны;

показатель угла наклона асимптот.

Равнобочная (равносторонняя) гипербола

Таковой кривая является при условии a = b. Если покрутить систему координат, функцию можно свести к виду:

209

Эксцентриситет данной конструкции составит квадратный корень из 2.

Иначе говоря, получаем график обратной пропорциональности:

212

Коль уж речь зашла о школьном курсе, добавим сведений:

прямые x = 0, y = 0 – асимптоты;

область определения – все действительные числа, кроме 0;

область значений – все, за исключением 0;

функция нечетная, поскольку меняет знак при смене знака аргумента;

убывающая при положительных и отрицательных x.

Касательная и нормаль

В каждой точке гладкой кривой возможно построить касательную и нормаль (перпендикуляр). Гипербола – не исключение. Касательная – прямая, совпадающая с кривой только в одной точке (в пределах изгиба одного порядка).

Уравнение касательной в точке с координатами (x0y0) имеет вид:

215

216

Сопряженные гиперболы

Записанное таким образом уравнение даст сопряженную фигуру:

То есть с теми же асимптотами, но расположенную по-другому, с поворотом на 90°.

Пример на рисунке.

218

Свойства гиперболы

Их должен знать каждый школьник:

Касательная в произвольной точке H окажется биссектрисой угла F1HF2.

Кривая симметрична относительно осей и своего центра.

Отсеченный асимптотами отрезок касательной делится точкой соприкосновения пополам. Площадь же выделенного треугольника не меняется от изменения точки.

Использование

Сечение конуса

Где применяются знания о гиперболе:

для создания эллиптических и других координат;

в солнечных часах (сечение конуса света);

для анализа движения космических объектов.

Заключение

Непростая кривая с неожиданными в некоторых случаях применением. Что удивительно, задача о сечениях конуса была поставлена древнегреческими учеными во II-м веке до нашей эры. Это говорит о высочайшем уровне тогдашних инженеров.

Нет, солнечные часы понятно были, а мелких искусственных спутников не было точно. И астероиды не исследовали, но вопросы возникали. И были ответы без ссылок на многочисленных богов. Удивительные люди.


В данной публикации мы рассмотрим, что такое гипербола, приведем формулу, с помощью которой задается ее функция, а также на практических примерах разберем алгоритм построения данного вида графика.

Определение и функция гиперболы

Гипербола – это график функции обратной пропорциональности, которая в общем виде задается следующей формулой:

  • x – независимая переменная;
  • k ≠ 0;
  • при k > 0 гипербола расположена в I и III четвертях координатной плоскости;
  • при k 0)
  • y = -x (при k Алгоритм построения гиперболы

Пример 1

Дана функция y = 4 /x. Построим ее график.

Решение

Так как k > 0, следовательно, гипербола будет находиться в I и III координатных четвертях.

Чтобы построить график, сначала нужно составить таблицу соответствия значений x и y. То есть мы берем конкретное значение x, подставляем его в формулу функции и получаем y.

Гиперболой называется геометрическое место точек плоскости, модуль разности расстояний от каждой из которых до двух заданных точек и есть величина постоянная , меньшая расстояния между этими заданными точками (рис.3.40,а). Это геометрическое определение выражает фокальное свойство гиперболы .

Фокальное свойство гиперболы

Точки и называются фокусами гиперболы, расстояние между ними — фокусным расстоянием, середина — центром гиперболы, число и , соединяющие произвольную точку гиперболы с ее фокусами, называются фокальными радиусами точки . Отрезок, соединяющий две точки гиперболы, называется хордой гиперболы.

Отношение , где , называется эксцентриситетом гиперболы . Из определения следует, что .

Геометрическое определение гиперболы , выражающее ее фокальное свойство, эквивалентно ее аналитическому определению — линии, задаваемой каноническим уравнением гиперболы:

Действительно, введем прямоугольную систему координат (рис.3.40,б). Центр к точке ); прямую, перпендикулярную оси абсцисс и проходящую через центр гиперболы, примем за ось ординат (направление на оси ординат выбирается так, чтобы прямоугольная система координат оказалась правой).

Составим уравнение гиперболы, используя геометрическое определение, выражающее фокальное свойство. В выбранной системе координат определяем координаты фокусов и . Для произвольной точки , принадлежащей гиперболе, имеем:

Записывая это уравнение в координатной форме, получаем:

Выполняя преобразования, аналогичные преобразованиям, используемым при выводе уравнения эллипса (т.е. избавляясь от иррациональности), приходим к каноническому уравнению гиперболы:

где , т.е. выбранная система координат является канонической.

Проводя рассуждения в обратном порядке, можно показать, что все точки, координаты которых удовлетворяют уравнению (3.50), и только они, принадлежат геометрическому месту точек, называемому гиперболой. Таким образом, аналитическое определение гиперболы эквивалентно его геометрическому определению.

Директориальное свойство гиперболы

Директрисами гиперболы называются две прямые, проходящие параллельно оси ординат канонической системы координат на одинаковом расстоянии от нее (рис.3.41,а). При можно определить, как геометрическое место точек плоскости, для каждой из которых отношение расстояния до заданной точки директориальное свойство гиперболы ). Здесь

В самом деле, например, для фокуса и директрисы (рис.3.41,а) условие можно записать в координатной форме:

Избавляясь от иррациональности и заменяя , приходим к каноническому уравнению гиперболы (3.50). Аналогичные рассуждения можно провести для фокуса и директрисы :

Уравнение гиперболы в полярной системе координат

Уравнение правой ветви гиперболы в полярной системе координат (рис.3.41,б) имеет вид

В самом деле, выберем в качестве полюса полярной системы координат правый фокус гиперболы, а в качестве полярной оси — луч с началом в точке , принадлежащий прямой , но не содержащий точки (рис.3.41,б). Тогда для произвольной точки , принадлежащей правой ветви гиперболы, согласно геометрическому определению (фокальному свойству) гиперболы, имеем . Выражаем расстояние между точками и (см. пункт 2 замечаний 2.8):

Следовательно, в координатной форме уравнение гиперболы имеет вид

Уединяем радикал, возводим обе части уравнения в квадрат, делим на 4 и приводим подобные члены:

Выражаем полярный радиус и делаем замены :

что и требовалось доказать. Заметим, что в полярных координатах уравнения гиперболы и эллипса совпадают, но описывают разные линии, поскольку отличаются эксцентриситетами ( для гиперболы, для эллипса).

Геометрический смысл коэффициентов в уравнении гиперболы

Найдем точки пересечения гиперболы (рис.3.42,а) с осью абсцисс (вершины гиперболы). Подставляя в уравнение , находим абсциссы точек пересечения: . Следовательно, вершины имеют координаты . Длина отрезка, соединяющего вершины, равна . Длина отрезка оси ординат, соединяющего точки , равна . Этот отрезок называется мнимой осью гиперболы, а число Замечания 3.10.

1. Прямые ограничивают на координатной плоскости основной прямоугольник, вне которого находится гипербола (рис.3.42,а).

2. Прямые , содержащие диагонали основного прямоугольника, называются асимптотами гиперболы (рис.3.42,а).

Для равносторонней гиперболы , описываемой уравнением (т.е. при ), основной прямоугольник является квадратом, диагонали которого перпендикулярны. Поэтому асимптоты равносторонней гиперболы также перпендикулярны, и их можно взять в качестве координатных осей прямоугольной системы координат (рис.3.42,б). В этой системе координат уравнение гиперболы имеет вид (гипербола совпадает с графиком элементарной функции, выражающей обратно-пропорциональную зависимость).

В самом деле, повернем каноническую систему координат на угол (рис.3.42,б). При этом координаты точки в старой и новой системах координат связаны равенствами

Подставляя эти выражения в уравнение равносторонней гиперболы и приводя подобные члены, получаем

3. Координатные оси (канонической системы координат) являются осями симметрии гиперболы (называются главными осями гиперболы), а ее центр — центром симметрии.

Действительно, если точка принадлежит гиперболе . то и точки и , симметричные точке относительно координатных осей, также принадлежат той же гиперболе.

Ось симметрии, на которой располагаются фокусы гиперболы, является фокальной осью.

4. Из уравнения гиперболы в полярных координатах (см. рис.3.41,б) выясняется геометрический смысл фокального параметра — это половина длины хорды гиперболы, проходящей через ее фокус перпендикулярно фокальной оси ( при ).

5. Эксцентриситет характеризует форму гиперболы. Чем больше угла между асимптотами гиперболы, содержащего ее ветвь, определяется отношением сторон основного прямоугольника: . Учитывая, что и , получаем

Чем больше . Для равносторонней гиперболы имеем и . Для угол тупой, а для угол острый (рис.3.43,а).

6 . Две гиперболы, определяемые в одной и той же системе координат уравнениями и называются сопряженными друг с другом . Сопряженные гиперболы имеют одни и те же асимптоты (рис.3.43,б). Уравнение сопряженной гиперболы приводится к каноническому при помощи переименования координатных осей (3.38).

7. Уравнение определяет гиперболу с центром в точке , оси которой параллельны координатным осям (рис.3.43,в). Это уравнение сводится к каноническому при помощи параллельного переноса (3.36). Уравнение определяет сопряженную гиперболу с центром в точке .

Параметрическое уравнение гиперболы

Параметрическое уравнение гиперболы в канонической системе координат имеет вид

где — гиперболический косинус, a гиперболический синус.

Действительно, подставляя выражения координат в уравнение (3.50), приходим к основному гиперболическому тождеству .

Пример 3.21. Изобразить гиперболу в канонической системе координат . Найти полуоси, фокусное расстояние, эксцентриситет, фокальный параметр, уравнения асимптот и директрис.

Решение. Сравнивая заданное уравнение с каноническим, определяем полуоси: — действительная полуось, — мнимая полуось гиперболы. Строим основной прямоугольник со сторонами с центром в начале координат (рис.3.44). Проводим асимптоты, продлевая диагонали основного прямоугольника. Строим гиперболу, учитывая ее симметричность относительно координатных осей. При необходимости определяем координаты некоторых точек гиперболы. Например, подставляя

Следовательно, точки с координатами и принадлежат гиперболе. Вычисляем фокусное расстояние

эксцентриситет ; фокальныи параметр . Составляем уравнения асимптот , то есть , и уравнения директрис: .

Читайте также: