Сообщение на тему есть ли жизнь на марсе органика красной планеты

Обновлено: 13.05.2024

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

I . Введение

Цель проекта:Найти подробную информацию о планете Марс, ее космических исследованиях, условиях

Задачи проекта:

Выяснить, каково строение Марса.

2. Выяснить, есть ли жизнь на Марсе.

3. Выяснить возможность человека существовать на Марсе.

Методы исследования:

Изучение научной и научно-популярной литературы по данной теме

Изучение тематических ресурсов в сети Интернет

Актуальность.

Человек с давних пор мечтал о встрече с братьями по разуму, и Марс представлялся наиболее вероятной родиной для них из-за близости планеты и из-за её сходства с Землей. На протяжении веков люди рассуждали и рассуждают о возможности жизни на Марсе. На вопрос есть ли жизнь на Марсе, до сих пор нет ясного ответа. Среди ученых по данному вопросу идет спор. В связи с этим, данная тема исследования является довольно актуальной. В настоящее время Марс является самой изученной планетой солнечной системы и космоса вообще, благодаря большому количеству запущенных с Земли спутников и самоходных аппаратов, которые и сейчас бороздят просторы Красной планеты. Россия участвует в исследованиях и запущена целая серия спутников на Марс.

Марс - четвёртая от Солнца планета солнечной системы. Планета хорошо заметна невооруженным глазом как весьма яркая звезда. В своём видимом движении Марс довольно быстро перемещается по небу, поскольку его орбита расположена близко к земной. Диаметр Марса почти вдвое меньше земного, а его масса в десять раз меньше массы нашей планеты. Однако этого достаточно для того, чтобы удерживать тонкий слой атмосферы, которая на Марсе сильно разрежена. Газовая оболочка планеты прозрачна, и поэтому поверхность планеты можно наблюдать в телескопы.

II . Основная часть.

1. Основные краткие сведения о Марсе

Марс — четвёртая от Солнца планета

Среднее расстояние до солнца: 227 900 000 километров

Латинское название: Mars

Символ: Бог войны

Масса: 6,418х10 23 кг (7-е место) — 0,107 массы Земли

Площадь поверхности: 0,284 площади поверхности Земли

Объём: 0,151 объёма Земли.

Диаметр на экваторе - 6792 километра

Плотность: 3,933 г/см 3

Ускорение свободного падения: 3,690 м/с 2

Период обращения вокруг Солнца: 687 земных суток

Орбитальная скорость: 24,1 км/с

Длительность суток: 24,62 ч

Диаметр орбиты: 3,046 а.е.

Наклон орбиты: 1,85 о

Магнитное поле: нет

Спутники: Фобос, Деймос

Атмосфера: двуокись углерода (95,3%), азот (2,7%), аргон (1,6%), другие газы

Сила тяжести на экваторе: 37,6% земной

2. Происхождение названия

Планета получила своё название в честь римского бога войны Марса. Еще с древних времён люди ассоциировали красную планету из-за её цвета с войнами, кровопролитием и прочими несчастьями. Также было подмечено, что Марс всегда был больше всего заметен на небе именно накануне страшных событий, знаменовавших государственные перевороты, военные действия и т.д.

3. История наблюдения Марса

Первые наблюдения Марса проводились до изобретения телескопа. Существование Марса как блуждающего объекта в ночном небе было письменно засвидетельствовано древнеегипетскими астрономами в 1534 году до н. э.

В вавилонской планетарной теории были впервые получены временны́е измерения планетарного движения Марса и уточнено положение планеты на ночном небе. Пользуясь данными египтян и вавилонян, древнегреческие (эллинистические) философы и астрономы разработали подробную геоцентрическую модель для объяснения движения планет. Спустя несколько веков индийскими и персидскими астрономами был оценён размер Марса и расстояние до него от Земли. В XVI веке Николай Коперник предложил гелиоцентрическую модель для описания Солнечной системы с круговыми планетарными орбитами. Его результаты были пересмотрены Иоганном Кеплером, который ввёл более точную эллиптическую орбиту Марса, совпадающую с наблюдаемой.

Голландский астроном Христиан Гюйгенс первым составил карту поверхности Марса, отражающую множество деталей. 28 ноября 1659 года он сделал несколько рисунков Марса.

Предположительно, первые наблюдения, установившие существование у Марса ледяной шапки на южном полюсе, были сделаны итальянским астрономом Джованни Доменико Кассини в 1666 году. В том же году он при наблюдениях Марса делал зарисовки видимых деталей поверхности и выяснил, что через 36 или 37 дней положения деталей поверхности повторяются, а затем вычислил период вращения — 24 ч. 40 мин. (этот результат отличается от правильного значения менее чем на 3 минуты).

В 1672 году Христиан Гюйгенс заметил нечёткую белую шапочку и на северном полюсе.

В 1888 году Джованни Скиапарелли дал первые имена отдельным деталям поверхности: моря Афродиты, Эритрейское, Адриатическое, Киммерийское; озёра Солнца, Лунное и Феникс.

Расцвет телескопических наблюдений Марса пришёлся на конец XIX — середину XX века. Среди астрономов до космической эры, проводивших телескопические наблюдения Марса в этот период, наиболее известны Скиапарелли, Лоуэлл, Слайфер, Антониади, Барнард, Жарри-Делож, Л. Эдди, Тихов, Вокулёр. Именно ими были заложены основы ареографии и составлены первые подробные карты поверхности Марса — хотя они и оказались практически полностью неверными после полётов к Марсу автоматических зондов.

4. Исследование Марса космическими аппаратами

Поверхность Марса.

В общей сложности Марс был обследован десятками космических аппаратов и телескопов, принадлежащих разным странам (Европа, США, СССР, Россия).

5. Строение Марса

Марс — каменистая планета с железным ядром. Между ядром и красноватой корой располагается толстый слой горных пород. На Марсе есть атмосфера, но она очень разрежена и состоит на 95,3% из углекислого газа, так что дышать там невозможно. Средняя температура на Марсе очень низкая: около минус 60 градусов по Цельсию.

Строение Марса.

На поверхности Марса находятся самые большие вулканы солнечной системы. Крупнейший из них - гора Олимп, она простирается в ширину на 648 километров и возвышается на 24 километра. Для сравнения скажем, что крупнейший по объёму вулкан Земли, Мауна-Лоа, расположенный на Гавайских островах, поднимается над уровнем моря на 4,2 километра, хотя, если измерять от его основания под океанским дном, то его высота окажется 17 километров.

Гора Олимп на Марсе

Поскольку на Марсе есть атмосфера, можно сказать, что там есть и погода — примерно такая, какая была бы на земле в очень холодной пустыне. Там случаются песчаные бури и наблюдаются циклоны из облаков водяного льда размером раз в 10 больше Великобритании.

Судя по высохшим руслам рек на поверхности Марса, когда-то температура на этой планете позволяла существовать воде в жидком состоянии. Теперь же достоверно известно, что в наши дни вода на Марсе есть только в виде полюсных шапок: водяной лёд вперемешку с замёрзшим углекислым газом. Однако в декабре 2006 года, учёные, изучая снимки недавно сформировавшихся желобов на марсианской поверхности, выдвинули поразительную гипотезу: возможно, на Марсе и сейчас есть жидкая вода, она скрыта глубоко под поверхностью планеты.

6. Есть ли жизнь на Марсе

Изучив с помощью электронного микроскопа метеорит, попавший на Землю с Марса (метеорит ALH 84001), учёные обнаружили на нём структуры, похожие на окаменелые микроорганизмы. Можно предположить, что окаменелые организмы в какой-то момент попали с Марса на Землю, но это не объясняет, какими образом на нашей планете могла появиться жизнь: ведь для этого межпланетное путешествие на метеорите должны были совершить не только окаменелые, но и живые микроорганизмы! Этот вопрос в наши дни вызывает жаркие споры.

В наши дни условия на Марсе явно неблагоприятны - во всяком случае на поверхности планеты: холодная сухая пустыня, почти без атмосферы, если не считать незначительного количества углекислого газа. Исследования поверхности планеты с помощью зондов показали, что на полюсах Марса присутствуют большие скопления воды в виде льда. Вдобавок к этому, на поверхности планеты хорошо видны результаты деятельности речных потоков и морского прибоя. Это значит, что на каком-то этапе на Марсе была жидкая вода, и её было достаточно для зарождения жизни - такой же, какая существует на Земле. Возможно, в то время на Марсе был даже целый океан воды, поначалу очень глубокий, несколько километров глубиной; а центр был там , где сейчас находится северный полюс Марса.

Таким образом, жизнь могла зародиться на раннем этапе марсианской истории на краю этого океана.

Против этой теории имеется пара возражений. Первое состоит в том, что марсианская атмосфера не могла содержать кислород. Однако, и на Земле примитивные формы жизни предположительно существовали в атмосфере с крайне низким содержанием кислорода.

Второе возражение: древний марсианский океан был слишком солёный для наземных форм жизни. Но ведь жизнь на Марсе могла изначально быть приспособлена к условиям высокой солёности; а может быть, она, напротив, зародилась в пресных озёрах.

Итак, вполне вероятно, что жизнь зародилась на Марсе, на краю огромного океана, а затем на метеорите проникла на Землю. Так что не исключено, что мы с вами - потомки марсиан!

Глобус Марса с "каналами" и "морями", автор - Персиваль Лоуэлл

Марсоход Curiosity.

В условиях Марса этот газ довольно быстро разлагается, поэтому должен существовать постоянный источник его пополнения. Таким источником может быть либо геологическая активность (но действующие вулканы на Марсе не обнаружены), либо жизнедеятельность бактерий.

На сегодняшний день условием для развития и поддержания жизни на планете считается наличие жидкой воды на её поверхности, а также нахождение орбиты планеты в так называемой зоне обитаемости, которая в Солнечной системе начинается за орбитой Венеры и заканчивается большой полуосью орбиты Марса. Вблизи перигелия Марс находится внутри этой зоны, однако тонкая атмосфера с низким давлением препятствует появлению жидкой воды на длительный период. Недавние свидетельства говорят о том, что любая вода на поверхности Марса является слишком солёной и кислотной для поддержания постоянной земноподобной жизни.

7. Сможет ли человек освоить Марс?

Теперь, когда космонавты месяцами живут на международной космической станции, мы знаем, что люди вполне способны выживать вдали от планеты Земля. Но знаем мы и то, что, когда живёшь на космической станции в состоянии невесомости, даже чаю попить не так-то просто. Есть и более серьёзные проблемы: долгое пребывание в невесомости сказывается на здоровье, так что если нам нужна постоянная космическая база, она должна располагаться на какой-то планете или на её спутнике.

Первейший кандидат на эту роль — конечно же, Луна. Она близко, до неё легко добраться, люди уже ходили по ней и ездили на ровере. Но есть и минусы: Луна слишком мала, и у неё нет ни атмосферы, ни магнитного поля, чтобы, как на Земле, защититься от частиц солнечного ветра. На Луне нет воды в жидком состоянии, но в кратерах на северном и южном её полюсах, возможно, находится лёд. Поселенцы на Луне могли бы использовать этот лёд как источник кислорода, а электричество добывать с помощью ядерной энергии или солнечных батарей. Тогда Луна могла бы стать перевалочной базой для путешествий по всей солнечной системе.

Следующий очевидный кандидат — Марс. Он находится дальше от Солнца, чем Земля, поэтому меньше нагревается солнечными лучами, и температура там гораздо ниже. Когда-то на марсе было магнитное поле, четыре миллиарда лет назад оно распалось, а это ускорило потерю Марсом большей части его атмосферы — сейчас её давление составляет лишь 1% земного атмосферного давления.

В прошлом давление атмосферы на Марсе, по всей вероятности было выше, так как на его поверхности явно видны пересохшие проливы и озёра. Сейчас на Марсе не может существовать жидкая вода - она бы просто напросто испарилась.

Однако, на обоих полюсах марса очень много воды в виде льда, и мы могли бы пользоваться ею, если бы решили там жить. Ещё нам пригодились бы минеральные вещества и металлы, выброшенные вулканами на поверхность планеты.

Итак, из всех мест в космосе, где могли бы обосноваться люди, привлекательнее всего выглядят Луна и Марс. А куда бы нам еще податься?

Если планета не совсем подходит для обитания на ней человека, возможно ли изменить на ней условия на более подходящие? В последнее время приобрёл популярность термин терраформирование (от лат. terra — земля и forma — вид) — изменение климатических условий планеты, спутника или же иного космического тела для приведения атмосферы, температуры и экологических условий в состояние, пригодное для обитания земных животных и растений. Сегодня эта задача представляет, в основном, теоретический интерес, но в будущем может получить развитие и на практике.

Близость Марса и относительное его сходство с Землёй породило ряд фантастических проектов терраформирования и колонизации Марса землянами в будущем.

Марс является наиболее подходящим кандидатом на терраформирование (площадь поверхности равна 144,8 млн км², что составляет 28,4 % от площади поверхности Земли, и приблизительно равно площади её суши). Ускорение свободного падения на экваторе Марса составляет 3,711 м/с², а количество солнечной энергии, принимаемой поверхностью Марса, составляет 43 % от количества, принимаемого поверхностью Земли. Марс располагает значительными количествами водяного льда и несёт на своей поверхности многочисленные следы благоприятного климата в прошлом: высохшие речные долины, залежи глины и многое другое. Многие современные учёные сходятся в едином мнении о том, что планету возможно нагреть, и создать на ней относительно плотную атмосферу, и НАСА даже проводит дискуссии по этому поводу. Основную проблему для колонизации составляет отсутствие у Марса планетарного магнитного поля, что приводит к сильному воздействию на него солнечного ветра.

База будущего на Марсе.

III . Выводы:

Марс имеет железное ядро и каменистую поверхность (похожую на Земную), покрытую слоем пыли окислившегося железа. На Марсе располагаются самые крупные в солнечной системе Вулканы. В настоящее время вулканической активности на планете не обнаружено. На полюсах располагаются ледяные шапки. Жидкой воды на Марсе не обнаружено.

Органической жизни на Марсе не обнаружено, что, возможно, связано с тем, что планета еще недостаточно обследована. Было найдено немало косвенных доказательств того, что жизнь на Марсе была в прошлом или всё еще есть в настоящее время.

Без специального оборудования человеку пока невозможно находиться на поверхности Марса. Для освоения этой планеты не хватает самое главное — атмосферы и магнитного поля, а также жидкой воды. Возможно, в будущем человечество решит и эту проблему.

Мое личное мнение - человечество может исследовать Марс и поверхность и изнутри и использовать его материальные блага. Экспедиция на Марс может длиться, годы или десятки лет, человек может обосноваться на Марсе и использовать его ресурсы для нужд экспедиций.

IV . Список используемых источников

Л. Хокинг, С. Хокинг, К. Гальфар. Джордж и тайны Вселенной: Пер. с английского Е.Д. Канищевой под редакцией канд. физ.-мат. наук В.Г. Сурдина — М.: Розовый жираф, 2008. — 336 с.

Анализ данных с марсоходов NASA позволил сделать на Красной планете несколько уникальных открытий. В частности, исследователи обнаружили органику на Марсе в ходе нескольких различных миссий. Что же им удалось найти?

Органика на Марсе: что удалось обнаружить ученым

На сегодняшний день НАСА отправило на Марс девять орбитальных аппаратов и шесть марсоходов, отчасти чтобы узнать больше о возможных следах внеземной жизни. С этой целью планета была сфотографирована с помощью различных типов фотоаппаратов. Совсем недавно марсоходы начали копать марсианскую почву, чтобы собрать образцы для анализа. Цель такой работы — узнать больше о химических веществах, содержащихся в почве на поверхности или вблизи нее, а точнее — увидеть, содержит ли она органические молекулы. Если их удастся обнаружить, они могут быть свидетельством существующей или некогда существовавшей на планете жизни.

Что такое органика?

Органика представляет собой органические вещества и соединения, которые возникают по большей части в результате деятельности живых организмов. Эти молекулы могут быть признаком существующей или существовавшей микробной жизни на Марсе. Но органические соединения в марсианских породах очень сложно обнаружить, потому что при нагреве они очень быстро распадаются на более простые молекулы.

Однако, если эти органические соединения сначала вступят в реакцию с другими химическими веществами, они с большей вероятностью попадут в газовый хроматограф и масс-спектрометр для анализа, не разрушаясь. Именно на это надеялись ученые, начав исследования грунта Красной планеты при помощи инструментов ровера Curiosity.

Первые следы органики на Марсе

Самая легкая и распространенная органическая молекула — природный газ метан (CH4). Это вещество можно назвать и органическим, и неорганическим одновременно, так как оно может образоваться и посредством соединения неорганических веществ. Однако, в условиях Марса присутствие этой органики также может быть одним из косвенных признаков жизни.

Самая распространенная органика на Марсе — газ метан. Его сезонные колебания в атмосфере хорошо известны

Самая распространенная органика на Марсе — газ метан. Его сезонные колебания в атмосфере хорошо известны

В 2018 году ученые описали сезонные колебания концентрации метана в атмосфере Марса в течение почти трех марсианских лет — это составляет почти шесть земных лет. Такие изменения были обнаружены при анализе данных с марсохода Curiosity.

Химия воды и горных пород Красной планеты могла породить метан, но ученые не могут исключить возможность биологического происхождения этой органики на Марсе. Ранее метан был обнаружен в атмосфере Марса в больших непредсказуемых шлейфах. Результаты исследования 2018 года показывают, что низкие уровни метана в кратере Гейла неоднократно достигают пика в теплые летние месяцы и каждый год снижаются зимой. Ученым пока не ясно, где находится источник метана на Марсе. Но что до других органических веществ?

ВВЕДЕНИЕ 3
ОСНОВНАЯ ЧАСТЬ 5
1. Начало исследования Марса. 5
2. Основные данные о Красной планете. 10
4. Современные исследования на пригодность для жизни 11
5. Обнаружение возможных следов жизни на Красной планете. 12
ЗАКЛЮЧЕНИЕ 14
БИБЛИОГРАФИЧЕСКИЙ СПИСОК 15
Приложение 1 16
Приложение 2 16

Планета Марс известна человечеству с незапамятных времён. Наблюдая на небе звезду кроваво-красного цвета, древние люди дали ей имя бога войны. Астрологи считали влияние Марса роковым на судьбы людей, родившихся во вторник (день Марса) или, если в зодиакальном созвездии при рождении присутствовала эта планета.

С началом космической эры начался качественно новый этап изучения красной планеты. Спектрографические исследования, а впоследствии и прямая посадка на Марс со всей очевидностью подтвердили, что в настоящее время высшей формы жизни (тем более разумной) на нём не может быть. Причина проста: отсутствие кислорода в атмосфере, микроскопические доли водяного пара и озона, космический холод. С другой стороны, обнаружены сухие русла древних рек, эрозия почвы, характерная для больших потоков воды, поэтому всё большее число учёных склоняется к версии, что много миллионов лет назад на планете была более плотная атмосфера и, возможно, вода, а, следовательно, вполне могли существовать те или иные формы органической жизни. Ответить на этот вопрос и призваны космические экспедиции к красной планете. Но несмотря на это до сих пор ведутся споры о существовании жизни на Марсе. Существует много мифов и гипотез по этому поводу, но точного ответа дать нельзя, недостаточно данных. Но последние исследования, снимки и открытия лишь подливают масла в огонь.

Цель моей работы — выяснить, есть ли жизнь на Марсе и была ли она в прошлом.

Актуальность и практическая значимость работы заключаются в том, что Марс относится к земной группе планет Солнечной системы (помимо него и Земли в нее входят также Венера и Меркурий). Среди этой группы Марс наиболее схож с Землей. В его атмосфере, пусть и в малом количестве, содержится кислород. Присутствует вода — в полярных шапках в виде льда (слишком низкое атмосферное давление не позволяет существовать воде на поверхности в жидком виде). На этой планете, как и на Земле, есть вулканы. На Марсе наблюдаются извилистые долины и углубления, похожие на русла рек. Такие образования могут быть связаны с водной и ледниковой эрозией и свидетельствовать о том, что несколько миллиардов лет назад эта планета имела более плотную атмосферу и гидросферу. При этом, в отличие от Венеры с ее очень плотной и ядовитой атмосферой, Марс является более перспективным небесным телом для поиска следов жизни и возможной колонизации в будущем.

Краткий литературный обзор:

Реферат написан на основании материалов, размещенных в сети Интернет, а также многих литературных источников. Библиографический список приведен в конце работы.



Правда воду на Марсе нашли, но в то же время её нашли и на Луне и на Меркурии, и на многих других телах Солнечной системы, и сейчас воду уже не считают важным признаком жизни.


На Красную планету и ранее отправлялись приборы, для обнаружения органических соединений. Так ещё в 1976 году газовые хроматографы на борту спускаемых аппаратов Viking 1 и 2 показали содержание органических хлорметанов в образцах грунта.


При этом ученые надеялись найти гораздо более богатую и сложную органику, подобную метеоритной, и удивились её отсутствию. Но тогда ещё не хватало полноты данных о составе грунта, поэтому хлорметаны сочли земным загрязнением, а полное отсутствие аминокислот долго оставалось загадкой. Только спустя 34 года удалось перепроверить данные и убедиться, что прибор показал действительно марсианский хлорметан, т.е. органическое соединение. Хлорметаны не содержались в грунте в готовом виде, а стали результатом взаимодействия разогретых перхлоратов и более сложной марсианской органики.

Перхлораты — это соли хлорной кислоты, очень сильный окислитель, который даже используют в ракетном топливе и взрывчатке. Судя по всему, они распространены практически по всей марсианской поверхности, поэтому идея сажать в марсианском грунте картошку и поливать водой — не самая удачная, особенно внутри жилого модуля.


Один из самых известных шерготтитов — Allan Hills 84001. Этот метеорит сформировался как часть марсианской поверхности 4 млрд лет назад, отправился в космический полёт 17 млн лет назад и упал на Землю 16 тыс лет назад. Примерно 25 лет назад в нём нашли окаменелые структуры похожие на бактерии.


Перхлораты же Марса сумел обнаружить только аппарат Phoenix в 2008 году. Его отправили в приполярные регионы, туда, где ожидалось найти подповерхностный водяной лед.



Таким образом, за тридцать лет удалось точно установить, что марсианская органика существует, и понять, какие условия мешают её исследованию на месте. С этим знанием открылся новый этап исследования Марса.

Читайте также: