Решение уравнений в комплексных числах сообщение

Обновлено: 04.07.2024

Продолжаем знакомиться с комплексными числами, сегодня уже будут квадратные уравнения, но не простые, а с отрицательными числами под корнем. Да-да, вы не ошиблись, именно с отрицательными. Будем развеивать школьные мифы о том, что, если под корнем число отрицательное, то уравнение решений не имеет. Ещё как имеет, только не в области вещественных чисел. Пожалуй стоит приступать.

Начнём с простенького примерчика, выступит он у нас в качестве ознакомительного.

Посмотрим на решение.

Единственное что хотелось бы прокомментировать, так выделение минус единицы под корнем, остальное понятно.

Единственное что хотелось бы прокомментировать, так выделение минус единицы под корнем, остальное понятно.

Рассмотрим теперь полноценное квадратное уравнение.

Решим ещё один примерчик для закрепления.

Даже дискриминант такой же получился, особо сложного ничего не наблюдается, школьный уровень можно сказать.

Даже дискриминант такой же получился, особо сложного ничего не наблюдается, школьный уровень можно сказать.

На сегодня всё, было довольно необычно разбирать такие простые задания, зато посмотрели как решаются квадратные уравнения с комплексными числами, заметили что они не на много интереснее стандартных. Оставляйте в комментариях какие темы нужно ещё разобрать в дальнейшем. Спасибо за внимание.

Операции над комплексными числами. Проблема разрешимости любого квадратного уравнения как одна из причин введения комплексных чисел. Геометрическая интерпретация комплексных чисел, их тригонометрическая форма. Векторная интерпретация комплексных чисел.

Рубрика Математика
Вид реферат
Язык русский
Дата добавления 18.01.2011
Размер файла 256,7 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Гомельская научно-практическая конференция

учащихся по естественнонаучным направлениям Поиск

ГУО Средняя общеобразовательная школа № 43

Учебно-исследовательская работа

Комплексные числа

Решение многих задач физики и техники приводит к квадратным уравнениям с отрицательным дискриминантом. Эти уравнения не имеют решения в области действительных чисел. Но решение многих таких задач имеет вполне определенный физический смысл. Значение величин, получающихся в результате решения указанных уравнений, назвали комплексными числами. Комплексные числа широко использовал отец русской авиации Н.Е. Жуковский (1847-1921) при разработке теории крыла, автором которой он является. Комплексные числа и функции от комплексного переменного находят применение во многих вопросах науки и техники.

Понятие о комплексных числах

Для решения алгебраических уравнений недостаточно действительных чисел. Поэтому естественно стремление сделать эти уравнения разрешимыми, что в свою очередь приводит к расширению понятия числа. Например, для того чтобы любое уравнение имело корни, положительных чисел недостаточно и поэтому возникает потребность ввести отрицательные числа и нуль.

Древнегреческие математики считали, что и только натуральные числа, но в практических расчетах за два тысячелетия до наше эры в Древнем Египте и Древне Вавилоне уже применялись дроби. Следующим важным этапом в развитии понятия о числе было введение отрицательных чисел - это было сделано китайскими математиками за II века до нашей эры. Отрицательные числа применял в III веке нашей эры Древнегреческим математик Диофант, знавший уже правила действий над ними, а в VII веке нашей эры эти числа подробно изучили индийские ученые, которые сравнивали такие числа с долгом. С помощью отрицательных чисел можно было единым образом описывать изменение величин. Уже в 8 веке нашей эры было установлено, что квадратный корень из положительного числа имеет два значение - положительное и отрицательное, а из отрицательных числе квадратные корни извлечь нельзя: нет такого числа , чтобы . В XVI веке в связи с изучением кубических уравнений оказалось необходимым извлекать квадратные корни из отрицательных чисел. В формуле для решения кубических уравнений содержатся кубические и квадратные корни. Это формула безотказно действует в случае, когда уравнение имеет один действительный корень (например, для уравнения ), а если оно имело три действительных корны (например, ), то под знаком квадратного корня оказывалось отрицательное число. Получалось, что путь к этим 3 корням уравнения ведет через невозможную операцию извлечения квадратного корня из отрицательного числа.

В течение XVII века продолжалось обсуждение арифметической природы мнимостей, возможности дать им геометрическое истолкование. Постепенно развивалось техника операций над комплексными числами на рубеже XVII-XVIII в.в. была построена общая теория корней n-й степени сначала из отрицательных, а впоследствии и из любых комплексных чисел.

В конце VXIII века французский математик Ж.Лагранж смог сказать, что математический анализ уже не затрудняют мнимые величины. С помощью комплексных чисел научились выражать решения линейных дифференциальных уравнений с постоянным коэффициентом. Такие уравнения встречаются, например, в теории колебаний материальной точки в сопротивляющейся среде.

Я.Бернулли применил комплексные числа для вычисления интегралов. Хотя в течение XVIII века с помощью комплексных чисел были решены многие вопросы, в том числе и прикладные задачи, связанные с картографией, гидродинамикой и т.д., однако еще не было строго логического обоснования теории этих чисел. Поэтому французский ученый П.Лаплас считал, что результаты, получаемые с помощью мнимых чисел, - только наведение, приобретающие характер настоящих истин лишь после подтверждения прямыми доказательствами. В конце XVIII-начале IXX в.в. было получено геометрическая истолкование комплексных чисел. Датчанин Г.Вессель, француз Ж.Арган и немец К.Гаусс независимо друг от друга предложили изображать комплексное число точкой М (а, b) на координатной плоскости. Позднее оказалось, что еще удобнее изображать число не сомой точкой М, а вектором ОМ, идущим в эту точку из начала координат. При таком истолковании в сложению и вычитанию комплексных чисел соответствуют эти же операции над векторами.

Геометрические истолкования комплексных чисел позволили определить многие понятия, связанные с функциями комплексного переменного, расширило область их применения. Стало ясно, что комплексные числа полезны во многих вопросах, где имеют дело с величинами, которые изображаются векторами на плоскости: при изучении течения жидкости, задач теории упругости, в теоретической электротехники.

Большой вклад в развитие теории функций комплексного переменного внесли русские и советские ученые: Р.И.Мусхелишвили занимался ее приложениями к теории упругости, М.В.Келдыш и М.А.Лаврентьев -- к аэродинамики и гидродинамики, Н.Н.Боголюбов и В.С.Владимиров -- к проблемам квантовой теории поля.

Исторический генезис комплексных чисел

Одна из причин введения рациональных чисел обусловлена требованием, чтобы всякое линейное уравнение (где ) было разрешимо. В области целых чисел линейное уравнение разрешимо лишь в том случае, когда b делится нацело на a.

Одна из причин расширения множества рациональных чисел до множества действительных чисел была связана с разрешимостью квадратных уравнений, например, уравнения вида . На множестве рациональных чисел это уравнение не разрешимо, так как среди рациональных нет числа, квадрат которого равен двум. Как известно, -число иррациональное. На множестве же действительных чисел уравнение разрешимо, оно имеет два решения и .

И все же нельзя считать, что на множестве действительных чисел разрешимы все квадратные уравнения. Например, квадратное уравнение x2 = - 1 на множестве действительных чисел решений не имеет, так как среди действительных чисел нет такого числа, квадрат которого отрицателен.

Таким образом, действительных чисел явно недостаточно, чтобы построить такую теорию квадратных уравнений, в рамках которой каждое квадратное уравнение было бы разрешимо. Это соображение приводит к необходимости вводить новые числа и расширять множество действительных чисел до множества комплексных чисел, в котором было бы разрешимо любое квадратное уравнение.

Вспомним о едином принципе расширения числовых систем и поступим в соответствии с этим принципом.

Если множество А расширяется до множества В, то должны быть выполнены следующие условия:

1. Множество А есть подмножество В.

2. Отношения элементов множества А (в частности, операции над ними) определяются также и для элементов множества В; смысл этих отношений для элементов множества А, рассматриваемых уже как элементы множества В, должен совпадать с тем, какой они имели в А до расширения.

3. В множестве В должна выполняться операция, которая в А была невыполнима или не всегда выполнима.

4. Расширение В должно быть минимальным из всех расширений данного множества А, обладающих первыми тремя свойствами, причем это расширение В должно определяться множеством А однозначно (с точностью до изоморфизма).

Итак, расширяя множество действительных чисел до множества новых чисел, названных комплексными, необходимо, чтобы:

а) комплексные числа подчинялись основным свойствам действительных чисел, в частности, коммутативному, ассоциативному и дистрибутивному законам;

б) в новом числовом множестве были разрешимы любые квадратные уравнения.

Множество действительных чисел недостаточно обширно, чтобы в нем были бы разрешимы все квадратные уравнения. Поэтому, расширяя множество действительных чисел до множества комплексных чисел, мы потребуем, чтобы в нем можно было бы построить полную и законченную теорию квадратных уравнений. Другими словами, мы расширим множество действительных чисел до такого множества, в котором можно будет решить любое квадратное уравнение. Так, уравнение не имеет решений во множестве действительных чисел потому, что квадрат действительного числа не может быть отрицательным. В новом числовом множестве оно должно иметь решение. Для этого вводится такой специальный символ i, называемый мнимой единицей, квадрат которого равен - 1.

Ниже будет показано, что введение этого символа позволит осуществить расширение множества действительных чисел, пополнив его мнимыми числами вида bi (где b - действительное число) таким образом, чтобы в новом числовом множестве (множестве комплексных чисел) при сохранении основных законов действительных чисел были разрешимы любые квадратные уравнения.

Основные определения

Операции над комплексными числами

1. Существует элемент i (мнимая единица) такой, что i2 = - 1.

2. Символ a + bi называют комплексным числом с действительной частью a и мнимой частью bi, где a и b - действительные числа, b - коэффициент мнимой части.

Комплексное число a + 0i отождествляется с действительным числом a, т.е. a + 0i = a, в частности, 0 + 0i = 0. Числа вида bi () называют чисто мнимыми.

Например, комплексное число 2 + 3i имеет действительную часть - действительное число 2 и мнимую часть 3i, действительное число 3 - коэффициент мнимой части.

Комплексное число 2 - 3i имеет действительную часть число 2, мнимую часть - 3i, число - 3 - коэффициент при мнимой части.

3. Правило равенства. Два комплексных числа равны тогда и только тогда, когда равны их действительные части и равны коэффициенты мнимых частей.

Т.е., если a + bi = c +di, то a = c, b = d: и, обратно, если a = c, b = d, то a + bi = c +di.

4. Правило сложения и вычитания комплексных чисел.

(a + bi) + (c + di) = (a + c) + (b + d)i.

(2 + 3i) + (5 + i) = (2 + 5) + (3 + 1)i = 7 + 4i;

(- 2 + 3i) + (1 - 8i) = (- 2 + 1) + (3 + (- 8))i = - 1 - 5i;

(- 2 + 3i) + (1 - 3i) = (- 2 + 1) + (3 + (- 3))i = - 1 + 0i = - 1.

Вычитание комплексных чисел определяется как операция, обратная сложению, и выполняется по формуле:

(a + bi) - (c + di) = (a - c) + (b - d)i.

(5 - 8i) - (2 + 3i) = (3 - 2) + (- 8 - 3)i = 1 - 11i;

(3 - 2i) - (1 - 2i) = (3 - 1) + ((- 2) - (- 2))i = 2 + 0i = 2.

5. Правило умножения комплексных чисел.

(a + bi)(c + di) = (aс + bd) + (ad + bc)i.

Из определений 4 и 5 следует, что операции сложения, вычитания и умножения над комплексными числами осуществляются так, как будто мы выполняем операции над многочленами, однако с условием, что i2 = - 1.

Действительно: (a + bi)(c + di) = ac + adi + bdi2 = (ac - bd) + (ad + bc)i.

(- 1 + 3i)(2 + 5i) = - 2 - 5i + 6i + 15i2 = - 2 - 5i + 6i - 15 = - 17 + i;

(2 + 3i)(2 - 3i) = 4 - 6i + 6i - 9i2 = 4 + 9 = 13.

Из второго примера следует, что результатом сложения, вычитания, произведения двух комплексных чисел может быть число действительное. В частности, при умножении двух комплексных чисел a + bi и a - bi, называемых сопряженными комплексными числами, в результате получается действительное число, равное сумме квадратов действительной части и коэффициента при мнимой части. Действительно:

(a + bi)(a - bi) = a2 - abi + abi - b2i2 = a2 + b2.

Произведение двух чисто мнимых чисел - действительное число.

6. Деление комплексного числа a + bi на комплексное число c + di № 0 определяется как операция обратная умножению и выполняется по формуле:

Формула теряет смысл, если c + di = 0, так как тогда c2 + d2 = 0, т. е. деление на нуль и во множестве комплексных чисел исключается.

Обычно деление комплексных чисел выполняют путем умножения делимого и делителя на число, сопряженное делителю.

Опираясь на введенные определения нетрудно проверить, что для комплексных чисел справедливы коммутативный, ассоциативный и дистрибутивный законы. Кроме того, применение операций сложения, умножения, вычитания и деления к двум комплексным числам снова приводит к комплексным числам. Тем самым можно утверждать, что множество комплексных чисел образует поле. При этом, так как комплексное число a + bi при b = 0 отождествляется с действительным числом a = a + 0i, то поле комплексных чисел включает поле действительных чисел в качестве подмножества.

Решение квадратных уравнений

Одна из причин введения комплексных чисел состояла в том, чтобы добиться разрешимости любого квадратного уравнения, в частности уравнения x2 = - 1.

Покажем, что расширив поле действительных чисел до поля комплексных чисел, мы получили поле, в котором каждое квадратное уравнение разрешимо, т.е. имеет решение. Так, уравнение x2 = - 1 имеет два решения: x1 = i, x2 = - i.

Это нетрудно установить проверкой: , .

Перейдем теперь к вопросу о решении полного квадратного уравнения. Квадратным уравнением называют уравнение вида:

где x - неизвестная, a, b, c - действительные числа, соответственно первый, второй коэффициенты и свободный член, причем . Решим это уравнение, выполнив над ним ряд несложных преобразований.

Разделим все члены уравнения на и перенесем свободный член в правую часть уравнения:

К обеим частям уравнения прибавим выражение с тем, чтобы левая его часть представляла полный квадрат суммы двух слагаемых:

Извлечем корень квадратный из обеих частей уравнения:

Найдем значения неизвестной:

Теперь можно исследовать полученное решение. Оно зависит от значения подкоренного выражения, называемого дискриминантом квадратного уравнения.

Если , то есть действительное число и квадратное уравнение имеет действительные корни.

Если же то мнимое число, квадратное уравнение имеет мнимые корни.

Результаты исследования представлены ниже в таблице:

Итак, введение комплексных чисел позволяет разработать полную теорию квадратных уравнений. В поле комплексных чисел разрешимо любое квадратное уравнение.

1. Решите уравнение .

Решение. Найдем дискриминант .

Уравнение имеет два действительных корня:

2. Решите уравнение .

Решение. , уравнение имеет два равных действительных корня:

3. Решите уравнение .

Решение. D = 16 - 4*1*5 = - 4 0, если направление вектора совпадает с направлением оси, y

Сегодня на занятии мы отработаем типовые действия с комплексными числами, а также освоим технику решения выражений, уравнений и систем уравнений, которые эти числа содержат. Данный практикум является продолжением урока Комплексные числа для чайников, и поэтому если вы неважно ориентируетесь в теме, то, пожалуйста, пройдите по указанной выше ссылке. Ну а более подготовленным читателям предлагаю сразу же разогреться:

Упростить выражение , если . Представить результат в тригонометрической форме и изобразить его на комплексной плоскости.

1) Сначала упростим числитель. Подставим в него значение , раскроем скобки и поправим причёску:

…Да, такой вот Квазимодо от комплексных чисел получился…

Напоминаю, что в ходе преобразований используются совершенно бесхитростные вещи – правило умножения многочленов и уже ставшее банальным равенство . Главное, быть внимательным и не запутаться в знаках.

2) Теперь на очереди знаменатель. Если , то:

Заметьте, в какой непривычной интерпретации использована формула квадрата суммы . Как вариант, здесь можно выполнить перестановку под формулу . Результаты, естественно, совпадут.

3) И, наконец, всё выражение. Если , то:

Чтобы избавиться от дроби, умножим числитель и знаменатель на сопряженное знаменателю выражение. При этом в целях применения формулы разности квадратов следует предварительно (и уже обязательно!) поставить отрицательную действительную часть на 2-е место:

А сейчас ключевое правило:

НИ В КОЕМ СЛУЧАЕ НЕ ТОРОПИМСЯ! Лучше перестраховаться и прописать лишний шаг.
В выражениях, уравнениях и системах с комплексными числами самонадеянные устные вычисления чреваты, как никогда!

На завершающем шаге произошло хорошее сокращение и это просто отличный признак.

Примечание: строго говоря, здесь произошло деление комплексного числа на комплексное число 50 (вспоминаем, что ). Об этом нюансе я умалчивал до сих пор и о нём мы ещё поговорим чуть позже.

Обозначим наше достижение буквой

Представим полученный результат в тригонометрической форме. Вообще говоря, здесь можно обойтись без чертежа, но коль скоро, требуется – несколько рациональнее выполнить его прямо сейчас:

Вычислим модуль комплексного числа:

Если выполнять чертёж в масштабе 1 ед. = 1 см (2 тетрадные клетки), то полученное значение легко проверить с помощью обычной линейки.

Найдём аргумент. Так как число расположено во 2-й координатной четверти , то:

Угол элементарно проверяется транспортиром. Вот в чём состоит несомненный плюс чертежа.

Таким образом: – искомое число в тригонометрической форме.

Выполним проверку:
, в чём и требовалось убедиться.

Незнакомые значения синуса и косинуса удобно находить по тригонометрической таблице.

Ответ:

Аналогичный пример для самостоятельного решения:

Упростить выражение , где . Изобразить полученное число на комплексной плоскости и записать его в показательной форме.

Краткое решение и ответ в конце урока.

Нередко задача допускает не единственный путь решения:

Решение: прежде всего, обратим внимание на оригинальное условие – одно число представлено в алгебраической, а другое – в тригонометрической форме, да ещё и с градусами. Давайте сразу перепишем его в более привычном виде: .

В какой форме проводить вычисления? Выражение , очевидно, предполагает первоочередное умножение и дальнейшее возведение в 10-ю степень по формуле Муавра, которая сформулирована для тригонометрической формы комплексного числа. Таким образом, представляется более логичным преобразовать первое число. Найдём его модуль и аргумент:

Используем правило умножения комплексных чисел в тригонометрической форме:
если , то

Далее применяем формулу Муавра , которая является следствием указанного выше правила:

Второй способ решения состоит в том, чтобы перевести 2-е число в алгебраическую форму , выполнить умножение в алгебраической форме, перевести результат в тригонометрическую форму и воспользоваться формулой Муавра.

В условии ничего не сказано о форме итогового комплексного числа, поэтому:

Ответ:

Здесь нужно вспомнить действия со степенями, хотя одного полезного правила в методичке нет, вот оно: .

И ещё одно важное замечание: пример можно решить в двух стилях. Первый вариант – работать с двумя числами и мириться с дробями. Второй вариант – представить каждое число в виде частного двух чисел: и избавиться от четырёхэтажности. С формальной точки зрения без разницы, как решать, но содержательное отличие есть! Пожалуйста, хорошо осмыслите:
– это комплексное число;
– это частное двух комплексных чисел ( и ), однако в зависимости от контекста можно сказать и так: число , представленное в виде частного двух комплексных чисел.

Краткое решение и ответ в конце урока.

Выражения – хорошо, а уравнения – лучше:

Уравнения с комплексными коэффициентами

В свете вышеприведённого замечания начнём с этого примера:

Уверенно упрощаем среднюю дробь:

Результат переносим в правую часть и находим разность:

Примечание: и вновь обращаю ваше внимание на содержательный момент – здесь мы не вычли из числа число, а подвели дроби к общему знаменателю! Следует отметить, что уже в ХОДЕ решения не возбраняется работать и с числами: , правда, в рассматриваемом примере такой стиль скорее вреден, чем полезен =)

Теперь можно снова разделить и умножить на сопряжённое выражение, но подозрительно похожие числа числителя и знаменателя подсказывают следующий ход:

Ответ:

В целях проверки подставим полученное значение в левую часть исходного уравнения и проведём упрощения:

– получена правая часть исходного уравнения, таким образом, корень найден верно.

…Сейчас-сейчас… подберу для вас что-нибудь поинтереснее… держите:

Данное уравнение сводится к виду , а значит, является линейным. Намёк, думаю, понятен – дерзайте!

Конечно же… как можно без него прожить:

Квадратное уравнение с комплексными коэффициентами

На уроке Комплексные числа для чайников мы узнали, что квадратное уравнение с действительными коэффициентами может иметь сопряжённые комплексные корни, после чего возникает закономерный вопрос: а почему, собственно, сами коэффициенты не могут быть комплексными? Сформулирую общий случай:

Квадратное уравнение с произвольными комплексными коэффициентами (1 или 2 из которых либо все три могут быть, в частности, и действительными) имеет два и только два комплексных корня (возможно один из которых либо оба действительны). При этом корни (как действительные, так и с ненулевой мнимой частью) могут совпадать (быть кратными).

Найти корни квадратного уравнения

Решение: на первом месте расположена мнимая единица, и, в принципе, от неё можно избавиться (умножая обе части на ), однако, в этом нет особой надобности.

Для удобства выпишем коэффициенты:

А вот и главное препятствие:

Возведём обе части в квадрат:

Два комплексных числа равны, если равны их действительные и их мнимые части. Таким образом, получаем следующую систему:

Очевидно, что 1-му уравнению системы удовлетворяют две последние пары, таким образом:

Не помешает промежуточная проверка:

что и требовалось проверить.

Находим корни, не забывая, кстати, что :

Ответ:

Проверим, удовлетворяют ли найденные корни уравнению :

Таким образом, решение найдено правильно.

По мотивам только что разобранной задачи:

Найти корни уравнения

Следует отметить, что квадратный корень из чисто комплексного числа прекрасно извлекается и с помощью общей формулы , где , поэтому в образце приведены оба способа. Второе полезное замечание касается того, что предварительное извлечение корня из константы ничуть не упрощает решение.

А теперь можно расслабиться – в этом примере вы отделаетесь лёгким испугом :)

Решить уравнение и выполнить проверку

Решения и ответы в конце урока.

Заключительный параграф статьи посвящён

системе уравнений с комплексными числами

Расслабились и… не напрягаемся =) Рассмотрим простейший случай – систему двух линейных уравнений с двумя неизвестными:

Решить систему уравнений. Ответ представить в алгебраической и показательной формах, изобразить корни на чертеже.

Решение: уже само условие подсказывает, что система имеет единственное решение, то есть, нам нужно найти два числа , которые удовлетворяют каждому уравнению системы.

, значит, система имеет единственное решение.

Повторюсь, что лучше не торопиться и прописывать шаги максимально подробно:

Домножаем числитель и знаменатель на мнимую единицу и получаем 1-й корень:

Перед тем, как продолжать дальше, целесообразно проверить решение. Подставим найденные значения в левую часть каждого уравнения системы:


Получены соответствующие правые части, ч.т.п.

Представим корни в показательной форме. Для этого нужно найти их модули и аргументы:

Ответ:

Решить систему уравнений

Найти произведение корней и представить его в тригонометрической форме.

Краткое решение совсем близко.

И в заключение ответим на экзистенциальный вопрос: для чего нужны комплексные числа? Комплексные числа нужны для расширения сознания выполнения заданий других разделов высшей математики, кроме того, они используются во вполне материальных инженерно-технических расчетах на практике.

На этом курс Опытного пользователя комплексных чисел завершён – сертификат вам на стену и новых достижений!

Решения и ответы:

Пример 2: Решение: если , то:

Умножим числитель и знаменатель на сопряжённое знаменателю выражение:

Изобразим полученное число на чертеже:

Представим ответ в показательной форме. Найдем модуль и аргумент данного числа:

Поскольку число расположено в 3-й четверти, то:

Таким образом:
Ответ:

Пример 4: Решение:

Пример 6: Решение:

Умножим обе части уравнения на :

Ответ:

Пример 8: Решение:
Первый способ: корни уравнения ищем в виде:

Возведём обе части в квадрат:

Комплексные числа равны, если равны их действительные и их мнимые части:

Из 1-го уравнения следует, что:
1) , но это не удовлетворяет 2-му уравнению (равенство выполняется только в том случае, если и одного знака);
2) – подставим во 2-е уравнение:

Таким образом: либо
Ответ:

Второй способ: используем формулу . В данном случае :

Найдём модуль и аргумент комплексного числа:
;
очевидно, что .
Таким образом:

Ответ:

Пример 9: Решение: . Вычислим дискриминант:

Таким образом:

Ответ:

Проверка: подставим в исходное уравнение :

верное равенство;

верное равенство.
Что и требовалось проверить.

Пример 11: Решение: систему решим методом Крамера:

Таким образом, система имеет единственное решение.
Найдём произведение корней:

Представим результат в тригонометрической форме:

Ответ:

Автор: Емелин Александр

(Переход на главную страницу)

cкидкa 15% на первый зaкaз, при оформлении введите прoмoкoд: 5530-hihi5

Введение комплексных чисел было связано с открытием решения кубического уравнения, т.е. ещё в 16 веке.

И до этого открытия при решении квадратного уравнения x2 + + = px приходилось сталкиваться со случаем, когда требовалось извлечь квадратный корень из (p/2)2 — q, где величина (p/2)2 была меньше, чем q. Но в таком случае заключали, что уравнение не имеет решений. О введении новых (комплексных) чисел в это время (когда даже отрицательные числа считались “ложными”) не могло быть и мысли. Но при решении кубического уравнения по правилу Тартальи оказалось, что без действий над мнимыми числами нельзя получить действительный корень.

Теория комплексных чисел развивалась медленно: ещё в 18 веке крупнейшие математики мира спорили о том, как находить логарифмы комплексных чисел. Хотя с помощью комплексных чисел удалось получить много важных фактов, относящихся к действительным числам, но самое существование комплексных чисел многим казалось сомнительным. Исчерпывающие правила действий с комплексными числами дал и в 18 веке русский академик Эйлер – один из величайших математиков всех времён и народов. На рубеже 18 и 19 веков было указано Весселем (Дания) и Арганом (Франция) геометрическое изображение комплексных чисел. Но на работы Весселя и Аргана не обратили внимания, и лишь в 1831 г. когда тот же способ был развит великим математиком Гауссом (Германия), он стал всеобщим достоянием.

2.О комплексных числах.

Всвязи с развитием алгебры потребовалось ввести сверх прежде известных положительных и отрицательных чисел числа нового рода. Онии называются комплексными.

Комплексное число имеет вид a + bi; здесь a и b – действитель-

ные числа , а i – число нового рода, называемое мнимой единицей.

“Мнимые” числа составляют частный вид комплексных чисел

Нужна помощь в написании доклада?

Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

(когда а = 0). С другой стороны, и действительные числа являются частным видом комплексных чисел (когда b = 0).

Действительное число a назовем абсциссой комплексного числа a + bi; действительное число b – ординатой комплексного числа

a + bi. Основное свойство числа i состоит в том, что произведе-

ние i*i равно –1, т.е.

Долгое время не удавалось найти такие физические величины, над которыми можно выполнять действия, подчинённые тем же правилам, что и действия над комплексными числами – в частности правилу (1). Отсюда названия: “мнимая единица”, “мнимое число” и т.п. В настоящее время известен целый ряд таких физических величин, и комплексные числа широко применяются не только в математике, но также и в физике и технике.

Оставим в стороне вопрос о геометрическом или физическом смысле числа i, потому что в разных областях науки этот смысл различен.

Правило каждого действия над комплексными числами выводится из определения этого действия. Но определения действий над комплексными числами не вымышлены произвольно, а установлены с таким расчетом, чтобы согласовались с правилами действий над вещественными числами. Ведь комплексные числа должны рассматриваться не в отрыве от действительных, а совместно с ними.

Нужна помощь в написании доклада?

Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

3. Соглашение о комплексных числах.

1. Действительное число а записывается также в виде a + 0i (или a – 0i).

П р и м е р ы. Запись 3 + 0i обозначает то же, что запись 3. Запись –2 + 0i означает –2.

2. Комплексное число вида 0 + bi называется “чисто мнимым”. Запись bi обозначает то же, что 0 + bi.

3. Два комплекных a + bi, a’ + b’i считаются равными, если у них соответственно равны абсциссы и ординаты, т. е. Если

a = a’, b = b’. В противном случае комплексные числа не равны. Это определение подсказывается следующим соображением. Если бы могло существовать, скажем, такое равенство:

2 + 5i = 8 + 2i, то по правилам алгебры мы имели бы i = 2, тогда как i не должно бать действительным числом.

З а м е ч а н и е. Мы еще не определили, что такое с л о ж е н и е комплексных чисел. Поэтому, строго говоря, мы ещё не в праве утверждать, что число 2 + 5i есть сумма чисел 2 и 5i. Точнее было бы сказать, что у нас есть пара действительных чисел: 2 (абсцисса) и 5 (ордината); эти числа порождают число нового рода, условно обозначаемое 5 + 7i.

Нужна помощь в написании доклада?

Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

4.Сложение комплексных чисел

О п р е д е л е н и е. Суммой комплексных чисел a + bi и a’ + b’i называют комплексное число (a + a’) + (b + b’)i.

Пример 1. (-3 + 5i) + (4 – 8i) = 1 — 3i

Пример 2. (2 + 0i) + (7 + 0i) = 9 + 0i. Так как запись 2 + 0i означает то же, что и 2 и т. д., то наполненное действие согласуется с обычной арифметикой (2 + 7=9).

Пример 3. (0 + 2i) + (0 + 5i) = 0 + 7i, т. е. 2i + 5i = 7i

Пример 4. (-2 + 3i) + ( — 2 – 3i) = — 4

В примере 4 сумма двух комплексных чисел равна действительному числу. Два комплексных числа a+bi и a-bi называются сопряженными. Сумма сопряженных комплексных чисел равна действительному числу.

З а м е ч а н и е. Теперь, когда действие сложения определено, мы имеем право рассматривать комплексное число a + bi как сумму чисел a и bi. Так, число 2 и число 5i в сумме дают число 2 + 5i.

Нужна помощь в написании доклада?

Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

4.Вычитание комплексных чисел.

О п р е д е л е н и е. Разностью комплексных чисел a + bi (уменьшаемое) и a’ + b’i (вычитаемое) называется комплексное число (a – a’) + (b – b’)i.

Пример 1. (-5 + 2i) – (3 – 5i) = -8 + 7i

Пример 2. (3 + 2i) – (-3 + 2i) = 6 + 0i = 6

5.Умножение комплексных чисел.

Определение умножения комплексных чисел устанавливается с таким расчетом, чтобы 1) числа a + bi и a’ + b’i можно было перемножать, как алгебраические двучлены, и чтобы 2) число i обладало свойством i 2­­­­­= — 1. В силу требования 1) произведение (a + bi)(a’ + b’i) должно равняться aa’ + (ab’ + ba’)i + bb’i2­­­ ­, а в силу требования 2) это выражение должно равняться (aa’ – bb’) + (ab’ + ba’)i. В соответствии с этим устанавливается следующее определение.

О п р е д е л е н и е. Произведением комплексных чисел a + bi и a’ + b’i называется комплексное число

(aa’ – bb’) + (ab’ + ba’)i.

Нужна помощь в написании доклада?

Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

З а м е ч а н и е 1. Равенство i2­­­­­­­­­­­ = -1 до установленного правила умножения комплексных чисел носило характер требования. Теперь оно вытекает из определения. Ведь запись i 2 ­­­­­­­­­­­­, т. е. i*i, равнозначна записи (0 + 1*i)(0 + 1*i). Здесь a = 0, b = 1, a’ = 0, b’ = 1 Имеем aa’ – bb’ = -1, ab’ + ba’ = 0, так что произведение есть –1 + 0i, т. е. –1.

З а м е ч а н и е 2. На практике нет нужды пользоваться формулой произведения. Можно перемножить данные числа, как двучлены, а затем положить, что i2­­­­ = -1.

Пример 1. (1 – 2i)(3 + 2i) = 3 – 6i + 2i – 4i 2 ­ = 3 – 6i + 2i + 4 = 7 – 4i.

Пример 2. (a + bi)(a – bi) = a2 + b 2

Пример 2 показывает, что произведение сопряженных комплексных чисел есть действительное и притом положительное число.

6. Деление комплексных чисел.

Всоответсвии с определением деления действительных чисел устанавливается следующее определение.

О п р е д л е н и е. Разделить комплексное число a + bi на комплексное число a’ + b’i – значит найти такое число x + yi, которое, будучи помножено на делитель, даст делимое.

Нужна помощь в написании доклада?

Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

Если делитель не равен нулю, то деление всегда возможно, и частное единственно ( доказательство смотри в замечании 2). На практике частное удобнее всего находить следующим образом.

Пример 1. Найти частное (7 – 4i):(3 + 2i).

Записав дробь (7 – 4i)/(3 + 2i), расширяем её на число 3 – 2i, сопряженное с 3 + 2i. Получим:

((7 – 4i)(3 — 2i))/((3 + 2i)(3 – 2i)) = (13 – 26i)/13 = 1 – 2i.

Пример 1 предудущего параграфа даёт проверку.

Пример 2. (-2 +5i)/(-3 –4i) = ((-2 + 5i)(-3 – 4i))/((-3 – 4i)( -3 + 4i)) = (-14 –23i)/25 = -0,56 – 0.92i.

Проступая, как в примерах 1 и 2, найдем общую формулу:

Чтобы доказать, что правая часть действительно является частным, достаточно помножить её на a’ + b’. Получим a + bi.

Нужна помощь в написании доклада?

Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

З а м е ч а н и е 1. Формулу (1) было бы принять за определение деления.

З а м е ч а н и е 2. Формулу (1) можно вывести ещё следующим образом. Согласно определению, мы должны иметь: (a’ + b’i)(x + yi) = a + bi. Значит, должны удовлетворяться следующие два уравнения:

a’x – b’y = a; b’x + a’y = b.

Эта система имеет единственное решение:

если a’/b’ = -b’/a’, т. е. если a’2 + b’2 = 0.

Остается рассмотреть случай a’2 + b’ 2 = 0. Он возможен лишь тогда, когда a’ = 0 и b’ = 0, т. е. когда делитель a’ + b’i равен нулю. Если при этом и делимое a + bi равно нулю, то частное неопределено. Если же делимое не равно нулю, то частное не существует (говорят, что оно равно бесконечности).

7. Геометрическое изображение комплексных чисел.

Действительные числа можно изобразить точками прямой линии, как показано на фиг.1, где точка А изображает число ; а точка В – число –5. Эти же числа можно изображать также

Нужна помощь в написании доклада?

Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

отрезками ОА,ОВ, учитывая не только их длину, но и направление.

Каждая точка М “числовой прямой” изображает некоторое действительное число (рациональное, если отрезок ОМ соизмерим с единицей длины, и иррациональное, если несоизмерим ). Таким образом, на числовой прямой не остаётся места для комплексных чисел.

Но комплексные числа можно изобразить на числовой плоскости прямоугольную систему координат с одним и тем же масштабом на обеих осях (фиг.2). Комплексное число a + bi мы изображаем точкой М, у которой абсцисса х ( на фиг.2 х=ОР=

=QM) равна абсциссе а комплексного, а ордината у (OQ=РM) равна ординате b комплексного числа.

П р и м е р ы. На фиг. 3 точка А с абсциссой х=3 и ординатой у=5 изображает комплексное число 3 + 5i. Точка В изображает комплексное число –2 + 6i; точка С – комплексное число – 6 – 2i; точка D – комплексное число 2 – 6i.

Действительные числа ( в комплексной форме они имеют вид a + 0i) изображают точками оси Х, а чисто мнимые – точками оси У.

П р и м е р ы. Точка К на фиг. 3 изображает действительное число 6, точка L – чисто мнимое число 3i; точка N – чисто мнимое число – 4i . Начало координат изображают число 0.

Сопряжённые комплексные числа изображаются парой точек, симметричных относительно оси абсцисс; так, точки С и С’ на фиг. 3 изображают сопряжённые числа –6 – 2i и — 6 + 2i.

Нужна помощь в написании доклада?

Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

Комплексные можно изображать также отрезками, начинающимися в точке О и оканчивающимися в соответствующей точке числовой плоскости. Так, комплексное число -2 + 6i можно изобразить не только точкой В (фиг. 4), но также вектором ОВ; комплексное число –6 – 2i изображается вектором ОС и т. д.

З а м е ч а н и е. Давая какому – либо отрезку наименование “вектор”, мы подчёркиваем, что существенное значение имеет не только длина, но и направление отрезка.

8. Модуль и аргумент комплексного числа.

Длина вектора, изображающего комплексное число, называется модулем этого комплексного числа. Модуль всякого комплексного числа, не равного нулю, есть положительное число. Модуль комплексного числа a + bi обозначается | a + bi |, а также буквой r. Из чертежа видно, что

r = | a + bi | = a2 + b2

Модуль действительного числа совпадает с его абсолютным значением. Сопряжённые комплексные числа a + bi u a – bi имеют один и тот же модуль.

9. Геометрический смысл сложения и вычитания

Нужна помощь в написании доклада?

Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

Пусть векторы ОМ и ОМ’ (фиг. 4) изображают комплексные числа z= x + yi u z’ = x’ + y’i. Из точки М проведем вектор МК, равный OM’. Тогда вектор ОК изображает сумму данных комплексных чисел.

Построенный указанным образом вектор ОК называется геометрической суммой векторов ОМ и ОМ’.

Итак, сумма двух комплексных чисел представляется суммой векторов, изображающих отдельные слагаемые.

Длина стороны ОК треугольника ОМК меньше суммы и больше разницы длин ОМ и МК. Поэтому

Это выражение называется нормальной тригонометрической формой или, короче, тригонометрической формой комплексного числа. ­

Читайте также: