Расчет второй космической скорости сообщение

Обновлено: 05.07.2024

Калькулятор Вторая космическая скорость, онлайн расчет позволит вам рассчитать вторую космическую скорость объекта, для преодоления гравитационного притяжения одной из планет солнечной системы, либо планеты произвольной массы и радиуса.

Калькуляторы по физике

Первая космическая скорость, онлайн расчет

Ускорение движения тела, онлайн расчет

Узнать свой вес на других планетах

Код для вставки без рекламы с прямой ссылкой на сайт

Код для вставки с рекламой без прямой ссылки на сайт

Скопируйте и вставьте этот код на свою страничку в то место, где хотите, чтобы отобразился калькулятор.

Здесь приведены формулы и примеры расчета первой и второй космической скорости для небесных тел произвольной массы и радиуса. Для быстрого расчета можно воспользоваться онлайн-калькулятором.

Первая космическая скорость

Первая космическая скорость - это скорость, которую нужно придать телу, масса которого пренебрежительно мала по сравнению с массой планеты, чтобы это тело стало спутником планеты и вращалось вокруг нее по круговой траектории. Примечание: если скорость будет выше заданной (но меньше второй космической), то траектория орбиты будет не круговой, а эллипсоидной.

Формула первой космической скорости

Формула первой космической скорости:

где
G - гравитационная постоянная (постоянная Ньютона), равная 6,6743015·10 -11 м 3 /(кг*с 2 ), или Н*м 2 /кг 2
R - радиус небесного тела
M - масса небесного тела

Вторая космическая скорость

Вторая космическая скорость - это минимальная скорость, которой должно обладать тело, чтобы преодолеть гравитационное притяжение планеты и покинуть замкнутую орбиту вокруг нее.

Формула второй космической скорости

Формула второй космической скорости:

где
G - гравитационная постоянная
R - радиус небесного тела
M - масса небесного тела

Пример:

Масса планеты Земля составляет 5,9726*10 24 кг, средний радиус - 6371 км (или 6371000 м). Подставив эти значения в формулы первой и второй космических скоростей, мы получим значение соответственно 7 910 м/с и 11 187 м/с.

Теперь рассчитаем значение космических скоростей для планеты Нептун. Масса Нептуна - 1,0243*10 26 кг. средний радиус - 24 622 км (24 622 000 м). В итоге получим значения - 16 663 м/с и 23 565 м/с.

Значения для Марса (6,4171*10 23 кг и 3389,5 км) будет 3 555 м/с и 5 027 м/с. Для Венеры (4,8675*10 24 кг и 6051,8 км) - 7 327 м/с и 10 362 м/с соответственно.


Из школьного курса физики мы помним, что первая космическая скорость Земли – это показатель, которого необходимо достичь, чтобы объект мог выйти на эллиптическую орбиту вращения вокруг планеты. Это же, собственно, касается и любого массивного космического тела. В свою очередь, вторая космическая скорость – это предел, необходимый для того, чтобы полностью покинуть гравитационное поле планеты.

Вторая космическая скорость зависит от ряда параметров и для каждого космического объекта – отличается. Давайте рассмотрим, по какому принципу она вычисляется, и разберем примеры для крупных планет Солнечной Системы, Солнца и Луны.

Как рассчитать вторую космическую скорость

Вторая космическая скорость зависит от массы и радиуса небесного тела. Условно можно себе представить, что для ее расчета можно пойти от обратного решения задачи. То есть, вычислить скорость с какой объект будет падать на планету из космоса. По модулю это и будет вторая космическая скорость.

Итак, учитывая закон сохранение кинетической и потенциальной энергий при движении тел, можно вывести такую формулу в падающем объекте на небесное тело:


Где m – масса стартующего объекта, М – масса небесного тела, R – сумма радиуса планеты и высоты расположение объекта над поверхностью, G – гравитационная постоянная, V – искомая вторая космическая скорость. Таким образом, из формулы можно вычислить V:

Это и будет решение нашей задачи со знанием всего двух параметров – радиуса небесного тела и его массы.

Вторая скорость для разных небесных тел

Итак, попробуем на основании выведенной формулы рассчитать вторую космическую скорость для разных небесных тел Солнечной Системы, учитывая что их радиус и массу мы знаем.

Начнем с самого простого – Земли. Радиус нашей планеты равен 6,37 тысяч километров, а масса – 5,97 х 10²³ кг. Подставляем в нашу формулу и получаем – вторая космическая скорость Земли равна 11,2 километра в секунду. Именно до таких цифр нужно разогнать гипотетический объект, чтобы он покинул зону гравитационного притяжения нашей планеты.

Теперь можно перейти к нашей звезде и посчитать вторую космическую скорость для Солнца. Радиус его равен 696 тысяч километров, а масса 1,989 х 10³⁰ кг. Расчеты по формуле дают результат в 617,7 километров в секунду! До такой скорости нужно разогнать предмет, чтобы он смог покинуть нашу Солнечную Систему и попасть в межзвездное пространство.

Теперь попробуем вычислить показатель для остальных планет системы. Итак, радиус и масса Меркурия составляют соответственно 2,438 тысяч километров и 330 х 10²¹ кг. Подставив в формулу цифры, получаем вторую космическую скорость Меркурия 4,3 км/с.

Идем далее и получаем такие цифры – вторая космическая скорость Венеры – 11,2 километров в секунду, Марса – 5,0 км/с, Юпитера – 61 км/с, Сатурна – 36 км/с, Нептуна – 24 км/с, Урана – 22 км/с, Луна – 2,4 км/с.

Таким образом, мы видим, что преимущественно чем массивнее планета (а вернее, чем плотнее, потому что радиус тоже важен) – тем больше нужна скорость, чтобы объект мог вырваться за пределы гравитационного влияния.

Показательными и интересными также являются примеры третей и четвертой космических скоростей. Что это за параметры? Если говорить грубо – то третья космическая скорость, это вторая космическая для Солнца, но высчитываемая вблизи Земли. Простыми словами – какую скорость нужно развить с Земли, чтобы покинуть Солнечную Систему? Посчитав по формуле, получим 16,65 километров в секунду.


Четвертая космическая скорость показывает, до какой цифры нужно разогнаться чтобы покинуть галактику из заданной точки. Для Млечного пути этот показатель будет разным в зависимости от выбранной координаты. Ближе к центральной сверхмассивной черной дыре он будет гигантским, ближе к периферии галактики – меньше. Примерно в области нашей Солнечной Системы четвертая космическая скорость равна 550 километрам в секунду!

Любой предмет, будучи подброшенным вверх, рано или поздно оказывается на земной поверхности, будь то камень, лист бумаги или простое перышко. В то же время, спутник, запущенный в космос полвека назад, космическая станция или Луна продолжают вращаться по своим орбитам, словно на них вовсе не действует сила притяжения нашей планеты. Почему так происходит?

На нашей Земле всемирное тяготение воздействует на любое материальное тело. Тогда логично будет предположить, что есть некая сила, нейтрализующая действие гравитации. Эту силу принято называть центробежной.

Центробежную силу легко ощутить привязав на один конец нитки небольшой груз и раскрутив его по окружности. При этом чем больше скорость вращения тем сильнее натяжение нити, а чем медленнее вращаем мы груз тем больше вероятность, что он упадет вниз.


Траектория полета космических кораблей

Это также значит, что космическая скорость есть у каждого объекта, который движется по орбите. Размер и форма орбиты космического объекта зависят от величины и направления скорости, которую данный объект получил на момент выключения двигателей, и высоты, на которой произошло данное событие.

Космическая скорость (первая v1, вторая v2, третья v3 и четвёртая v4) — это минимальная скорость, при которой какое-либо тело в свободном движении сможет:

  • v1 — стать спутником небесного тела (то есть способность вращаться по орбите вокруг небесного тела и не падать на его поверхность);
  • v2 — преодолеть гравитационное притяжение небесного тела и начать двигаться по параболической орбите;
  • v3 — покинуть при запуске планету, преодолев притяжение Звезды;
  • v4 — при запуске из планетной системы объект покинул Галактику.

Космические скорости могут быть рассчитаны для любого удаления от центра Земли. Однако в космонавтике часто используются величины, рассчитанные конкретно для поверхности шаровой однородной модели Земли радиусом 6371 км.

Первая космическая скорость


Первая космическая скорость или Круговая скорость V1 — скорость, которую необходимо придать объекту без двигателя, пренебрегая сопротивлением атмосферы и вращением планеты, чтобы вывести его на круговую орбиту с радиусом, равным радиусу планеты.

Иными словами, первая космическая скорость — это минимальная скорость, при которой тело, движущееся горизонтально над поверхностью планеты, не упадёт на неё, а будет двигаться по круговой орбите.

Формула

где G — гравитационная постоянная (6,67259·10−11 м³·кг−1·с−2), — первая космическая скорость. Подставляя численные значения (для Земли M = 5,97·1024 кг, R = 6 378 км), найдем

7,9 км/с

Первую космическую скорость можно определить через ускорение свободного падения —


Вторая космическая скорость

Вторая космическая скорость (параболическая скорость, скорость убегания) — наименьшая скорость, которую необходимо придать объекту (например, космическому аппарату), масса которого пренебрежимо мала относительно массы небесного тела (например, планеты), для преодоления гравитационного притяжения этого небесного тела.

Предполагается, что после приобретения телом этой скорости оно не получает негравитационного ускорения (двигатель выключен, атмосфера отсутствует).


Вторая космическая скорость определяется радиусом и массой небесного тела, поэтому она своя для каждого небесного тела (для каждой планеты) и является его характеристикой:

  • для Земли вторая космическая скорость равна 11,2 км/с. Тело, имеющее около Земли такую скорость, покидает окрестности Земли и становится спутником Солнца.
  • для Солнца вторая космическая скорость составляет 617,7 км/с.
  • для Луны скорость убегания равна 2,4 км/с , несмотря на то, что в действительности для удаления тела на бесконечность с поверхности Луны необходимо преодолеть притяжение Земли, Солнца и Галактики.

Параболической вторая космическая скорость называется потому, что тела, имеющие вторую космическую скорость, движутся по параболе.

Формула

Для получения формулы второй космической скорости удобно обратить задачу — спросить, какую скорость получит тело на поверхности планеты, если будет падать на неё из бесконечности. Очевидно, что это именно та скорость, которую надо придать телу на поверхности планеты, чтобы вывести его за пределы её гравитационного влияния .


Третья космическая скорость

Третья космическая скорость минимально необходимая скорость тела без двигателя, позволяющая преодолеть притяжение Солнца и в результате уйти за пределы Солнечной системы.


Только на космических кораблях, которым доступны такие скорости, принципиально могут быть осуществлены пилотируемые межзвёздные перелёты к планетным системам других звёзд.

Взлетая с поверхности Земли и наилучшим образом используя орбитальное движение планеты космический аппарат может достичь третей космической скорости уже при 16,6 км/с относительно Земли, а при старте с Земли в самом неблагоприятном направлении его необходимо разогнать до 72,8 км/с.

Здесь для расчёта предполагается, что космический аппарат приобретает эту скорость сразу на поверхности Земли и после этого не получает негравитационного ускорения (двигатели выключены и сопротивление атмосферы отсутствует). Если к тому же учесть притяжение других планет, которое может как ускорить, так и притормозить аппарат, то диапазон возможных значений 3-й космической скорости станет еще больше.

При наиболее энергетически выгодном старте скорость объекта должна быть сонаправлена скорости орбитального движения Земли вокруг Солнца. Орбита такого аппарата в Солнечной системе представляет собой параболу.

Четвёртая и пятая космическая скорости

Четвёртая космическая скорость — минимально необходимая скорость тела без двигателя, позволяющая преодолеть притяжение галактики Млечный Путь. Она используется довольно редко.


Четвёртая космическая скорость не постоянна для всех точек Галактики, а зависит от расстояния до центральной массы.

Для нашей галактики таковой является объект Стрелец A*, сверхмассивная чёрная дыра.

По грубым предварительным расчётам в районе нашего Солнца четвёртая космическая скорость составляет около 550 км/с. Значение сильно зависит не только (и не столько) от расстояния до центра галактики, а от распределения масс вещества по Галактике, о которых пока нет точных данных, ввиду того что видимая материя составляет лишь малую часть общей гравитирующей массы, а все остальное — скрытая масса.

Видео

Чтобы внести ясность в то, какие необходимы условия для того, чтобы тело стало искусственным спутником Земли, предложен рисунок 1 . Это копия ньютоновского чертежа. Изображение земного шара дополнено высокой горой, с вершины которой производят бросание камней, придавая им различные по модулю и горизонтально направленные скорости. Действие силы тяжести способствует отклонению движущихся камней от прямолинейного пути. После описания кривой траектории он падает на Землю.

Космические скорости

Если прилагать больше сил при бросании, то он упадет дальше. Отсюда следует, что при отсутствии сопротивления воздуха и при наличии большой скорости тело может даже не приземляться на поверхность. Это говорит о его дальнейшем описывании круговых траекторий, не изменяя высоты относительно земной поверхности.

Первая космическая скорость

Чтобы движение вокруг Земли проходило по круговой орбите с радиусом, схожим с земным R з , тело должно обладать определенной скоростью υ 1 , которую можно определить из условия равенства произведения массы тела на ускорение силы тяжести, действующей на тело.

Для того, чтобы какое-либо тело могло стать спутником Земли, ему должна быть сообщена скорость υ 1 , называемая первой космической. При подстановке значений g и R з в формулу, получаем, что

υ 1 = g R з = 8 к м / с .

Вторая космическая скорость

Если тело обладает скоростью υ 1 , то впоследствии при движении не упадет. Но значения
υ 1 недостаточно для выхода из сферы земного притяжения, то есть удалиться от Земли на расстояние, при котором оно теряет свою силу. Для этого нужна скорость υ x , которая получила название второй космической или скорость убегания.

Для ее нахождения следует произвести вычисление работы, потраченную против сил земного притяжения для соударения с поверхности Земли на бесконечность. При удалении такого тела получаем:

m υ 2 2 2 - G m M R = 0 , R = h + r

где m – масса брошенного тела, М – масса планеты, r – радиус планеты, h – длина от основания до его центра масс, G – гравитационная постоянная, υ 2 - вторая космическая скорость.

Решив уравнение относительно υ 2 , получим:

Существует связь между первой и второй скоростями

Квадрат скорости убегания равняется ньютоновскому потенциалу в заданной точке, то есть:

υ 2 2 = - 2 Φ = 2 G M R .

Скорость υ 2 считается за вторую космическую. Из сравнений видно, что она в 2 раза больше первой. Если умножить 8 к м / с на 2 , то получим значение для υ 2 , приблизительно равняющееся 11 к м / с .

Нужная величина скорости не зависит от направления движения тела. На это влияет вид траектории, по которой происходит удаление от земной поверхности.

Чтобы тело смогло стартовать с поверхности планеты, оно должно обладать второй космической скоростью при малом значении h и большом значении гравитационной силы. Как только ракета начнет удаляться от Земли, гравитационная постоянная будет уменьшаться вместе со значением, необходимым для убегания кинетической энергии.

Третья космическая скорость

Для выхода за пределы Солнечной системы телу следует преодолеть как силу притяжения к Земле, так и к Солнцу. Для этого применяется третья космическая скорость υ 3 , позволяющая запускать тело с земной поверхности.

Значение υ 3 зависит от направления. Если запуск производится в направлении орбитального движения Земли, тогда ее значение минимально и составит около 17 к м / с . Когда тело запущено противоположно направлению движения Земли, тогда значение скорости υ 3 ≈ 73 .

Еще в СССР были достигнуты космические скорости.

  • Первый запуск искусственного спутника был осуществлен 4 октября 1957 года.
  • Уже 2 января 1959 ученым удалось найти решения для преодоления сферы земного притяжения. Поэтому запущенная ракета стала первой космической планетой Солнечной системы.
  • Дата 12 апреля 1961 года известна, так как был осуществлен полет человека в космическое пространство. Юрий Алексеевич Гагарин был первым советским космонавтом, совершившим один оборот вокруг Земли, после чего благополучно приземлился.

Определить первую космическую скорость для спутника Юпитера, летающего на небольшой высоте, если дана масса планеты, равная 1 , 9 · 10 27 к г , а ее радиус R = 7 , 13 · 10 7 м .

Дано:

B = 1 , 9 · 10 27 к г ,

R = 7 , 13 · 10 7 м .

Найти: υ 1 - ?

Решение

Для начала запишем формулу для нахождения первой космической скорости: υ 1 = g R 3 ( 1 ) .

Значение g принимает ускорение свободного падения на Юпитере.

Из закона всемирного тяготения получаем, что m g = G M m r 2 ( 2 ) .

Значение m определено как масса спутника, а М – масса самой планеты.

Если высота спутника над поверхностью Юпитера сравнительно мала относительно его радиуса, тогда ею разрешено пренебречь: r = R .

Получаем, что из уравнения ( 2 ) найдем ускорение свободного падения для планеты из

После подстановки в уравнение ( 1 ) , сможем найти первую космическую скорость.

Читайте также: