Применение закона импульса при движении ракет сообщение физика гдз

Обновлено: 02.07.2024

В ракетном двигателе вещество специально выбрасывают из системы, чтобы создать равную и противоположную реакцию остаточному.

Задача обучения

  • Указать на физические принципы ракетного двигателя.

Основные пункты

  • Все реактивные движения ракет объясняются третьим законом движения Ньютона.
  • Ускорение ракеты зависит от скоростей выхлопа и выталкивания выхлопных газов, а также от массы ракеты.
  • Чтобы набрать высокую скорость, нужно воспользоваться орбитой или полной земной гравитацией, а масса ракеты должна им уступать.

Термин

  • Третий закон движения Ньютона – все силы существуют в парах. Если объект А влияет силой FA на В, то В также отвечает силой FB на А. Значит, обе силы равны и противоположны: FA = -FB.

Ракетное движение, изменение массы и импульс

Интересно, что движение ракет, кальмаров, воздушных шаров и прочих подобных механизмов объясняются третьим законом движения Ньютона. Вещество намеренно выталкивают из системы, формируя равную и противоположную реакцию оставшемуся веществу. Это можно проследить в отдаче пистолета. Оружие влияет силой на пулю, чтобы придать ей ускорение, а значит испытывает равную и противоположную силу, из-за чего и возникает эффект отдачи.

Получается, что центр масс расположен в свободном падении, но стремительно вытесняет массу. Часть системы может ускоряться вверх. Многие заблуждаются, думая, что выхлопная ракета оказывает давление на землю. Если мы рассмотрим все силы, то поймем, что тяга больше в космическом пространстве, чем в атмосфере, поэтому газы намного проще вытеснить в вакууме.


(А) – Ракета с массой m и скоростью v. Чистая внешняя сила в системе достигает – mg, если опустить сопротивление воздуха. (B) – Через определенный временной промежуток система обладает двумя частями: выброшенный газ и ракета. Сила реакции – то, что борется с гравитацией

Рассчитывая изменения импульса всей системы по Δt и приравнивая это изменение к импульсу, получим следующее уравнение:


(a – ускорение ракеты, ve – скорость вылета, m – масса ракеты, Δm – масса выброшенного газа, Δt – время выброса газа).

Факторы ускорения

Ускорение ракеты строится на трех главных факторах:

  1. Чем больше скорость выхлопа газов, тем выше ускорение. Предел для ve достигает 2.5 х 10 3 м/с для неядерных силовых установок.
  2. Скорость выброса массы. В уравнении отмечает Δm/Δt. Эту величину именуют тягой. Чем быстрее аппарат сожжет свое топливо, тем выше его тяга и ускорение.
  3. Масса ракеты. Чем она меньше, тем выше ускорение. Во время полета она резко падает, потому что большая часть ракеты выступает топливом для начального отрыва от поверхности. Поэтому максимум скорости достигается с истощением топлива.

Чтобы выйти на большие скорости, нужно воспользоваться орбитой или полностью покинуть земную гравитацию, а ракетная масса не должна оказывать сопротивление. Если пренебречь гравитацией, то финальная скорость:


(In – естественный логарифм соотношения начальной массы ракеты к остаточной после траты топлива). Отметим также, что v – фактическое изменение скорости, поэтому уравнение можно применить к любому сегменту полета.

Импульс тела (Количество движения) — векторная физическая величина, являющаяся мерой механического движения и равная произведению массы тела на его скорость. Импульс обозначается буквой p и имеет такое же направление, как и скорость. Единица измерения импульса:[ p ]= кг м/с. Импульс тела вычисляется по формуле: где m — масса тела, — скорость тела.

Изменение импульса тела равно импульсу силы, действующей на него:.

Закон сохранения импульса (абсолютно упругий удар)

До взаимодействия После взаимодействия

Согласно 3 з-ну Ньютона: , следовательно:

Для замкнутой системы тел выполняется закон сохранения импульса: Геометрическая (векторная) сумма импульсов взаимодействующих тел, составляющих замкнутую систему, остается неизменной.

Закон сохранения импульса лежит в основе реактивного движения. Реактивное движение, используемое ныне в самолетах, ракетах и космических снарядах, свойственно осьминогам, кальмарам, каракатицам, медузам – все они, без исключения, используют для плавания реакцию (отдачу) выбрасываемой струи воды.

Под реактивным понимают движение тела, возникающее при отделении некоторой его части с определенной скоростью относительно тела. При этом возникает так называемая реактивная сила, сообщающая телу ускорение.

Реактивное движение совершает ракета (рис.). Основной частью реактивного двигателя является камера сгорания. В одной из ее стенок имеется отверстие — реактивное сопло, предназначенное для выхода газа, образующегося при сгорании топлива. Высокая температура и давление газа определяют большую скорость истечения его из сопла.

До работы двигателя импульс ракеты и горючего был равен нулю, следовательно, и после включения двигателей геометрическая сумма импульсов ракеты и истекающих газов равна нулю: , где — масса и скорость выбрасываемых газов, — масса и скорость ракеты.

В проекции на ось Oy

— скорость ракеты. Эта формула справедлива при условии небольшого изменения массы ракеты.

Главная особенность реактивного движения состоит в том, что ракета может как ускоряться, так и тормозиться и поворачиваться без какого-либо взаимодействия с другими телами в отличие от всех других транспортных средств.

В природе в качестве примера можно привести реактивное движение у растений: созревшие плоды бешеного огурца; и животных: кальмары, осьминоги, медузы, каракатицы и др. (животные передвигаются, выбрасывая всасываемую ими воду). В технике простейшим примером реактивного движения является сегнеровое колесо, более сложными примерами являются: движение ракет (космических, пороховых, военных), водных средств передвижения с водометным двигателем (гидромотоциклов, катеров, теплоходов), воздушных средств передвижения с воздушно- реактивным двигателем (реактивных самолётов).

3. Каково назначение ракет?

Ракеты используются в различных областях науки и техники: в военном деле, в научных исследованиях, в космонавтике, в спорте и развлечениях.

4. Пользуясь рисунком 45, перечислите основные части любой космической ракеты.

Космический корабль, приборный отсек, бак с окислителем, бак с горючим, насосы, камера сгорания, сопло.

5. Опишите принцип действия ракеты.

В соответствии с законом сохранения импульса ракета летит за счет того, что из неё выталкиваются с большой скоростью газы, обладающие определенным импульсом, и ракете сообщается импульс такой же величины, но направленный в противоположную сторону. Газы выбрасываются через сопло, в котором сгорает топливо достигая при этом высокой температуры и давления. В сопло поступают топливо и окислитель, нагнетаемые туда насосами.

6. От чего зависит скорость ракеты?

Скорость ракеты зависит в первую очередь от скорости истечения газов и массы ракеты. Скорость истечения газов зависит от типа топлива и типа окислителя. Масса ракеты зависит например от того какую скорость ей хотят сообщить или от того, как далеко она должна улететь.

7. В чем заключается преимущество многоступенчатых ракет перед одноступенчатыми?

Многоступенчатые ракеты способны развивать большую скорость и лететь дальше одноступенчатых.


8. Как осуществляется посадка космического корабля?

Посадка космического корабля осуществляется таким образом, чтобы его скорость по мере приближения к поверхности снижалась. Это достигается использованием тормозной системы, в роли которой может выступать или парашютная система торможения или торможение может быть осуществлено с помощью ракетного двигателя, при этом сопло направляется вниз (к Земле, Луне и т.д.), за счет чего гасится скорость.

1. С лодки, движущейся со скоростью 2 м/с, человек бросает весло массой 5 кг с горизонтальной скоростью 8 м/с противоположно движению лодки. С какой скоростью стала двигаться лодка после броска, если её масса вместе с массой человека равна 200 кг?

2. Какую скорость получит модель ракеты, если масса её оболочки равна 300 г, масса пороха в ней 100 г, а газы вырываются из сопла со скоростью 100 м/с? (Считайте истечение газа из сопла мгновенным).

3. На каком оборудовании и как проводится опыт, изображенный на рисунке 47? Какое физическое явление в данном случае демонстрируется, в чем оно заключается и какой физический закон лежит в основе этого явления?
Примечание: резиновая трубка была расположена вертикально до тех пор, пока через неё не начали пропускать воду.

На штатив с помощью держателя прикрепили воронку с присоединенной к ней снизу резиновой трубкой с искревленной насадкой на конце, а снизу разместили лоток. Затем сверху, в воронку из емкости стали лить воду, при этом вода выливалась из трубки в лоток, а сама трубка из вертикального положения сместилась. Этот опыт служит иллюстрацией реактивного движения, основанного на законе сохранения импульса.

4. Проделайте опыт, изображенный на рисунке 47. Когда резиновая трубка максимально отклонится от вертикали, перестаньте лить воду в воронку. Пока оставшаяся в трубке вода вытекает, понаблюдайте, как будет меняться: а) дальность полёта воды в струе (относительно отверстия в стеклянной трубке); б) положение резиновой трубки. Объясните оба изменения.

а) дальность полета воды в струе будет уменьшаться; б) по мере вытекания воды трубка будет приближаться к горизонтальному положению. Эти явления связаны с тем, что давление воды в трубке будет уменьшаться, а следовательно и импульс с которым выбрасывается вода.

1. Основываясь на законе сохранения импульса, объясните, почему воздушный шарик движется противоположно струе выходящего из него сжатого воздуха?

Сначала отверстие шарика завязано.
Шарик с находящимся внутри него сжатым воздухом покоится.
Импульс шарика равен нулю.

При открывании отверстия из него с большой скоростью вырывается струя сжатого воздуха.
Движущийся воздух обладает импульсом, направленным в сторону его движения.

Согласно закону сохранения импульса:
суммарный импульс системы (шарик и воздух в нём) должен остаться прежним, т.е. равным нулю.
Поэтому шарик начинает двигаться в противоположную струе воздуха сторону с такой скоростью.
Импульс шарика равен по модулю импульсу воздушной струи.
Векторы импульсов шарика и воздуха направлены в противоположные стороны.
В результате:
суммарный импульс взаимодействующих тел остаётся равным нулю.
Движение шарика является примером реактивного движения.

2. Каков принцип реактивного движения?

Реактивное движение происходит за счёт того, что от тела отделяется и движется какая-то его часть, в результате чего само тело приобретает противоположно направленный импульс.

3. Приведите примеры реактивного движения тел.

На принципе реактивного движения основано вращение сегнерова колеса.
Вытекающая из сосуда через трубку вода вращает сосуд в направлении, противоположном скорости воды в струях.
Значит, реактивное действие оказывает не только струя газа, но и струя жидкости.

Реактивное движение используют для перемещения и живые существа: осьминоги, кальмары, каракатицы.
Они всасывают, а затем с силой выталкивают из себя воду.

4. Каково назначение ракет? Каково ее устройство и принцип действия?

Ракеты-носители предназначены для вывода в космос искусственных спутников Земли, космических кораблей, автоматических межпланетных станций и других полезных грузов.


В любой ракете всегда есть оболочка и топливо с окислителем.
Оболочка ракеты включает в себя полезный груз (1), приборный отсек (2) и двигатель (5,6).
Основную массу ракеты составляет топливо (4) с окислителем (3).

Топливо и окислитель с помощью насосов подаются в камеру сгорания.
Топливо, сгорая, превращается в газ высокой температуры и высокого давления.
Этот газ мощной струёй устремляется наружу через сопло.

5. От чего зависит скорость ракеты?

Назначение сопла состоит в том, чтобы повысить скорость струи.
От этой скорости зависит скорость ракеты.

Ракета представляет собой замкнутую систему.
До старта импульс ракеты был равен нулю.
По закону сохранения суммарный импульс движущейся оболочки и выбрасываемого газа тоже должен быть равен нулю.
То есть импульс оболочки и противоположный ему импульс струи газа должны быть равны по модулю.
Чем с большей скоростью вырывается газ из сопла, тем больше будет скорость оболочки ракеты.

Помимо скорости истечения газа существуют и другие факторы, от которых зависит скорость движения ракеты.

6. В чём заключается преимущество многоступенчатых ракет перед одноступенчатыми?

В практике космических полётов обычно используют многоступенчатые ракеты, развивающие гораздо большие скорости и предназначенные для более дальних полётов, чем одноступенчатые.

Схема трёхступенчатой ракеты:



После того как топливо и окислитель первой ступени будут полностью израсходованы, эта ступень автоматически отбрасывается и в действие вступает двигатель второй ступени.

Такое уменьшение общей массы ракеты позволяет сэкономить топливо и окислитель и увеличить скорость ракеты.
Затем таким же образом отбрасывается вторая ступень.

7. Как осуществляется посадка космического корабля?

Если посадка не планируется, то третья ступень используется для увеличения скорости ракеты.
Если корабль должен совершить посадку, то она используется для торможения корабля перед посадкой.
Ракету разворачивают на 180°, чтобы сопло оказалось впереди.
Вырывающийся из ракеты газ сообщает ей импульс, направленный против скорости её движения.
Это приводит к уменьшению скорости и даёт возможность осуществить посадку.

Читайте также: