Применение силы лоренца сообщение

Обновлено: 02.07.2024

Выполнил: Студент группы Т-10915Логунова М.В.
ПреподавательВоронцов Б.С.

1. Использование силы Лоренца 4

1.1. Электронно-лучевые приборы 4

1.2 Масс-спектрометрия 5

1.3 МГД генератор 7

1.4 Циклотрон 8

Список использованной литературы 11

Сила Лоренца — сила , с которой электромагнитное поле согласно классической (неквантовой) электродинамике действует на точечную заряженную частицу. Иногда силой Лоренца называют силу, действующую на движущийся со скоростью υ заряд q лишь со стороны магнитного поля , нередко же полную силу — со стороны электромагнитного поля вообще, иначе говоря, со стороны электрического E и магнитного B полей.

В Международной системе единиц (СИ) выражается как:

FЛ = q υ B sin α

Названа в честь голландского физика Хендрика Лоренца , который вывел выражение для этой силы в 1892 году . За три года до Лоренца правильное выражение было найдено О. Хевисайдом .

Макроскопическим проявлением силы Лоренца является сила Ампера .

Действие, оказываемое магнитным полем на движущиеся заряженные частицы, очень широко используют в технике.

Основным применением силы Лоренца (точнее, её частного случая — силы Ампера ) являются электрические машины (электродвигатели и генераторы). Сила Лоренца широко используется в электронных приборах для воздействия на заряженные частицы ( электроны и иногда ионы ), например, в телевизионных электронно-лучевых трубках , в масс-спектрометрии и МГД-генераторах .

Также в созданных в настоящее время экспериментальных установках для осуществления управляемой термоядерной реакции действие магнитного поля на плазму используют для скручивания ее в шнур, не касающийся стенок рабочей камеры. Движение заряженных частиц по окружности в однородном магнитном поле и независимость периода такого движения от скорости частицы используют в циклических ускорителях заряженных частиц — циклотронах.

В класс электронно-лучевых приборов не включаются рентгеновские трубки , фотоэлементы , фотоумножители , газоразрядные приборы ( декатроны ) и приёмно-усилительные электронные лампы ( лучевые тетроды , электровакуумные индикаторы, лампы со вторичной эмиссией и тому подобное) с лучевой формой токов.


  • Электронный прожектор (пушка) формирует электронный луч (или пучок лучей, например, три луча в цветном кинескопе) и управляет его интенсивностью (током);

  • Отклоняющая система управляет пространственным положением луча (отклонением его от оси прожектора);

  • Мишень (экран) приёмного ЭЛП преобразует энергию луча в световой поток видимого изображения; мишень передающего или запоминающего ЭЛП накапливает пространственный потенциальный рельеф , считываемый сканирующим электронным лучом

В баллоне ЭЛТ создан глубокий вакуум. Для создания электронного луча применяется устройство, именуемое электронной пушкой. Катод, нагреваемый нитью накала, испускает электроны. Изменением напряжения на управляющем электроде (модуляторе) можно изменять интенсивность электронного луча и, соответственно, яркость изображения. Покинув пушку, электроны ускоряются анодом. Далее луч проходит через отклоняющую систему, которая может менять направление луча. В телевизионных ЭЛТ применяется магнитная отклоняющая система как обеспечивающая большие углы отклонения. В осциллографических ЭЛТ применяется электростатическая отклоняющая система как обеспечивающая большее быстродействие. Электронный луч попадает в экран, покрытый люминофором. От бомбардировки электронами люминофор светится и быстро перемещающееся пятно переменной яркости создаёт на экране изображение.

Схема простейшего масс-спектрографа показана на рисунке 2.

В камере 1, из которой откачан воздух, находится источник ионов 3. Камера помещена в однородное магнитное поле, в каждой точке которого индукция B⃗ B→перпендикулярна плоскости чертежа и направлена к нам (на рисунке 1 это поле обозначено кружочками). Между электродами А и В приложено ускоряющее напряжение, под действием которого ионы, вылетающие из источника, разгоняются и с некоторой скоростью попадают в магнитное поле перпендикулярно линиям индукции. Двигаясь в магнитном поле по дуге окружности, ионы попадают на фотопластинку 2, что позволяет определить радиус R этой дуги. Зная индукцию магнитного поля В и скорость υ ионов, по формуле


(1)

можно определить удельный заряд ионов. А если заряд иона известен, можно вычислить его массу.

Особенно широкое применение масс-спектрометрия находит в анализе органических веществ, поскольку обеспечивает уверенную идентификацию как относительно простых, так и сложных молекул. Единственное общее требование — чтобы молекула поддавалась ионизации. Однако к настоящему времени придумано

столько способов ионизации компонентов пробы, что масс-спектрометрию можно считать практически всеохватным методом.

Принцип работы МГД-генератора, как и обычного машинного генератора , основан на явлении электромагнитной индукции , то есть — на возникновении тока в проводнике, пересекающем силовые линии магнитного поля . В отличие от машинных генераторов проводником в МГД-генераторе является само рабочее тело.

Рабочее тело движется поперёк магнитного поля, и под действием магнитного поля возникают противоположно направленные потоки носителей зарядов противоположных знаков.

На заряженную частицу действует сила Лоренца .

Схема устройства циклотрона показана на рис.3. Тяжелые заряженные частицы (протоны, ионы) попадают в камеру из инжектора вблизи центра камеры и ускоряются переменным полем фиксированной частоты, приложенным к ускоряющим электродам (их два и они называются дуантами). Частицы с зарядом Ze и массой m движутся в постоянном магнитном поле напряженностью B, направленном перпендикулярно плоскости движения частиц, по раскручивающейся спирали. Радиус R траектории частицы, имеющей скорость v, определяется формулой

В циклотроне для нерелятивистской (γ ≈ 1) частицы в постоянном и однородном магнитном поле радиус орбиты пропорционален скорости (1), а частотаобращения нерелятивистской частицы (циклотронная частота не зависит от энергии частицы


E = mv 2 /2 = (Ze) 2 B 2 R 2 /(2m) (3)
В зазоре между дуантами частицы ускоряются импульсным электрическим полем (внутри полых металлических дуантов электрического поля нет). В результате энергия и радиус орбиты возрастают. Повторяя ускорение электрическим полем на каждом обороте, энергию и радиус орбиты доводят до максимально допустимых значений. При этом частицы приобретают скорость v = ZeBR/m и соответствующую ей энергию:
На последнем витке спирали включается отклоняющее электрическое поле, выводящее пучок наружу. Постоянство магнитного поля и частоты ускоряющего поля делают возможным непрерывный режим ускорения. Пока одни частицы двигаются по внешним виткам спирали, другие находятся в середине пути, а третьи только начинают движение.

Недостатком циклотрона является ограничение существенно нерелятивистскими энергиями частиц, так как даже не очень большие релятивистские поправки (отклонения γ от единицы) нарушают синхронность ускорения на разных витках и частицы с существенно возросшими энергиями уже не успевают оказаться в зазоре между дуантами в нужной для ускорения фазе электрического поля. В обычных циклотронах протоны можно ускорять до 20-25 МэВ.

Для ускорения тяжёлых частиц в режиме раскручивающейся спирали до энергий в десятки раз больших (вплоть до 1000 МэВ) используют модификацию циклотрона, называемую изохронным(релятивистским) циклотроном, а также фазотрон. В изохронных циклотронах релятивистские эффекты компенсируются радиальным возрастанием магнитного поля.
Заключение

Письменное заключение (самое основное по всем подпунктам первого раздела – принципы действия, определения)

Сила Лоренца

Сила Лоренца представляет собой комбинацию магнитной и электрической силы на точечном заряде, который вызван электромагнитными полями. Или другими словами, сила Лоренца – это сила, действующая на всякую заряженную частицу, которая падает в магнитном поле с определенной скоростью. Ее величина зависит от величины магнитной индукции В, электрического заряда частицы q и скорости, с которой частица падает в поле – V. О том какая формула расчета силы Лоренца, а также ее практическое значение в физике читайте далее.

Немного истории

Первые попытки описать электромагнитную силу были сделаны еще в XVIII веке. Ученые Генри Кавендиш и Тобиас Майер высказали предположение, что сила на магнитных полюсах и электрически заряженных объектах подчиняется закону обратных квадратов. Однако экспериментальное доказательство этого факта не было полным и убедительным. Только в 1784 году Шарль Августин де Кулон при помощи своего торсионного баланса смог окончательно доказать это предположение.

Джей Джей Томпсон был первым физиком, кто попытался вывести из уравнения поля Максвелла электромагнитную силу, которые действует на движущийся заряженный объект. В 1881 году он опубликовал свою формулу F = q/2 v x B. Но из-за некоторых просчетов и неполного описания тока смещения она оказалась не совсем правильной.

Хендрик Лоренц

Формула

Формула для расчета силы Лоренца выглядит следующим образом:

формула силы Лоренца

Где q – электрический заряд частицы, V – ее скорость, а B – величина магнитной индукции магнитного поля.

При этом поле B выступает в качестве силы, перпендикулярной к направлению вектора скорости V нагрузок и направлению вектора B. Это можно проиллюстрировать на диаграмме:

Сила Лоренца

Правило левой руки

Правило левой руки позволяет физикам определять направление и возврат вектора магнитной (электродинамической) энергии. Представьте себе, что наша левая рука расположена таким образом, что линии магнитного поля направлены перпендикулярно внутренней поверхности руки (так, что они проникают внутрь руки), а все пальцы за исключением большого указывают на направление протекания положительного тока, отклоненный большой палец указывает на направление электродинамической силы, действующий на положительный заряд, помещенный в это поле.

Правило левой руки

Вот так это будет выглядеть схематически.

Есть также и второй способ определения направления электромагнитной силы. Он заключается в расположении большого, указательного и среднего пальцев под прямым углом. В этом случае указательный палец будет показывать направление линий магнитного поля, средний – направление движение тока и большой – направление электродинамической силы.

Правило левой руки

Практическое применение

Сила Лоренца и ее расчеты имеет свое практическое применение при создании как специальных научных приборов – масс-спектрометров, служащих для идентификации атомов и молекул, так и создании многих других устройств самого разнообразного применения. Среди устройств есть и электродвигатели, и громкоговорители, и рельсовые пистолеты.

Также способность силы Лоренса связывать механическое смещение с электрическим током представляет большой интерес для медицинской акустики.

Рекомендованная литература и полезные ссылки

  • Болотовский Б. М. Оливер Хевисайд. — Москва: Наука, 1985. — С. 43-44. — 260 с.
  • Матвеев А. Н. Механика и теория относительности. — 3-е изд. — М. Высшая школа 1976. — С. 132.

Видео


Автор: Павел Чайка, главный редактор журнала Познавайка

Похожие посты:

Один комментарий

Павел Чайка ! – так в чем же ПРИРОДА сил Лоренца (да и Ампера)? Ответ вы ни где не найдете, пока не подумаете сами. А вот насчет того, что сила Лоренца не совершает работу = все повторяют это, но сравните сами кинетическую энергию частицы до .. и после, после того как она движется в магнитном поле по кругу: здесь энергия больше, чем вначале.
Я к чему это? Наука зашла в тупик, следовало бы задавать больше вопросов, выяснять суть процессов (а не УРА!, КВАНТОВАЯ МЕХАНИКА ВСЕ ОБЪЯСНИТ), заставлять ЗАДУМЫВАТЬСЯ над вопросами, а не подавать все готовенькое, и при том искаженное.

В физике сила Лоренца представляет собой комбинацию электрической и магнитной силы на точечном заряде, вызванном электромагнитными полями. Вариация её формулы представлена в трудах других учёных. Историки предполагают, что одним из первых косвенных упоминаний этого закона была статья Джеймса Клерка Максвелла, опубликованная в 1865 году.

  • Формулировка и формулы
  • Историческая справка
  • Значение и определение
  • Усиление и движущая ЭДС
  • Интеграция в другие направления
  • Широкое применение

Определение, формула и применение силы Лоренца

Формулировка и формулы

Частица с зарядом q испытывает силу F, когда движется со скоростью v в электрическом (E) и магнитном (B) полях. Определяется она как F = qE + qv x B и измеряется в единицах СИ — N (ньютон). С точки зрения декартовых компонентов имеется:

  • F x = q (E x + ⱴ y B z — ⱴ z B y);
  • F y = q (E y + ⱴ z B x — ⱴ x B z);
  • F z = q (E z + ⱴ x B y — ⱴ y B x).

E и B — функции положения времени. Следовательно, равенство может быть записано как F (r, ṙ, t, q) = q [E (r, t) + ṙ x B (r, t)], где r — вектор положения заряженной частицы, t — время, а овердот — производная времени.

Комбинация q E называется электрической силой, а q (v + B) — магнитной. В этом контексте её можно называть силой Лапласа. Она не влияет на мощность, потому что всегда перпендикулярна скорости частицы.

Для непрерывного распределения заряда в движении уравнение принимает вид dE = dq (E + v + B). Если обе части равенства будут разделены на объём небольшого фрагмента dV, результат будет выглядеть следующим образом: f = p (E + v x B). Поэтому непрерывным аналогом уравнения является f = pE + J x B, где J — плотность тока.

Суммарная сила — интеграл объёма по распределению заряда: F = ∫∫∫ (p E + J x B) dV. Устраняя p и J, используя уравнения Максвелла и манипулируя с помощью теорем векторного исчисления, эту форму можно использовать для получения тензора напряжения σ. В свою очередь, это можно объединить с вектором Пойнтинга s для получения электромагнитного тензора энергии-импульса T, используемого в общей теории относительности. Если разделить полный заряд и ток на их связанные частицы, то получится плотность силы Лоренца. Она, в свою очередь, может объяснить крутящий момент.

Историческая справка

Ранние попытки количественно описать электромагнитную силу были предприняты только в середине XVIII века. Было высказано предположение, что сила на магнитных полюсах Иоганна Тобиаса Майера и электрически заряженных объектах Генри Кавендиша подчинялась закону обратных квадратов.

 Шарль-Августин де Кулон

Однако в обоих случаях экспериментальное доказательство не было полным и убедительным. Лишь в 1784 году Шарль-Августин де Кулон, используя торсионный баланс, смог окончательно показать, что это правда. После открытия в 1820 году Эрстедом того, что на магнитную стрелку действует ток вольта, Андре-Мари Ампер в том же году смогла разработать формулу угловой зависимости силы между двумя токовыми элементами.

Современная концепция электрический и магнитных полей впервые возникла в теориях Майкла Фарадея, в частности, в его представлении о силовых линиях. Лордом Кельвином и Джеймсом Клерком Максвеллом ему было дано полное математическое пояснение.

Джей Джей Томсон был первым, кто попытался вывести из уравнений поля Максвелла электромагнитные силы на движущийся заряженный объект в терминах его свойств. Однако Томсон был заинтересован выражать эти величины в катодных лучах. Поэтому в 1881 году он публикует статью, где размещает свою формулу F = q/2 v x B. Она оказалась базовой, но из-за некоторых просчётов и неполного описания тока смещения он включил неверный масштабный коэффициент, равный половине.

Оливер Хевисайд изобрёл современную векторную запись и применил её к уравнениям Максвелла. Он также исправил ошибки вывода и пришёл к правильной форме магнитной силы на движущемся заряженном объекте. Наконец, в 1895 году Хендрик Лоренц вывел формулу, которая используется в настоящее время и носит его имя.

Значение и определение

Закон силы Лоренца описывает влияние E и B на точечный заряд, но такое воздействие не показывает всю картину. Заряженные частицы не просто дрейфуют в однородном электромагнитном поле. Возможно, они подвергаются и другим воздействиям, например, гравитации. В реальных материалах выводы физика не подходят для описания коллективного поведения таких частиц, как в принципе и для вычисления, поскольку тела не только реагируют на поля E и B, но и генерируют их.

Сложные уравнения переноса должны решаться для определения временной и пространственной реакции зарядов, например, равенств:

  • Больцмана;
  • Фоккера — Планка;
  • Навье — Стокса.

Решения вопросов по гидродинамике, электрогидродинамике

К примеру, для решения вопросов по гидродинамике, электрогидродинамике, сверхпроводимости и эволюции звёзд разработан целый физический аппарат (формулы Грина — Кубо).

Для большей точности следует пояснить, что под силой Лоренца понимается следующее эмпирическое утверждение: F на пробном заряде в данной точке и данном времени является определённой функцией заряда q и скорости V, которая может быть параметризована ровно двумя векторами E и B в форме F = q (E + v x B).

Это справедливо даже для частиц, приближающихся к скорости света. Таким образом, два векторных поля (магнитное и электрическое) определяются во всём пространстве и времени относительно того, какую силу получит испытательный заряд.

Собственно, это только определение в принципе, потому что реальная частица (в отличие от гипотетической) будет генерировать собственные конечные поля E и B, изменяющие электромагнитную силу, которую он испытывает. Кроме того, когда у заряда есть ускорение, как если бы он был вынужден двигаться по искривлённой какими-либо внешними агентами траектории, от него исходит излучение, вызывающие торможение. Эти эффекты происходят как через прямое воздействие, так и косвенное. Помимо прочего, нужно учитывать гравитацию и другие силы.

Усиление и движущая ЭДС

Когда провод, несущий электрический ток, помещается в магнитное поле, каждый из движущихся зарядов, которые составляют ток, испытывает силу Лоренца. Вместе они могут создавать макроскопическую силу Лапласа. Исходя из этого, получается формула F = Iℓ x B, где ℓ — вектор, величина которого и есть длина проволоки. Его направление выровнено с движением обычного тока.

Если проволока не прямая, а изогнутая, расчёт происходит путём применения этого уравнения к каждому бесконечно малому сегменту проводника d ℓ. Затем нужно сложить всё посредством интегрирования. Формально чистая сила равна F = I ∫ dℓ x B. Кроме того, обычно возникает крутящий момент и другие эффекты, если провод не является абсолютно жёстким.

Усиление и движущая ЭДС

Компонент (qv x B) отвечает за движущую электродвижущей силы (ЭДС). Это явление, лежащее в основе многих электрических генераторов, исключая те, в которых движутся только магниты, а не проводники. В таких случаях ЭДС обусловлена (q E). Такое явление описано уравнением Максвелла — Фарадея.

Обе ЭДС, несмотря на их различное происхождение, описаны законом индукции Фарадея. Теория относительности Эйнштейна была частично мотивирована желанием лучше понять эту связь между двумя эффектами. На самом деле, электрические и магнитные поля являются разными гранями одного и того же электромагнитного поля. Поэтому при переходе от одной инерциальной системы отсчёта в другую (соленоидальное векторное поле) часть E может измениться в целом или частично стать B или наоборот.

Интеграция в другие направления

Применение силы Лоренца и её взаимодействие с другими смежными науками очевидно. Взять хоть аналитическую механику. Например, лоренцевское уравнение можно получить, используя формулы Лагранжа.

Также релятивную форму этого закона можно решить с помощью пространственно-временной алгебры (тип Клиффорда). В общей теории относительности уравнение движения для частицы с массой m и зарядом e, движущейся в пространстве с метрическим тензором g ab и электромагнитным полем F ab, имеет следующее выражение:

Применение силы Лоренца

m du c / ds — m ½ g ab, c u a u b = eF cb u b ;

m du c / ds — m Г abc u a u b = eF cb u b .

Из закона индукции Фарадея (который действителен для движущейся проволоки, например, в двигателе) и уравнений Максвелла можно вывести силу Лоренца. Направление расчётов в обратную сторону также верно. Фарадеевский постулат не зависит от того, является ли проволочная петля жёсткой и неподвижной, находится ли она в движении или в процессе деформации, сохраняется ли магнитное поле постоянным во времени или оно изменяется. Однако есть случаи, когда закон либо неадекватен, либо труден в использовании. Именно здесь необходимо применение основополагающего закона Лоренца.

Широкое применение

Первыми приборами для предполагаемых открытий стали циклотроны. Смысл их работы довольно прост: частицы двигаются полукругом. Каждый раз, когда они проходят определённую область, специальный модуль включает электрическое поле, чтобы ускорить их.

Масс-спектрометры применяются для идентификации атомов и молекул. Они используются в следующих устройствах:

  • электродвигатели;
  • громкоговорители;
  • рельсовые пистолеты.

Способность силы Лоренца связывать механическое смещение с электрическим током представляет большой интерес для медицинской акустики. Например, разрабатывался гидрофон для картирования скорости частиц акустического поля. Предполагалось, что он будет построен с использованием тонкого медного провода и внешнего магнитного поля.

Гидрофон для картирования скорости частиц акустического поля.

Модель была разработана для определения взаимосвязи между акустическим давлением и измеренным электрическим током, который индуцируется, когда провод вибрирует в акустическом поле ультразвукового преобразователя.

Созданный прототип был охарактеризован. Было исследовано его пространственное разрешение, частотная характеристика, чувствительность, надёжность и характеристика направленности. Был также изучен метод визуализации, называемый электрической импедансной томографией. В этом методе биологическая ткань вибрирует ультразвуком в магнитном поле, которое индуцирует электрический ток. Этот метод был применён для визуализации желатинового фантома, образца мышц говядины и термического поражения в образце куриной грудки. Это показало, что метод может быть полезен для обеспечения дополнительного контраста по сравнению с обычной ультразвуковой визуализацией.

Сила Лоренца - это сила, действующая на движущийся точечный электрический заряд во внешнем магнитном поле .

Сила Лоренца - это сила, действующая на движущийся точечный электрический заряд во внешнем магнитном поле.

Нидерландский физик X. А. Лоренц в конце XIX в. установил, что сила, действующая со стороны магнитного поля на движущуюся заряженную частицу, всегда перпендикулярна направле­нию движения частицы и силовым линиям магнитного поля, в котором эта частица движется. Направление силы Лоренца можно определить с помощью правила левой руки. Если расположить ладонь левой руки так, чтобы четыре вытянутых пальца указывали на­правление движения заряда, а вектор магнитной индукции поля входил в отставленный большой палец укажет направление силы Лоренца, действующей на положительный заряд.

Если заряд частицы отрицательный, то сила Лоренца будет направлена в противоположную сторону.

Сила Лоренца

Модуль силы Лоренца легко определяется из закона Ампера и составляет:

где q — заряд частицы, v — скорость ее движения, ? — угол между векторами скорости и индукции магнитного поли.

Сила Лоренца

Если кроме магнитного поля есть еще и электрическое поле, которое действует на заряд с силой , то полная сила, действующая на заряд, равна:

Сила Лоренца

.

Часто именно эту силу называют силой Лоренца, а силу, выраженную формулой (F = |q|vB sin?) называют магнитной частью силы Лоренца.

Поскольку сила Лоренца перпендикулярна направлению движения частицы, она не может изменить ее скорость (она не совершает работы), а может изменить лишь направление ее движения, т. е. искривить траекторию.

Такое искривление траектории электронов в кинескопе телевизо­ра легко наблюдать, если поднести к его экрану постоянный магнит - изображение исказится.

Движение заряженной частицы в однородном магнитном поле. Пусть заряженная частица влетает со скоростью v в однородное магнитное поле перпендикулярно линиям напряженности.

Сила Лоренца

Сила, действующая со стороны магнитного поля на частицу, заставит ее равномерно вращаться по окружности радиусом r, который легко найти, воспользовавшись вторым законом Ньютона, выражением целеустремленного ускорения и формулой (F = |q|vB sin?):

Сила Лоренца

.

Сила Лоренца

.

где m — масса частицы.

Применение силы Лоренца.

Действие магнитного поля на дви­жущиеся заряды применяется, например, в масс-спектрографах, позволяющих разделять заряженные частицы по их удельным за­рядам, т. е. по отношению заряда частицы к ее массе, и по полу­ченным результатам точно определять массы частиц.

Сила Лоренца

Индукция магнитного поля Линии магнитной индукции

Вакуумная камера прибора помещена в поле (вектор индукции перпендикулярен рисунку). Ускоренные электрическим полем заряженные частицы (электроны или ионы), описав дугу, попада­ют на фотопластину, где оставляют след, позволяющий с большой точностью измерить радиус траектории r. По этому радиусу опре­деляется удельный заряд иона. Зная заряд иона, легко вычислите его массу.

Читайте также: