Применение диэлектрических материалов в подвижном составе сообщение

Обновлено: 05.07.2024

Качество электроизоляционных материалов и возможность их использования оценивают по электрическим свойствам: удельному сопротивлению, диэлектрической проницаемости и электрической прочности. Кроме того, большое значение при этом имеют и такие свойства, как нагревостойкость, механическая прочность, гибкость, морозостойкость и гигроскопичность. Под нагревостойкостью понимают способность электроизоляционных материалов без ухудшения своих свойств выдерживать длительное воздействие повышенной температуры, а также резкие перепады температур. В зависимости от того, какую предельную температуру может выдержать тот или иной изоляционный материал, их разделяют на классы нагревостойкости, указанные в табл. 3.

Максимальная работая температура, °С

Хлопок, шелк, бумага, картон, дерево и их сочетания, пропитанные органическими лаками и компаундами

Некоторые синтетические пленки из полиэтилентерефталата, пленки эмалевых проводов, пластмассы с органическим наполнителем

Материалы на основе слюды, стекловолокна и асбеста с применением обычных клеящих и пропиточных составов (миканиты, стеклолакоткани)

То же, что и в классе В, но с применением синтетического клеящего и пропитывающего состава—без подложки или с неорганической подложкой

То же, что и в классе В, но с применением клеящих и пропиточных составов на основе кремний-органических смол

Слюда, стекло, стекловолокнистые материалы, асбест непропитанный, воздух

Изоляционные материалы по своему агрегатному состоянию подразделяют на газообразные (воздух, водород, инертные газы), жидкие (лаки, растворители, трансформаторное масло), твердые (слюда, стекло, фосфор, керамические материалы, пластмассы, волокна). Особую группу составляют твердеющие материалы (смола, битумы, растворители, лаки) и волокнистые (дерево, бумага, асбест и т.д.).
Остановимся на изоляционных материалах, которые нашли широкое применение в электрических машинах и аппаратах. Исходным многих изоляционных материалов является слюда — это природный минеральный электроизоляционный материал, обладающий высокой электрической прочностью, нагрево- и влагостойкостью, механической прочностью и гибкостью. В природе встречаются два вида слюды: мусковит, в состав которого входят различные окислы калия, алюминия, кварца и воды, и флогопит, в который, кроме указанных элементов, входят окислы магния. Слюда обоих этих видов относится к электроизоляционным материалам высшего класса нагревостойкости. Однако при достижении определенной температуры нагрева механические и электрические свойства слюды ухудшаются (из нее выделяется влага). У слюды мусковит это ухудшение происходит при температуре 500—600°С, а у флогопита — 800—900°С.

Основным условием для использования материала в качестве диэлектрика является отсутствие проводимости постоянного и переменного электрического тока. Изоляторы используются в промышленности, сельском хозяйстве, при изготовлении бытовых приборов и автономных электрических систем. Существует целый ряд классификаций диэлектрических материалов в зависимости от способов применения, происхождения, стоимости производства и т.д. Но самой важной является классификация изоляторов в зависимости от агрегатного состояния.

Виды в зависимости от агрегатного состояния

В науке выделяют газообразный, жидкий и твердый диэлектрический материал. Самый распространенный из них – твердый. Изоляторы из твердого материала подразделяют на исходные твердые электроматериалы и производные твердые диэлектрики. К исходным твердым материалам относятся:

- Неорганические материалы, созданные человеком и не встречающиеся в окружающей среде. К ним относятся асбест, стекло, стекловолокно, оксидные пленки, ситаллы, слюда и керамика. Используются преимущественно в строительной отрасли, автомобильной промышленности и ракетостроении.

- Органические материалы, которые встречаются в той или иной форме в природе. В эту группу входят битумы, смолы, дерево, хлопок, а также диэлектрики на основе хлопка и воска. Наиболее распространенные из них - смолы и их производные.

- Эластомеры натуральные и синтетические. Удобны при изоляции в узких, труднодоступных плоскостях, так как после деформации восстанавливают исходную форму.

Производные диэлектрические материалы

Производные твердые диэлектрики представляют целый пласт из сплавов и продуктов иных химических реакций. Наиболее известные из них: пластмасса, микалекс, лак, миканиты. Очень часто используются при строительстве и внутренней отделке вследствие дешевизны изготовления и хороших технических качеств.

Жидкие диэлектрические материалы

Следующим видом диэлектрического материала является жидкий изолятор. Характеризуется очень крупными электрофизическими параметрами. Среди ощутимых минусов – пожарная опасность и высокая токсичность при использовании. В современной промышленности используются синтетические жидкие вещества, нефтяные и растительные масла.

Газообразные диэлектрические материалы

И последний вид электроизоляционных материалов – газообразные материалы. Сюда относятся в основном природные диэлектрики, такие как азот, углекислый газ, гелиевые газы, атмосферный воздух. В промышленности распространения не получили, однако окружают нас в повседневной жизни.

Очень многие школьники и студенты не любят физику из-за большого количества заумных слов и странных формул. Одной из таких загадочный тем становятся диэлектрика. Что это, где она применяется и зачем вообще нужна? Дети никак не могут понять, а учителя нормально не объясняют важную информацию. Именно поэтому сегодня я, учитель физики, хочу помочь студентам и школьникам в изучении диэлектрики.

Chto-takoe-die

Диэлектрики или изоляторы – это вещества, которые немного или вообще не проводят ток. К ним можно отнести все неприводимое: воздух, газы, древесину, стекло, пластмассу и многое другое. Они применяются во многих технологиях и машинах, позволяют ограничить распространение тока.

Возьмем, например, пластик. Если мы поместим небольшой кусок в электризованную среду, то заметим необычное явление: он начнет притягиваться к положительным или отрицательным зарядам. Но как только мы выключим поле, все прекратится. Пластик перестанет притягиваться и останется на месте.

Собственно, этот эксперимент и показывает, что изоляторы не могут переводить ток, а являются для него некой преградой, которая мешает ему, распространится дальше. И если даже электричество проходит, то в минимальных, безвредных количествах.

Иногда происходит очень сильная путаница со свойствами диэлектриков. Многие дают им бесполезные и невозможные функции, которые никогда не встречались у этих материалов, или, наоборот, – убирают. Сейчас я кратко и быстро расскажу вам о всех свойствах диэлектриков.

Свойства диэлектриков

Водонепроницаемость

Твердые диэлектрики могут мешать проникновению влаги внутрь. Благодаря этому свойству их часто используют для уличного оборудования. Причем это относится не только к воде, но и прочим жидкостям, например, напиткам, сокам, молоку и так далее.

Теплозащита

Диэлектрики отлично переносят сильные температуры. Например, не зря их использую в космосе, где полоска термометра бывает ниже -90°C. Именно поэтому диэлектрики – отличный помощник в сильные морозы и жаркие дни.

Сдерживаемость радиации

Диэлектрики не пропускают радиацию, щелочи и кислотные вещества. Это очень важно, при возникновении утечки на станциях и заводах, где есть опасные химические элементы. Изоляторы, без какого-либо преувеличения, могут спасти тысячи людей от смерти.

Поляризация

Удивительное свойство, которое присутствует исключительно у диэлектриков. Благодаря ему неприводимые материалы могут притягиваться к проводимым и тем самым создавать целую цепь. Это свойство используется повсеместно, почти во всех технологиях и машинах.

Ослабление внешнего поля

Диэлектрики помогают сделать внешнее давление более слабым и тем самым безопасным. Они контролируют поле и помогают его использовать в различных целях. Очень важное свойство, позволяющее сделать работу более безопасной.

Виды диэлектриков

У многих школьников или студентом возникает сильная путаница с классификацией диэлектриков. Они просто не понимают, какие есть группы и на что они делятся. Сейчас я попытаюсь вам понятно все объяснить, чтобы, прочитав один раз, вы поняли навсегда.

Классификация по агрегатному состоянию

Otlichie-die

По агрегатному состоянию выделяется три основных вида диэлектриков:

  • твердые – это стекло, пластик, керамика и подобные вещества. Они используются в специализированных станциях и заводах, позволяют ограничить распространение тока и сделать среду более безопасной для окружающих;
  • жидкие – это масла, спреи, дистиллированная вода, которые снабжаются в различных машинах и технологиях. Например, это трансформаторы, которые просто не могут работать без изоляторов;
  • газовые – к этому типу относятся исключительно азот, который чаще всего используют для того, чтобы понизить их температуру. Это позволяет обезопасить технику от сильного перегрева и возможного взрыва.

Классификация по происхождению

По происхождения изоляторы бывают органическими и неорганическими:

  • органические – это диэлектрики, которые добываются в окружающей среде и были созданные не под влиянием человека. Они используются крайне редко, из-за их малого количества свойств;
  • неорганические – эти изоляторы создаются самими людьми и чаще всего используются в производстве и деятельности. Они отлично останавливают ток и блокируют его распространение.

Способы применения

Многие мои ученики думают, что диэлектрики применяются везде, где есть хоть какие-либо технологии, в каждой машине и приборе. Но это ошибочное мнение, потому что они используются исключительно в тех случаях, когда необходимо ограничить распространение электрического тока и обезопасить окружающую среду.

У диэлектриков есть большое количество способов применения. Например, жидкие непереводные вещи используются в создании разных видов масел, которые применяются в транспортных средствах, помогают укрепить промышленные детали и сделать электроизоляцию.

Газовые диэлектрики – это азот. Его применение очень широко. Многие используют азот для охлаждения промышленных приспособлений или химических смесей, а во многих печках он помогает избежать сильной газовой протечки, а также часто применяется в высокоточных переключателях. Их можно встретить в каждом доме, в котором присутствуют какие-либо газовые приборы.

Огромное спектр применения у твердых диэлектриков. Например, они применяются в проводах, электронных машинах, на станциях и так далее. Эти компоненты используются даже в космосе для поддержки кораблей. Твердые диэлектрики более практичные и многофункциональные, чем прочие агрегатные компоненты, вследствие этого их можно встретить намного чаще.

Диэлектрики есть везде, даже в вашем доме. Посмотрите на свои провода, электронные приборы и считок. Везде есть диэлектрики, которые позволяют приостановить продвижения тока и тем самым ограничить его воздействие на людей. Это очень важный компонент, без которого не смогло бы существовать половина приборов и машин.

Любое электрическое оборудование, включая генераторы, силовые установки и распределительные устройства, состоит из токоведущих частей. Для надежной и безопасной эксплуатации последние должны быть защищены друг от друга и от воздействия окружающих компонентов. В этих целях используются электроизоляционные материалы.

Важно, чтобы обмотка на якоре была отделена от его сердечника, виток возбуждения – от аналогичной детали, полюсов и каркаса агрегата. Материалы, которые применяются для изоляции чего-либо от воздействия электрического тока, называются диэлектриками. Стоит отметить, что такие изделия бывают двух типов – одни абсолютно не пропускают ток, другие – хоть и делают это, но в мизерных количествах.

Изоляция обмотки якоря

При создании подобных материалов применяют органические и неорганические элементы вкупе с различными добавками, необходимыми при пропитке и склеивании. В последнее время широкую популярность набирает жидкая изоляция для проводов, часто используемая в выключателях и трансформаторах (например, трансформаторное масло). Не реже в электротехническом оборудовании применяют газообразные диэлектрики, вплоть до обычного воздуха.

Электроизоляционные материалы и сферы их применения

К основным областям применения электроизоляционных материалов можно отнести различные промышленные ветви, радиотехнику, приборостроение и монтаж электрических сетей. Диэлектрики – это основные элементы, от которых зависит безопасность и стабильность работы любого электроприбора. На качество и функциональность изоляции влияют различные параметры.

Таким образом, главная причина применения электроизоляции – соблюдение правил безопасности. В соответствии с ними строго запрещено эксплуатировать оборудование с частично или полностью отсутствующей изоляцией, поврежденной оболочкой, поскольку даже малые токи могут нанести вред человеческому организму.

Диэлектрические изделия для электроприборов

Свойства диэлектриков

Для того чтобы гарантировать выполнение важных функций, электроизоляционные изделия должны обладать необходимыми свойствами. Основное отличие диэлектрика от проводника – намного большее удельное сопротивление (100-1100 Ом*см). С другой стороны, их электрическая проводимость в 14-15 раз ниже токоведущих жил. Связано это с природным происхождением изоляционных материалов, в составе которых намного меньше свободных отрицательных электронов и положительно заряженных ионов, влияющих на токопроводимость.

Важно! Несмотря на последнее высказывание, при нагревании любого диэлектрика количество ионов и электронов существенно возрастает, из-за чего повышается электрическая проводимость и возникает риск пробоя током.

Все свойства диэлектриков можно разделить на две основные группы – активные и пассивные, при этом вторая является наиболее важной. К пассивным относится диэлектрическая проницаемость: чем меньше ее значение, тем более надежным и качественным является изолятор, поскольку он не оказывает негативного влияния на электрическую схему и не добавляет паразитные емкости. С другой стороны, если изделие эксплуатируется в роли диэлектрического конденсатора, то проницаемость должна быть максимально высокой (паразитные емкости в данном случае важны).

Свойства изоляционных материалов

Параметры изоляции

К числу основных относятся:

  • электропрочность;
  • удельное электрическое сопротивление;
  • относительная проницаемость;
  • угол диэлектрических потерь.

Оценивая качество и эффективность диэлектриков, и сравнивая их свойства, нужно выявить зависимость перечисленных параметров от значений тока и напряжения. По сравнению с проводниками электроизоляционные компоненты имеют повышенную электрическую прочность. Учитывая сказанное выше, не менее важным является то, насколько хорошо изоляторы сохраняют свои полезные свойства и удельные величины при нагревании, увеличении напряжения и других воздействиях.

Параметры изоляции для силовых кабелей

Классификация диэлектрических материалов

Выбор того или иного изоляционного материала зависит от мощности тока, протекающего по проводникам оборудования. Существует несколько критериев для классификации диэлектриков, но наиболее важными являются два – агрегатное состояние и происхождение. Для изоляции шнуров бытовых электроприборов используют твердые изоляторы, трансформаторов и прочего высокомощного оборудования – жидкие и газообразные.

Классификация по агрегатному состоянию

По агрегатному состоянию выделяют три типа диэлектрических материалов – твердые, жидкие и газообразные.

Твердые диэлектрики

Электроизоляционные материалы данного типа считаются наиболее распространенными и популярными, используются практически во всех сферах, где присутствует оборудование с токоведущими частями. Их качество зависит от некоторых химических свойств, при этом диэлектрическая проницаемость может быть совершенно разной – 10-50 000 (безразмерная величина).

Твердые изоляторы бывают полярными, неполярными и сегнетоэлектрическими. Главное отличие трех разновидностей – принцип поляризации. Основными свойствами данных материалов являются химическая стойкость, трекингостойкость и дендритостойкость. От химической стойкости зависят возможности диэлектрика противостоять воздействию агрессивной среды – кислотам, щелочам, активным жидкостям. Трекингостойкость влияет на защиту от электрической дуги, дендритостойкость – от появления дендритов.

Твердые неорганические диэлектрики

Керамические изоляторы эксплуатируют как линейные и проходные диэлектрики в составе подстанций. Для защиты бытовых электрических приборов могут применяться текстолиты, полимеры и бумажные изделия, промышленного оборудования – лаки, картон и различные компаунды.

Сочетая несколько разных материалов, производителям диэлектриков удается получить особые свойства изделия. Благодаря этому повышается устойчивость к нагреву, воздействию влаги, экстремально низких температур и даже радиации.

Наличие нагревостойкости говорит о том, что изолятор способен выдерживать высокие температуры, но в каждом отдельном случае максимальная планка будет разной (она может достигать и 200, и 700 град. Цельсия). К числу таковых относятся стеклотекстолитовые, органосиликатные и некоторые полимерные материалы. Фторопластовые диэлектрики устойчивы к воздействию влаги, могут эксплуатироваться в тропиках. Вообще фторопласт не только гидрофобен, но еще и негигроскопичен.

Если в состав электротехнического оборудования включены атомные элементы, то важно использовать изоляцию, устойчивую к радиоактивному фону. На помощь приходят неорганические пленки, часть полимеров, стеклотекстолиты и различные слюдинитовые изделия.

К морозостойким диэлектрикам относятся компоненты, сохраняющие свои удельные свойства при температуре до -90 град. Цельсия. Наконец, в электроприборах, эксплуатируемых в космосе, применяются изоляционные материалы с повышенной вакуумной плотностью (например, керамика).

Жидкие диэлектрики

Диэлектрики в подобном агрегатном состоянии зачастую эксплуатируются в промышленном электрооборудовании. Наиболее ярким примером являются трансформаторы, для безопасной работы которых требуется специальное масло. К числу жидких диэлектриков можно отнести сжиженный газ, парафиновое или вазелиновое масло, спреи, дистиллированную воду, которая была очищена от солей и других примесей.

Жидкие электроизоляционные материалы описываются следующими технико-эксплуатационными характеристиками:

  • диэлектрическая проницаемость;
  • электропрочность;
  • электропроводность.

Величина физических параметров жидких диэлектриков зависит от степени их чистоты (загрязнения). Наличие твердых примесей в воде или масле приводит к существенному повышению электрической проводимости, что связано с увеличением числа свободных электронов и ионов. Жидкости очищаются разными методами, начиная от дистилляции и заканчивая ионным обменом. После выполнения данного процесса повышается электропрочность материала и снижается его электропроводность.

Виды жидких диэлектриков

Жидкие электроизоляторы можно разделить на три основные группы:

  1. Из нефти изготавливают трансформаторное, конденсаторное и кабельное масла.
  2. Синтетические жидкости активно применяются в промышленном приборостроении. К их числу можно отнести соединения на основе фтор- и кремнийорганики. Кремнийорганические материалы способны выдерживать сильные морозы, они относятся к числу гигроскопичных, поэтому могут применяться в малых трансформаторах. С другой стороны, стоимость таких соединений намного выше, чем у нефтяных масел.
  3. Растительные жидкости крайне редко используются при изготовлении электроизоляции. Речь идет о касторовом, льняном, конопляном и других маслах. Все перечисленные вещества считаются слабополярными диэлектриками, поэтому могут применяться только для пропитки бумажных конденсаторов или для образования пленки в электроизоляционных лаках и красках.

Газообразные диэлектрики

Самыми популярными газообразными диэлектриками считаются электротехнический газ, азот, водород и воздух. Все они могут быть разделены на две категории – естественные и искусственные. К первым относится воздух, который часто эксплуатируют в качестве диэлектрика для защиты токоведущих частей линий электрической передачи и машин.

Наряду с преимуществами, есть у воздуха недостатки, из-за чего он не подходит для эксплуатации в герметичном оборудовании. Поскольку в его состав входит большое содержание кислорода, то данный газ является окислителем, поэтому в неоднородном поле существенно снижается электрическая прочность.

Азот – отличный вариант для изоляции силовых трансформаторов и высоковольтных линий электропередач. Помимо хороших изоляционных свойств, водород способен принудительно охлаждать оборудование, поэтому зачастую применяется в высокомощных электромашинах. Для герметизированных установок подойдет электротехнический газ, при использовании которого снижается взрывоопасность любых агрегатов. Электротехнический газ часто эксплуатируется в высоковольтных выключателях, что обусловлено способностью к гашению электрической дуги.

Свойства газообразных диэлектриков при нормальном давлении

Классификация по происхождению

По происхождению диэлектрики делятся на органические и неорганические.

Органические диэлектрики

Органические электроизоляционные изделия можно разделить на естественные и синтетические. Все материалы, относящиеся к первой категории, в последнее время практически не эксплуатируются, что связано с увеличением производственных мощностей синтетических диэлектриков, стоимость которых намного ниже.

Естественными диэлектриками являются растительные масла, парафин, целлюлоза и каучук. К синтетическим материалам можно отнести пластмассы и эластомеры разных типов, применяемые в бытовых приборах и другой электротехники.

Неорганические диэлектрики

Электроизоляционные материалы неорганического типа бывают естественные и искусственными. Из компонентов природного происхождения можно выделить слюду с большой устойчивостью к воздействию химически активных веществ и высоких температур. Не менее популярными являются мусковит и флогопит.

Искусственные диэлектрики – стекло в чистом или разбавленном видах, фарфор и керамика. Материалам данной категории зачастую придают особые свойства, добавляя в их состав различные компоненты. Если изолятор проходной, то нужно применять полевошпатовую керамику с большим тангенсом диэлектрических потерь.

Волокнистые электроизоляционные материалы

Волокнистые диэлектрики эксплуатируются для защиты различного оборудования. К числу таковых относятся каучук, целлюлоза, различные ткани, нейлоновые и капроновые изделия, полистирол и полиамид.

Органические волокнистые диэлектрики имеют высокую гигроскопичность, поэтому практически никогда не используются без специальной пропитки. В последние годы вместо органических изоляторов применяют синтетические волокнистые изделия с ярко выраженной нагревостойкостью.

Ткань с лаковой пропиткой

В качестве примера можно выделить стеклянные волокна и асбест: первые пропитываются лаками и смолами, улучшающими гидрофобность, вторые характеризуются минимальной прочностью, поэтому в их состав добавляют хлопчатобумажные элементы. Речь идет о материалах, которые не плавятся при нагреве.

Классы нагревостойкости электроизоляционных материалов

Класс нагревостойкости диэлектриков указывается буквой латинского алфавита. Перечислим основные из них:

  • Y – максимальная температура 90 град. Цельсия. К данной категории относятся различные волокнистые изделия из хлопка, натуральных тканей и целлюлоза. Они не пропитываются и не дополняются жидкими электроизоляторами.
  • A – 105 град. Цельсия. Все материалы, перечисленные выше, и синтетический шелк, пропитываемые жидкими диэлектриками (погружаемые в них).
  • E – 120 град. Цельсия. Синтетические изделия, включая волокна, пленки и компаунды.
  • B – 130 град. Цельсия. Слюдинитовые диэлектрики, асбест и стекловолокно вкупе с органическим связующим и пропиткой.
  • F – 155 град. Цельсия. Слюдинитовые материалы, в качестве связующего звена которых выступают синтетические компоненты.
  • H – 180 град. Цельсия. Слюдинитовые диэлектрики с кремнийорганическими соединениями, выступающими в качестве связующего.
  • C – более 180 град. Цельсия. Все перечисленные выше изделия, в которых не используется связующее или применяются неорганические адгезивы.

Выбор электроизоляционных материалов зависит не только от мощностей оборудования, но и от условий его эксплуатации. Например, для высоковольтных линий электропередач должны использоваться диэлектрики с повышенной морозостойкостью и защитой от воздействия ультрафиолетовых лучей.

Таким образом, информация выше может использоваться только в качестве ознакомительных целей, а окончательное решение должен принимать профессиональный, квалифицированный специалист.

Читайте также: