Предел последовательности и функции сообщение

Обновлено: 16.05.2024

Числовой последовательностью называется числовая функция, определенная на множестве натуральных чисел. Задать числовую последовательность означает задать закон, по которому можно определить значение любого члена последовательности, зная его порядковый номер п; для этого достаточно знать выражение общего или п-го члена последовательности в виде функции его номера: .

В основе всех положений математического анализа лежит понятие предела числовой последовательности. Число А называется пределом числовой последовательности , если для любого сколь угодно малого положительного числа e существует такой номер , зависящий от выбранного e, начиная с которого все члены последовательности отличаются от А по модулю меньше, чем на e, т. е.

Если последовательность имеет предел А, то она называется сходящейся (к числу А) и этот факт записывают следующим образом:

Пусть функция определена в некоторой окрестности точки . Выберем в некоторой окрестности этой точки какую-нибудь последовательность сходящуюся к точке : . Значения функции в выбранных точках образуют последовательность , и можно ставить вопрос о существовании предела этой последовательности.

Число А называется пределом функции в точке , если для любой сходящейся к последовательности значений аргумента, отличных от , соответствующая последовательность значений функции сходится к числу А, т. е.

Возможно иное определение предела функции в точке: число А называется пределом функции при , если для всякого положительного числа e можно указать другое положительное число d (зависящее от выбора e) такое, что абсолютная величина разности будет меньше e, когда абсолютная величина разности будет меньше , но больше нуля

Кроме понятия предела функции в точке, существует также понятие предела функции при стремлении аргумента к бесконечности: число А называется пределом функции при , если для любого числа существует такое число d, что при всех справедливо неравенство : .

Теоремы о пределах функций являются базой для общих правил нахождения пределов функций. Можно показать, что арифметические операции над функциями, имеющими предел в точке , приводят к функциям, также имеющим предел в этой точке.

Найти предел функции

Решение: Имеем неопределенность вида . Для ее раскрытия разложим числитель и знаменатель на множители и сократим на общий множитель , который при не равен нулю. В результате неопределенность будет раскрыта.

Раздел: Математика
Количество знаков с пробелами: 18636
Количество таблиц: 4
Количество изображений: 6

Определение пределов последовательности и функции, свойства пределов, первый и второй замечательные пределы, примеры.

Постоянное число а называется пределом последовательности n>, если для любого сколь угодно малого положительного числа ε > 0 существует номер N, что все значения xn, у которых n>N, удовлетворяют неравенству

|xn - a| N, лежат внутри интервала (a-ε , a+ε), т.е. попадают в какую угодно малую ε-окрестность точки а.

Последовательность, имеющая предел, называется сходящейся, в противном случае - расходящейся.

Понятие предел функции является обобщением понятия предел последовательности, так как предел последовательности можно рассматривать как предел функции xn = f(n) целочисленного аргумента n.

Пусть дана функция f(x) и пусть a - предельная точка области определения этой функции D(f), т.е. такая точка, любая окрестность которой содержит точки множества D(f), отличные от a. Точка a может принадлежать множеству D(f), а может и не принадлежать ему.

Определение 1. Постоянное число А называется предел функции f(x) при x→ a, если для всякой последовательности n> значений аргумента, стремящейся к а, соответствующие им последовательности n)> имеют один и тот же предел А.

Это определение называют определением предела функции по Гейне, или “на языке последовательностей”.

Используются на практике и следствия формулы (6.11):

в частности предел,

Условие (6.15) можно переписать в виде:

то есть возможен предельный переход под знаком функции, если она непрерывна в данной точке.

Если равенство (6.15) нарушено, то говорят, что при x = xo функция f(x) имеет разрыв. Рассмотрим функцию y = 1/x. Областью определения этой функции является множество R, кроме x = 0. Точка x = 0 является предельной точкой множества D(f), поскольку в любой ее окрестности, т.е. в любом открытом интервале, содержащем точку 0, есть точки из D(f), но она сама не принадлежит этому множеству. Значение f(xo)= f(0) не определено, поэтому в точке xo = 0 функция имеет разрыв.

Функция f(x) называется непрерывной справа в точке xo, если предел

и непрерывной слева в точке xo, если предел

Непрерывность функции в точке xo равносильна ее непрерывности в этой точке одновременно и справа и слева.

Для того, чтобы функция была непрерывна в точке xo, например, справа, необходимо, во-первых, чтобы существовал конечный предел , а во-вторых, чтобы этот предел был равен f(xo). Следовательно, если хотя бы одно из этих двух условий не выполняется, то функция будет иметь разрыв.

1. Если предел существует и не равен f(xo), то говорят, что функция f(x) в точке xo имеет разрыв первого рода, или скачок.

2. Если предел равен +∞ или -∞ или не существует, то говорят, что в точке xo функция имеет разрыв второго рода.

Например, функция y = ctg x при x → +0 имеет предел, равный +∞ , значит, в точке x=0 она имеет разрыв второго рода. Функция y = E(x) (целая часть от x) в точках с целыми абсциссами имеет разрывы первого рода, или скачки.

Функция, непрерывная в каждой точке промежутка [a,b], называется непрерывной в [a,b]. Непрерывная функция изображается сплошной кривой.

Ко второму замечательному пределу приводят многие задачи, связанные с непрерывным ростом какой-либо величины. К таким задачам, например, относятся: рост вклада по закону сложных процентов, рост населения страны, распад радиоактивного вещества, размножение бактерий и т.п.

Рассмотрим пример Я. И. Перельмана, дающий интерпретацию числа e в задаче о сложных процентах. Число e есть предел . В сбербанках процентные деньги присоединяются к основному капиталу ежегодно. Если присоединение совершается чаще, то капитал растет быстрее, так как в образовании процентов участвует большая сумма. Возьмем чисто теоретический, весьма упрощенный пример. Пусть в банк положено 100 ден. ед. из расчета 100 % годовых. Если процентные деньги будут присоединены к основному капиталу лишь по истечении года, то к этому сроку 100 ден. ед. превратятся в 200 ден.ед. Посмотрим теперь, во что превратятся 100 ден. ед., если процентные деньги присоединять к основному капиталу каждые полгода. По истечении полугодия 100 ден. ед. вырастут в 100 ×1,5 = 150, а еще через полгода - в 150× 1,5 = 225 (ден. ед.). Если присоединение делать каждые 1/3 года, то по истечении года 100 ден. ед. превратятся в 100 × (1 +1/3) 3 ≈ 237 (ден. ед.). Будем учащать сроки присоединения процентных денег до 0,1 года, до 0,01 года, до 0,001 года и т.д. Тогда из 100 ден. ед. спустя год получится:

100×(1 +1/10) 10 ≈ 259 (ден. ед.),

100×(1+1/100) 100 ≈ 270 (ден. ед.),

100×(1+1/1000) 1000 ≈271 (ден. ед.).

При безграничном сокращении сроков присоединения процентов наращенный капитал не растет беспредельно, а приближается к некоторому пределу, равному приблизительно 271. Более чем в 2,71 раз капитал, положенный под 100% годовых, увеличиться не может, даже если бы наросшие проценты присоединялись к капиталу каждую секунду, потому что предел

Пример 3.1. Пользуясь определением предела числовой последовательности, доказать, что последовательность xn =(n-1)/n имеет предел, равный 1.

Решение. Нам надо доказать, что, какое бы ε > 0 мы ни взяли, для него найдется натуральное число N, такое, что для всех n > N имеет место неравенство |xn -1| 0. Так как xn -1 =(n+1)/n - 1= 1/n, то для отыскания N достаточно решить неравенство 1/n 1/ε и, следовательно, за N можно принять целую часть от 1/ε N = E(1/ε). Мы тем самым доказали, что предел .

Пример 3.2. Найти предел последовательности, заданной общим членом .

Решение. Применим теорему предел суммы и найдем предел каждого слагаемого. При n → ∞ числитель и знаменатель каждого слагаемого стремится к бесконечности, и мы не можем непосредственно применить теорему предел частного. Поэтому сначала преобразуем xn, разделив числитель и знаменатель первого слагаемого на n 2 , а второго на n. Затем, применяя теорему предел частного и предел суммы, найдем:

Пример 3.3. . Найти .

Здесь мы воспользовались теоремой о пределе степени: предел степени равен степени от предела основания.

Пример 3.4. Найти ().

Решение. Применять теорему предел разности нельзя, поскольку имеем неопределенность вида ∞-∞. Преобразуем формулу общего члена:


Пример 3.5. Дана функция f(x)=2 1/x . Доказать, что предел не существует.

Решение. Воспользуемся определением 1 предела функции через последовательность. Возьмем последовательность < xn >, сходящуюся к 0, т.е. Покажем, что величина f(xn)= для разных последовательностей ведет себя по-разному. Пусть xn = 1/n. Очевидно, что , тогда предел Выберем теперь в качестве xn последовательность с общим членом xn = -1/n, также стремящуюся к нулю. Поэтому предел не существует.

Пример 3.6. Доказать, что предел не существует.

Решение. Пусть x1, x2. xn. - последовательность, для которой
. Как ведет себя последовательность n)> = n > при различных xn→ ∞

Если xn= p n, то sin xn= sin ( p n) = 0 при всех n и предел Если же
xn=2 p n+ p /2, то sin xn= sin(2 p n+ p /2) = sin p /2 = 1 для всех n и следовательно предел . Таким образом, не существует.

Пример 3.7 Найти предел

Решение. Имеем: . Обозначим t = 5x. При x →0 имеем: t →0. Применяя формулу (3.10), получим .

Пример 3.8. Вычислить предел .

Решение. Обозначим y=π-x. Тогда при x→π, y→0. Имеем:

sin 3x = sin 3(π-y) = sin(3π-3y) = sin 3y.

sin 4x = sin 4(π-y) = sin (π4-4y)= - sin 4y.

Пример 3.9. Найти предел .

Решение. Обозначим arcsin x=t. Тогда x=sin t и при x→0, t→0. .

Пример 3.10. Найти 1) ;

1) Применяя теорему 1 предел разности и предел произведения, находим предел знаменателя: .

Предел знаменателя не равен нулю, поэтому, по теореме 1 предел частного, получаем:

2) Здесь числитель и знаменатель стремятся к нулю, т.е. имеет место неопределенность вида 0/0. Теорема о пределе частного непосредственно неприменима. Для “раскрытия неопределенности” преобразуем данную функцию. Разделив числитель и знаменатель на x-2, получим при x ≠ 2 равенство:

Так как предел , то, по теореме предел частного, найдем

3. Числитель и знаменатель при x → ∞ являются бесконечно большими функциями. Поэтому теорема предел частного непосредственно не применима. Разделим числитель и знаменатель на x 2 и к полученной функции применим теорему предел частного:

Пример 3.11. Найти предел .

Решение. Здесь числитель и знаменатель стремятся к нулю:, x-9→0, т.е. имеем неопределенность вида .

Преобразуем данную функцию, умножив числитель и знаменатель на неполный квадрат суммы выражения , получим


В основе математического анализа лежит важнейшее понятие предела переменной величины. Рассмотрим это понятие на простейшем случае, когда переменной величиной является функция целочисленного аргумента, т.е. числовая последовательность.

Определение. Число a называют пределом бесконечной числовой последовательности , если для всякого числа ε>0 (как бы мало оно ни было) можно указать такой номер M, зависящий от ε (M=M(ε)), начиная с которого все члены Xn с номерами большими M(n>M), будут удовлетворять неравенству |Xn-a| а, если для всякого числа ε>0 (как бы мало оно ни было) можно указать такое число δ(δ = δ(ε))>0, что для всех значений х, удовлетворяющих неравенству |x-a| a только с одной стороны (справа (x>a)или слева (хпределом функции у = f(х) в точке x = a справа или слева и обозначают:


Существует понятие о бесконечном пределе, хотя это и означает отсутствие предела как числа.

Определение. lim(х) = ±∞, если для любого числа М>0 можно указать такое число δ(δ = δ(M)), что для всех значений х, удовлетворяющих неравенству 0 М.

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

 Предел последовательности и функции

Описание презентации по отдельным слайдам:

 Предел последовательности и функции

Предел последовательности и функции

Содержание: Теоремы о пределах Определения Теоремы Примеры

Содержание: Теоремы о пределах Определения Теоремы Примеры

Теоремы о пределах: Постоянное число а называется пределом последовательности.

Теоремы о пределах: Постоянное число а называется пределом последовательности , если для любого сколь угодно малого положительного числа e существует номер N, что все значения x n , у которых n>N, удовлетворяют неравенству ê x n - a ê N, лежат внутри интервала (a- e , a+ e ), т.е. попадают в какую угодно малую e -окрестность точки а.

Последовательность, имеющая предел, называется сходящейся, в противном случае.

Последовательность, имеющая предел, называется сходящейся, в противном случае - расходящейся. Понятие предела функции является обобщением понятия предела последовательности, так как предел последовательности можно рассматривать как предел функции x n= f(n) целочисленного аргумента n. Пусть дана функция f(x) и пусть a - предельная точка области определения этой функции D(f), т.е. такая точка, любая окрестность которой содержит точки множества D(f), отличные от a. Точка a может принадлежать множеству D(f), а может и не принадлежать ему.

Определение 1 Постоянное число А называется пределом функции f(x) при x a.

Определение 1 Постоянное число А называется пределом функции f(x) при x a, если для всякой последовательности значений аргумента, стремящейся к а, соответствующие им последовательности имеют один и тот же предел А. Это определение называют определением предела функции по Гейне, или “ на языке последовательностей ”.

Определение 2 Постоянное число А называется пределом функции f(x) при x a, е.

Определение 2 Постоянное число А называется пределом функции f(x) при x a, если, задав произвольное как угодно малое положительное число e , можно найти такое d >0 (зависящее от e ), что для всех x, лежащих в d -окрестности числа а, т.е. для x, удовлетворяющих неравенству 0 a, то пишут x ® a + 0. Если, в частности, a = 0, то вместо символа 0+0 пишут +0. Аналогично если x ® a и при этом x

Функция f(x) называется непрерывной справа в точке x o, если и непрерывной сл.

Функция f(x) называется непрерывной справа в точке x o, если и непрерывной слева в точке x o, если Непрерывность функции в точке x o равносильна ее непрерывности в этой точке одновременно и справа и слева.

Для того, чтобы функция была непрерывна в точке x o, например, справа, необхо.

Для того, чтобы функция была непрерывна в точке x o, например, справа, необходимо, во-первых, чтобы существовал конечный предел , а во-вторых, чтобы этот предел был равен f(x o ). Следовательно, если хотя бы одно из этих двух условий не выполняется, то функция будет иметь разрыв. 1. Если - существует и не равен f(x o ), то говорят, что функция f(x) в точке x o имеет разрыв первого рода, или скачок. 2. Если - равен ¥ или не существует, то говорят, что в точке x o функция имеет разрыв второго рода.

Рассмотрим пример Я. И. Перельмана, дающий интерпретацию числа e в задаче о.

При безграничном сокращении сроков присоединения процентов наращенный капитал.

При безграничном сокращении сроков присоединения процентов наращенный капитал не растет беспредельно, а приближается к некоторому пределу, равному приблизительно 271. Более чем в 2,71 раз капитал, положенный под 100% годовых, увеличиться не может, даже если бы наросшие проценты присоединялись к капиталу каждую секунду, потому что

Найти: 1) 2) 3)

Решение. 1. Применяя теорему 1 о пределе разности и произведения, находим пре.

Решение. 1. Применяя теорему 1 о пределе разности и произведения, находим предел знаменателя: Предел знаменателя не равен нулю, поэтому, по теореме 1 о пределе частного, получаем:

2. Здесь числитель и знаменатель стремятся к нулю, т.е. имеет место неопредел.

2. Здесь числитель и знаменатель стремятся к нулю, т.е. имеет место неопределенность вида 0/0. Теорема о пределе частного непосредственно неприменима. Для “раскрытия неопределенности” преобразуем данную функцию. Разделив числитель и знаменатель на x-2, получим при x ¹ 2 равенство: Так как , то, по теореме о пределе частного, найдем

3. Числитель и знаменатель при x ® ¥ являются бесконечно большими функциями.

3. Числитель и знаменатель при x ® ¥ являются бесконечно большими функциями. Поэтому теорема о пределе частного непосредственно не применима. Разделим числитель и знаменатель на x 2 и к полученной функции применим теорему о пределе частного:

Предел последовательности

Приводятся формулировки основных теорем и свойств числовых последовательностей, имеющих предел. Содержится определение последовательности и ее предела. Рассмотрены арифметические действия с последовательностями, свойства, связанные с неравенствами, критерии сходимости, свойства бесконечно малых и бесконечно больших последовательностей.

Определение последовательности

Числовая последовательность < xn > – это закон (правило), согласно которому, каждому натуральному числу ставится в соответствие число .
Число называют n-м членом или элементом последовательности.

Более подробно см. страницу Определение числовой последовательности >>>.
Далее мы будем считать, что элементами последовательности являются действительные числа.

Последовательность называется ограниченной, если существует такое число M , что для всех действительных n .
Верхней гранью последовательности называют наименьшее из чисел, ограничивающее последовательность сверху. То есть это такое число s , для которого для всех n и для любого , найдется такой элемент последовательности , превосходящий s′ : .
Нижней гранью последовательности называют наибольшее из чисел, ограничивающее последовательность снизу. То есть это такое число i , для которого для всех n и для любого , найдется такой элемент последовательности , меньший i′ : .

Верхнюю грань также называют точной верхней границей, а нижнюю грань – точной нижней границей. Понятия верхней и нижней граней справедливы не только к последовательностям, но и к любым множествам действительных чисел.

Определение предела последовательности

Число a называется пределом последовательности , если для любого положительного числа существует такое натуральное число N , зависящее от , что для всех натуральных выполняется неравенство
.
Предел последовательности обозначается так:
.
Или при .

С помощью логических символов существования и всеобщности определение предела можно записать следующим образом:
.

ε - окрестность точки a – это открытый интервал ( a – ε, a + ε ) . Сходящаяся последовательность – это последовательность, у которой существует предел .
Также говорят, что последовательность сходится к a . Расходящаяся последовательность – это последовательность, не имеющая предела.

Точка a не является пределом последовательности , если существует такое , что для любого натурального n существует такое натуральное m > n , что
.
.
Это означает, что можно выбрать такую ε - окрестностью точки a , за пределами которой будет находиться бесконечное число элементов последовательности.

Свойства конечных пределов последовательностей

Основные свойства

Точка a является пределом последовательности тогда и только тогда, когда за пределами любой окрестности этой точки находится конечное число элементов последовательности или пустое множество.

Если число a не является пределом последовательности , то существует такая окрестность точки a , за пределами которой находится бесконечное число элементов последовательности.

Теорема единственности предела числовой последовательности. Если последовательность имеет предел, то он единственный.

Если последовательность имеет конечный предел, то она ограничена.

Если каждый элемент последовательности равен одному и тому же числу C : , то эта последовательность имеет предел, равный числу C .

Если у последовательности добавить, отбросить или изменить первые m элементов, то это не повлияет на ее сходимость.

Арифметические действия с пределами

Пусть существуют конечные пределы и последовательностей и . И пусть C – постоянная, то есть заданное число. Тогда
;
;
;
, если .
В случае частного предполагается, что для всех n .

Свойства, связанные с неравенствами

Если и элементы последовательности, начиная с некоторого номера, удовлетворяют неравенству , то и предел a этой последовательности удовлетворяет неравенству .

Если и элементы последовательности, начиная с некоторого номера, принадлежат замкнутому интервалу (сегменту) , то и предел a также принадлежит этому интервалу: .

Если и и элементы последовательностей, начиная с некоторого номера, удовлетворяют неравенству , то .

Если и, начиная с некоторого номера, , то .
В частности, если, начиная с некоторого номера, , то
если , то ;
если , то .

Пусть и . Если a b , то найдется такое натуральное число N , что для всех n > N выполняется неравенство .

Доказательства свойств, связанных с неравенствами приведены на странице
Свойства пределов последовательностей, связанные с неравенствами >>>.

Бесконечно большая и бесконечно малая последовательности

Бесконечно малая последовательность

Сумма и разность конечного числа бесконечно малых последовательностей является бесконечно малой последовательностью.

Произведение ограниченной последовательности на бесконечно малую является бесконечно малой последовательностью.

Произведение конечного числа бесконечно малых последовательностей является бесконечно малой последовательностью.

Для того, чтобы последовательность имела предел a , необходимо и достаточно, чтобы , где – бесконечно малая последовательность.

Доказательства свойств бесконечно малых последовательностей приведены на странице
Бесконечно малые последовательности – определение и свойства >>>.

Бесконечно большая последовательность

Бесконечно большая последовательность – это последовательность, имеющая бесконечно большой предел. То есть если для любого положительного числа существует такое натуральное число N , зависящее от , что для всех натуральных выполняется неравенство
.
В этом случае пишут
.
Или при .
Говорят, что стремится к бесконечности.

Если , начиная с некоторого номера N , то
.
Если же , то
.

Если последовательность являются бесконечно большой, то, начиная с некоторого номера N , определена последовательность , которая является бесконечно малой. Если являются бесконечно малой последовательностью с отличными от нуля элементами, то последовательность является бесконечно большой.

Если последовательность бесконечно большая, а последовательность ограничена, то
.

Если абсолютные значения элементов последовательности ограничены снизу положительным числом ( ), а – бесконечно малая с неравными нулю элементами, то
.

Более подробно определение бесконечно большой последовательности с примерами приводится на странице
Определение бесконечно большой последовательности >>>.
Доказательства свойств бесконечно больших последовательностей приведены на странице
Свойства бесконечно больших последовательностей >>>.

Критерии сходимости последовательностей

Монотонные последовательности

Строго возрастающая последовательность – это последовательность, для всех элементов которой выполняются неравенства:
.

Аналогичными неравенствами определяются другие монотонные последовательности.

Строго убывающая последовательность:
.
Неубывающая последовательность:
.
Невозрастающая последовательность:
.

Отсюда следует, что строго возрастающая последовательность также является неубывающей. Строго убывающая последовательность также является невозрастающей.

Монотонная последовательность – это неубывающая или невозрастающая последовательность.

Монотонная последовательность ограничена, по крайней мере, с одной стороны значением . Неубывающая последовательность ограничена снизу: . Невозрастающая последовательность ограничена сверху: .

Теорема Вейерштрасса. Для того чтобы неубывающая (невозрастающая) последовательность имела конечный предел, необходимо и достаточно, чтобы она была ограниченной сверху (снизу ). Здесь M – некоторое число.

Поскольку любая неубывающая (невозрастающая) последовательность ограничена снизу (сверху), то теорему Вейерштрасса можно перефразировать следующим образом:

Для того чтобы монотонная последовательность имела конечный предел, необходимо и достаточно, чтобы она была ограниченной: .

Монотонная неограниченная последовательность имеет бесконечный предел, равный для неубывающей и для невозрастающей последовательности.

Критерий Коши сходимости последовательности

Условие Коши
Последовательность удовлетворяет условию Коши, если для любого существует такое натуральное число , что для всех натуральных чисел n и m , удовлетворяющих условию , выполняется неравенство
.

Фундаментальная последовательность – это последовательность, удовлетворяющая условию Коши.

Критерий Коши сходимости последовательности. Для того, чтобы последовательность имела конечный предел, необходимо и достаточно, чтобы она удовлетворяла условию Коши.

Доказательство критерия сходимости Коши приведено на странице
Критерий Коши сходимости последовательности >>>.

Подпоследовательности

Теорема Больцано – Вейерштрасса. Из любой ограниченной последовательности можно выделить сходящуюся подпоследовательность. А из любой неограниченной последовательности – бесконечно большую подпоследовательность, сходящуюся к или к .

Доказательство теоремы Больцано – Вейерштрасса приведено на странице
Теорема Больцано – Вейерштрасса >>>.

Определения, теоремы и свойства подпоследовательностей и частичных пределов рассмотрены на странице
Подпоследовательности и частичные пределы после­довательностей>>>.

Использованная литература:
С.М. Никольский. Курс математического анализа. Том 1. Москва, 1983.
Л.Д. Кудрявцев. Курс математического анализа. Том 1. Москва, 2003.
В.А. Зорич. Математический анализ. Часть 1. Москва, 1997.
В.А. Ильин, Э.Г. Позняк. Основы математического анализа. Часть 1. Москва, 2005.

Читайте также: