Плазма агрегатное состояние сообщение

Обновлено: 04.07.2024

Агрегатное состояние вещества можно рассматривать как состояние элементарных частиц, составляющих вещество, и прочность связей между ними. Например, в (кристаллическом) твердом теле существуют сильные межмолекулярные связи, удерживающие атомы вместе в решетчатом образовании, придающие ему веществу определенный объем и форму. В жидкости эти силы так слабы, что вещество больше не имеет определенной формы, а в газе они уже настолько незначительны, что атомы или молекулы могут двигаться независимо друг от друга, но они все еще остаются атомами и молекулами. Плазма - это состояние вещества, которое имеет достаточно энергии для отделения электронов от ядра атома.

Атомы содержат одинаковое количество как положительно, так и отрицательно заряженных частиц. Из-за того, что протоны в ядре окружены равным количеством отрицательно заряженных электронов, каждый атом электрически нейтрален.

Плазма образуется, когда под воздействием тепловой или другой энергии ряд атомов высвобождают свои электроны. В результате атомы становятся положительно заряженными (ионами), а высвобожденные электроны могут свободно перемещаться. Когда достаточное количество атомов ионизируется, чтобы существенно повлиять на электрические характеристики газа, он становится плазмой. Проще говоря, плазма - это горячий ионизированный газ, состоящий примерно из одинакового количества положительно заряженных ионов и отрицательно заряженных электронов.

Свойства плазмы

Наиболее важный эффект ионизации заключается в том, что плазма приобретает некоторые электрические свойства, которых неионизированный газ не имеет:

1) появляется электропроводность. Для того чтобы вещество обладало электропроводностью, в нем должны быть свободные заряженные частицы. В металлах эти свободные частицы распределяются между атомами, а электрический ток проявляется в форме направленного движения электронов, переходящих от одного атома к другому. Вещество в состоянии плазмы само по себе состоит из свободных заряженных частиц;

2) плазма реагирует на электрические и магнитные поля. Например, поскольку плазма состоит из электрически заряженных частиц, на нее сильно влияют электрические и магнитные поля, а нейтральные газы - нет. Примером такого влияния является захват энергичных заряженных частиц вдоль линий геомагнитного поля с образованием радиационных поясов Ван Аллена.

Помимо внешних электромагнитных полей, таких как магнитное поле Земли или межпланетное магнитное поле, на плазму воздействуют электрические и магнитные поля, создаваемые в самой плазме посредством локальных концентраций заряда и электрических токов, появляющихся в результате движения ионов и электронов. Силы, оказываемые этими полями на заряженные частицы, из которых состоит плазма, действуют на большие расстояния и придают поведению частиц целостное коллективное качество, которое нейтральные газы не проявляют;

Где в природе можно увидеть плазму?

Самый большой сгусток плазмы, который мы постоянно наблюдаем - это Солнце. Огромное количество тепла, выделяемое звездой, отрывает электроны от атомов водорода и гелия, из которых состоит Солнце. Фактически оно, как и другие звезды, представляет собой большой плазменный шар. Увидеть потоки и вспышки солнечной плазмы в высоком разрешении можно в красивейшем видео NASA "Термоядерное искусство" в конце статьи.

Огонь - это самая настоящая плазма. Хотя температура пламени, при горении различных веществ на Земле намного ниже, чем температура на Солнце, и оно гораздо менее ионизировано, но пламя огня проявляет все основные свойства плазмы. Даже небольшие и относительно холодные виды пламени, такие как пламя свечи, сильно реагируют на электрические поля и даже обладают значительной электропроводностью (большей, чем у воздуха, но меньшей, чем у железа).

Еще в природе плазменным состоянием вещества можно охарактеризовать молнии и искры разрядов статического электричества.

Где и как используется плазма?

Плазма широко используется в газоразрядных лампах для создания искусственного освещения, кроме того, во многих световых рекламных вывесках используется аргоновая или неоновая плазма.

Плазма также используется в сварке и резке металлов, а все газовые лазеры (на диоксиде углерода, гелий-неоновый, криптоновый, и другие) в действительности плазменные: в этих лазерах газовые смеси ионизованы электрическим разрядом.

Потенциально, одно из наиболее важных применений плазмы - это источник энергии ядерного синтеза.

Международный экспериментальный термоядерный реактор (ITER). Начало строительства январь 2007 года, планируемый срок запуска 2025 год. Источник изображения:

Международный экспериментальный термоядерный реактор (ITER). Начало строительства январь 2007 года, планируемый срок запуска 2025 год. Источник изображения:

Высокотемпературные плазмы настолько горячие, что внутри них могут происходить ядерные реакции. В этих условиях определенные типы атомов с легкими ядрами, такие как изотопы водорода, могут быть объединены в более тяжелые ядра. При этом выделяется большое количество энергии, которую можно было бы использовать для выработки электричества. Проблема в том, что получить настолько горячую и долговечную плазму очень трудно, но прогресс, уже достигнутый учеными, впечатляет.

Агрегатные Состояния вещества, состояния одного и того же вещества, переходы между которыми сопровождаются скачкообразным изменением его свободной энергии, энтропии, плотности и других физических свойств. Все
вещества (за некоторым исключением) могут существовать в трёх агрегатных состояниях - твёрдом, жидком и газообразном. Так, вода при нормальном давлении p= 10l 325 Па=760 мм ртутного столба и при температуре t=00 С. кристаллизуется в лёд, а при 100°С кипит и превращается в пар. Четвёртым агрегатным состоянием вещества часто считают плазму. В отличие от других агрегатных состояний вещества плазма представляет собой газ заряженных частиц (ионов, электронов),которые электрически взаимодействуют друг с другом на больших расстояниях.

Что такое плазма?

ПЛАЗМА - частично или полностью ионизированный газ, в котором плотности положительных и отрицательных зарядов практически одинаковы. В лабораторных условиях плазма образуется в электрическом разряде в газе, в процессах горения и взрыва.Термин “плазма” в физике был введен в 1929 американскими учеными И.Ленгмюром и Л.Тонксом. Вещество, разогретое до температуры в сотни тысяч и миллионы градусов, уже не может состоять из обычных нейтральных атомов. При столь высоких температурах атомы сталкиваются друг с другом с такой силой, что не могут сохраниться в целостности. При ударе атомы разделяются на более мелкие составляющие - атомные ядра и электроны. Эти частицы наделены электрическими зарядами: электроны - отрицательным, а ядра - положительным. Смесь этих частиц, называемая плазма представляет собой своеобразное состояние вещества, которое очень сильно отличается от относительно холодного газа по свойствам. Под плазмой в физике понимают газ, состоящий из электрически заряженных и нейтральных частиц, в котором суммарный электрический заряд равен нулю, то есть, выполнено условие квазинейтральности . Средние кинетические энергии различных типов частиц, составляющих плазму, могут быть разными. Поэтому в общем случае плазму характеризуют не одним значением температуры, а несколькими – различают электронную температуру Те , ионную температуру Тi и температуру нейтральных атомов Та . Плазму с ионной температурой Тi 5 К называют низкотемпературной, а с Тi > 10 6 К – высокотемпературной. Высокотемпературная плазма является основным объектом исследования по УТС. Низкотемпературная плазма находит применение в газоразрядных источниках света, газовых лазерах.

Солнечное вещество находится в состоянии плазмы

Состояние плазмы практически единогласно признается научным сообществом как четвертое агрегатное состояние. Вокруг данного состояния даже образовалась отдельная наука, изучающая это явление – физика плазмы. Состояние плазмы или ионизованный газ представляется как набор заряженных частиц, суммарный заряд которых в любом объеме системы равен нулю – квазинейтральный газ.

Получение плазмы

Плазма как четвертое агрегатное состояние

Плазма как четвертое агрегатное состояние

Также существует газоразрядная плазма, которая возникает при газовом разряде. При прохождении электрического тока через газ, первый ионизирует газ, ионизированные частицы которого являются переносчиками тока. Так в лабораторных условиях получают плазму, степень ионизации которой можно контролировать при помощи изменения параметров тока. Однако, в отличие от высокотемпературной плазмы, газоразрядная нагревается за счет тока, и потому быстро охлаждается при взаимодействии с незаряженными частицами окружающего газа.

Электрическая дуга - ионизированный квазинейтральный газ

Электрическая дуга — ионизированный квазинейтральный газ

Свойства и параметры плазмы

В отличие от газа вещество в состоянии плазмы обладает очень высокой электрической проводимостью. И хотя суммарный электрический заряд плазмы обычно равен нулю, она значительно подвержена влиянию магнитного поля, которое способно вызывать течение струй такого вещества и разделять его на слои, как это наблюдается на Солнце.

Спикулы - потоки солнечной плазмы

Спикулы — потоки солнечной плазмы

Другое свойство, которое отличает плазму от газа – коллективное взаимодействие. Если частицы газа обычно сталкиваются по двое, изредка лишь наблюдается столкновение трех частиц, то частицы плазмы, в силу наличия электромагнитных зарядов, взаимодействуют одновременно с несколькими частицами.

В зависимости от своих параметров плазму разделяют по следующим классам:

  • По температуре: низкотемпературная – менее миллиона кельвин, и высокотемпературная – миллион кельвин и более. Одна из причин существования подобного разделения заключается в том, что лишь высокотемпературная плазма способна участвовать в термоядерном синтезе.
  • Равновесная и неравновесная. Вещество в состоянии плазмы, температура электронов которого значительно превышает температуру ионов, называется неравновесной. В случае же когда температура электронов и ионов одинаковая говорят о равновесной плазме.
  • По степени ионизации: высокоионизационная и плазма с низкой степенью ионизации. Дело в том, что даже ионизированный газ, 1% частиц которого ионизированы, проявляет некоторые свойства плазмы. Однако, обычно плазмой называют полностью ионизированный газ (100%). Примером вещества в таком состоянии является солнечное вещество. Степень ионизации напрямую зависит от температуры.

Применение

Наибольшее применение плазма нашла в светотехнике: в газоразрядных лампах, экранах и различных газоразрядных приборах, вроде стабилизатора напряжения или генератора сверхвысокочастотного (микроволнового) излучения. Возвращаясь к освещению – все газоразрядные лампы основаны на протекании тока через газ, что вызывает ионизацию последнего. Популярный в технике плазменный экран представляет собой набор газоразрядных камер, заполненных сильно ионизированным газом. Электрический разряд, возникающий в этом газе порождает ультрафиолетовое излучение, которое поглощается люминифором и далее вызывает его свечение в видимом диапазоне.

Устройство плазменного экрана

Устройство плазменного экрана

Вторая область применения плазмы – космонавтика, а конкретнее – плазменные двигатели. Такие двигатели работают на основе газа, обычно ксенона, который сильно ионизируется в газоразрядной камере. В результате этого процесса тяжелые ионы ксенона, которые к тому же ускоряются магнитным полем, образуют мощный поток, создающий тягу двигателя.

Устройство термоядерного реактора

Устройство термоядерного реактора

Также плазменные ускорители используются в экспериментах по физике высоких энергий.


У этого термина существуют и другие значения, см.

электронов из высокоэнергетического состояния в состояние с низкой энергией после рекомбинации с ионами. Этот процесс приводит к излучению со спектром, соответствующим возбуждаемому газу.

Эмпедокла, утверждали, что мир состоит из четырёх стихий: земли, воды, воздуха и огня. Это положение с учётом некоторых допущений укладывается в современное научное представление о четырёх агрегатных состояниях вещества , причем плазме, очевидно, соответствует огонь. [1] Свойства плазмы изучает физика плазмы.

Содержание

Формы плазмы

  • Вещество внутри компактных ) и [3]
  • Плазменные ракетные двигатели
  • Газоразрядная корона управляемого термоядерного синтеза
  • лазерным излучением
  • Светящаяся сфера Огни святого Эльма
  • пламени[источник не указан 3243 дня] (низкотемпературная плазма)
    и другие звезды (те, которые существуют за счет термоядерных реакций) (пространство между планетами, звездами и галактиками)
  • Межзвездные туманности

Свойства и параметры плазмы

Определение плазмы

Плазма — частично или полностью ионизированный газ, в котором плотности положительных и отрицательных зарядов практически одинаковы. [4] Не всякую систему заряженных частиц можно назвать плазмой. Плазма обладает следующими свойствами: [5] [6] [7]

<\displaystyle ~N></p>
<p><ul>
  <li>Достаточная , где
— концентрация заряженных частиц.

  • Приоритет внутренних взаимодействий: радиус
    • Плазменная частота: среднее время между столкновениями частиц должно быть велико по сравнению с периодом электрического поля, возникающего из-за нарушения квазинейтральности плазмы. Это поле стремится восстановить нарушенное равновесие. Возвращаясь в положение равновесия, заряд проходит по инерции это положение, что опять приводит к появлению сильного возвращающего поля, возникают типичные [8] Когда данное условие соблюдено, электродинамические свойства плазмы преобладают над молекулярно-кинетическими. На языке математики это условие имеет вид:

    Классификация

    Плазма обычно разделяется на идеальную и неидеальную, низкотемпературную и высокотемпературную, равновесную и неравновесную, при этом довольно часто холодная плазма бывает неравновесной, а горячая равновесной.

    Температура

    Плазму делят на низкотемпературную (температура меньше миллиона K) и высокотемпературную (температура миллион K и выше). Такое деление обусловлено важностью высокотемпературной плазмы в проблеме осуществления управляемого термоядерного синтеза. Разные вещества переходят в состояние плазмы при разной температуре, что объясняется строением внешних электронных оболочек атомов вещества: чем легче атом отдает электрон, тем ниже температура перехода в плазменное состояние [9] .

    В неравновесной плазме электронная температура существенно превышает температуру ионов. Это происходит из-за различия в массах иона и электрона, которое затрудняет процесс обмена энергией. Такая ситуация встречается в газовых разрядах, когда ионы имеют температуру около сотен, а электроны около десятков тысяч K.

    В равновесной плазме обе температуры равны. Поскольку для осуществления процесса ионизации необходимы температуры, сравнимые с потенциалом ионизации, равновесная плазма обычно является горячей (с температурой больше нескольких тысяч K).

    Степень ионизации

    Для низкотемпературной плазмы характерна малая степень ионизации (до 1 %). Так как такие плазмы довольно часто употребляются в технологических процессах, их иногда называют технологичными плазмами. Чаще всего их создают при помощи электрических полей, ускоряющих электроны, которые в свою очередь ионизируют атомы. Электрические поля вводятся в газ посредством индуктивной или емкостной связи (см. индуктивно-связанная плазма ). Типичные применения низкотемпературной плазмы включают плазменную модификацию свойств поверхности (алмазные пленки, нитридирование металлов, изменение смачиваемости), плазменное травление поверхностей (полупроводниковая промышленность), очистку газов и жидкостей (озонирование воды и сжигание частичек сажи в дизельных двигателях).

    Плотность

    Помимо температуры, которая имеет фундаментальную важность для самого существования плазмы, вторым наиболее важным свойством плазмы является плотность. Словосочетание плотность плазмы обычно обозначает плотность электронов, то есть число свободных электронов в единице объёма (строго говоря, здесь, плотностью называют концентрацию — не массу единицы объёма, а число частиц в единице объёма). В квазинейтральной плазме плотность ионов связана с ней посредством среднего зарядового числа ионов " width="" height="" />
    : =\langle Z\rangle n_>" width="" height="" />
    . Следующей важной величиной является плотность нейтральных атомов >" width="" height="" />
    . В горячей плазме >" width="" height="" />
    мала, но может тем не менее быть важной для физики процессов в плазме. При рассмотрении процессов в плотной, неидеальной плазме характерным параметром плотности становится >" width="" height="" />
    , который определяется как отношение среднего межчастичного расстояния к Квазинейтральность

    <\displaystyle n_<e></p>
<p>Так как плазма является очень хорошим проводником, электрические свойства имеют важное значение. Потенциалом плазмы или потенциалом пространства называют среднее значение электрического потенциала в данной точке пространства. В случае если в плазму внесено какое-либо тело, его потенциал в общем случае будет меньше потенциала плазмы вследствие возникновения дебаевского слоя. Такой потенциал называют плавающим потенциалом. По причине хорошей электрической проводимости плазма стремится экранировать все электрические поля. Это приводит к явлению квазинейтральности — плотность отрицательных зарядов с хорошей точностью равна плотности положительных зарядов (=\langle Z\rangle n_>
    ). В силу хорошей электрической проводимости плазмы разделение положительных и отрицательных зарядов невозможно на расстояниях больших дебаевской длины и временах больших периода плазменных колебаний.

    Примером неквазинейтральной плазмы является пучок электронов. Однако плотность не-нейтральных плазм должна быть очень мала, иначе они быстро распадутся за счёт кулоновского отталкивания.

    Отличия от газообразного состояния

    Плазму часто называют четвертым состоянием вещества. Она отличается от трёх менее энергетичных агрегатных состояний материи, хотя и похожа на газовую фазу тем, что не имеет определённой формы или объёма. До сих пор идёт обсуждение того, является ли плазма отдельным агрегатным состоянием, или же просто горячим газом. Большинство физиков считает, что плазма является чем-то большим, чем газ по причине следующих различий:

    Сложные плазменные явления

    Хотя основные уравнения, описывающие состояния плазмы, относительно просты, в некоторых ситуациях они не могут адекватно отражать поведение реальной плазмы: возникновение таких эффектов — типичное свойство ионизации в высокоионизационное). Здесь плазма не может быть описана с использованием простых вероятностного подхода. Такие эффекты как спонтанное изменение формы плазмы являются следствием сложности взаимодействия заряженных частиц, из которых состоит плазма. Подобные явления интересны тем, что проявляются резко и не являются устойчивыми. Многие из них были изначально изучены в лабораториях, а затем были обнаружены во Вселенной.

    Математическое описание

    Плазму можно описывать на различных уровнях детализации. Обычно плазма описывается отдельно от электромагнитных полей. Совместное описание проводящей жидкости и электромагнитных полей даётся в теории магнитогидродинамических явлений или МГД теории.

    Флюидная (жидкостная) модель

    Во флюидной модели электроны описываются в терминах плотности, температуры и средней скорости. В основе модели лежат: уравнение баланса для плотности, уравнение сохранения импульса, уравнение баланса энергии электронов. В двухжидкостной модели таким же образом рассматриваются ионы.

    Кинетическое описание

    Иногда жидкостная модель оказывается недостаточной для описания плазмы. Более подробное описание даёт кинетическая модель, в которой плазма описывается в терминах функции распределения электронов по координатам и импульсам. В основе модели лежит уравнение Больцмана. Уравнение Больцмана неприменимо для описания плазмы заряженных частиц с кулоновским взаимодействием вследствие дальнодействующего характера кулоновских сил. Поэтому для описания плазмы с кулоновским взаимодействием используется Particle-In-Cell (частица в ячейке)

    Модели Базовые характеристики плазмы

    <\displaystyle \mu =m_<i></p>
<p>Все величины даны в Гауссовых СГС единицах за исключением температуры, которая дана в eV и массы ионов, которая дана в единицах массы протона /m_<p>>
    ; Z — зарядовое число; k — постоянная Больцмана; К — длина волны; γ — адиабатический индекс; ln Λ — Кулоновский логарифм.

    Частоты

    Длины

    • Де-Бройлева длина волны электрона, длина волны электрона в квантовой механике:
    • минимальное расстояние сближения в классическом случае, минимальное расстояние на которое могут сблизиться две заряженных частицы при лобовом столкновении и начальной скорости, соответствующей температуре частиц, в пренебрежении квантово-механическими эффектами:
    • гиромагнитный радиус электрона, радиус кругового движения электрона в плоскости перпендикулярной магнитному полю:
    • гиромагнитный радиус иона, радиус кругового движения иона в плоскости перпендикулярной магнитному полю:
    • размер скин-слоя плазмы, расстояние на которое электромагнитные волны могут проникать в плазму:

    Скорости

    • тепловая скорость электрона, формула для оценки скорости электронов при распределении Максвелла. Средняя скорость, наиболее вероятная скорость и среднеквадратичная скорость отличаются от этого выражения лишь множителями порядка единицы:
    • тепловая скорость иона, формула для оценки скорости ионов при распределении Максвелла:

    <\displaystyle v_<Ti></p>
<p>=(kT_/m_)^=9.79\times 10^\,\mu ^T_^\,<\mbox<cm/s>>>


    Плазменная лампа, иллюстрирующая некоторые из наиболее сложных плазменных явлений, включая филаментацию. Свечение плазмы обусловлено переходом электронов из высокоэнергетического состояния в состояние с низкой энергией после рекомбинации с ионами. Этот процесс приводит к излучению со спектром, соответствующим возбуждаемому газу.

    Многие философы античности утверждали, что мир состоит из четырех стихий: земли, воды, воздуха и огня. Это положение с учетом некоторых допущений укладывается в современное научное представление о четырех агрегатных состояниях вещества, причем плазме, очевидно, соответствует огонь. [1] Свойства плазмы изучает физика плазмы.

    Содержание

    Формы плазмы

      , включая TV
    • Вещество внутри люминесцентных и неоновых ламп[3]
    • Внутри газоразрядной короны озонового генератора
    • В исследованиях, посвященных управляемому термоядерному синтезу в дуговой лампе и в дуговой сварке
    • Внутри плазменных шаров (см. рисунок) от трансформатора Теслы
    • Плазму создают при помощи воздействия на вещество лазерным излучением
      и другие звезды (те, которые существуют за счет термоядерных реакций) (пространство между планетами, звездами и галактиками)
    • Межзвездные туманности

    Свойства и параметры плазмы

    Определение плазмы

    Плазма — частично или полностью ионизированный газ, в котором плотности положительных и отрицательных зарядов практически одинаковы. [4] Не всякую систему заряженных частиц можно назвать плазмой. Плазма обладает следующими свойствами: [5] [6] [7]

    • Достаточная плотность: заряженные частицы должны находиться достаточно близко друг к другу, чтобы каждая из них взаимодействовала с целой системой близкорасположенных частиц, состоящей из многих ионов. Условие считается выполненным, если число заряженных частиц в сфере влияния (сфера радиусом Дебая) достаточно для возникновения коллективных эффектов (подобные проявления — типичное свойство плазмы). Математически это условие можно выразить так:
    • Приоритет внутренних взаимодействий: радиус дебаевского экранирования должен быть мал по сравнению с характерным размером плазмы. Этот критерий означает, что взаимодействия, происходящие внутри плазмы более значительны по сравнению с эффектами на ее поверхности, которыми можно пренебречь. Если это условие соблюдено, плазму можно считать квазинейтральной. Математически оно выглядит так:
    • Плазменная частота: среднее время между столкновениями частиц должно быть велико по сравнению с периодом плазменных колебаний. Эти колебания вызываются действием на заряд электрического поля, возникающего из-за нарушения квазинейтральности плазмы. Это поле стремится восстановить нарушенное равновесие. Возвращаясь в положение равновесия, заряд проходит по инерции это положение, что опять приводит к появлению сильного возвращающего поля, возникают типичные механические колебания. [8] Когда данное условие соблюдено, электродинамические свойства плазмы преобладают над молекулярно-кинетическими. На языке математики это условие имеет вид:

    Классификация

    Плазма обычно разделяется на идеальную и неидеальную, низкотемпературную и высокотемпературную, равновесную и неравновесную, при этом довольно часто холодная плазма бывает неравновесной, а горячая равновесной.

    Температура

    В неравновесной плазме электронная температура существенно превышает температуру ионов. Это происходит из-за различия в массах иона и электрона, которое затрудняет процесс обмена энергией. Такая ситуация встречается в газовых разрядах, когда ионы имеют температуру около сотен, а электроны около десятков тысяч градусов.

    В равновесной плазме обе температуры равны. Поскольку для осуществления процесса ионизации необходимы температуры, сравнимые с потенциалом ионизации, равновесная плазма обычно является горячей (с температурой больше нескольких тысяч градусов).

    Понятие высокотемпературная плазма употребляется обычно для плазмы термоядерного синтеза, который требует температур в миллионы кельвинов.

    Степень ионизации

    Для того, чтобы газ перешел в состояние плазмы, его необходимо ионизировать. Степень ионизации пропорциональна числу атомов, отдавших или поглотивших электроны, и больше всего зависит от температуры. Даже слабо ионизированный газ, в котором менее 1 % частиц находятся в ионизированном состоянии, может проявлять некоторые типичные свойства плазмы (взаимодействие с внешним электромагнитным полем и высокая электропроводность). Степень ионизации α определяетя как α = ni/(ni + na), где ni — концентрация ионов, а na — концентрация нейтральных атомов. Концентрация свободных электронов в незаряженной плазме ne определяется очевидным соотношением: ne= ni, где — среднее значение заряда ионов плазмы.

    Для низкотемпературной плазмы характерна малая степень ионизации (до 1 %). Так как такие плазмы довольно часто употребляются в технологических процессах, их иногда называют технологичными плазмами. Чаще всего их создают при помощи электрических полей, ускоряющих электроны, которые в свою очередь ионизируют атомы. Электрические поля вводятся в газ посредством индуктивной или емкостной связи (см. индуктивно-связанная плазма). Типичные применения низкотемпературной плазмы включают плазменную модификацию свойств поверхности (алмазные пленки, нитридирование металлов, изменение смачиваемости), плазменное травление поверхностей (полупроводниковая промышленность), очистка газов и жидкостей (озонирование воды и сжигание частичек сажи в дизельных двигателях).

    Плотность

    Помимо температуры, которая имеет фундаментальную важность для самого существования плазмы, вторым наиболее важным свойством плазмы является плотность. Слово плотность плазмы обычно обозначает плотность электронов, то есть число свободных электронов в единице объема (строго говоря, здесь, плотностью называют концентрацию — не массу единицы объема, а число частиц в единице объема). Плотность ионов связана с ней посредством среднего зарядового числа ионов : . Следующей важной величиной является плотность нейтральных атомов n0 . В горячей плазме n0 мала, но может тем не менее быть важной для физики процессов в плазме. Плотность в физике плазмы описывается безразмерным параметром плазмы rs , который определяется как отношение среднего межчастичного состояния к радиусу бора.

    Квазинейтральность

    n_e=\langle Z\rangle n_i

    Так как плазма является очень хорошим проводником, электрические свойства имеют важное значение. Потенциалом плазмы или потенциалом пространства называют среднее значение электрического потенциала в данной точке пространства. В случае если в плазму внесено какое-либо тело, его потенциал в общем случае будет меньше потенциала плазмы вследствие возникновения дебаевского слоя. Такой потенциал называют плавающим потенциалом. По причине хорошей электрической проводимости плазма стремится экранировать все электрические поля. Это приводит к явлению квазинейтральности — плотность отрицательных зарядов с хорошей точностью равна плотности положительных зарядов (). В силу хорошей электрической проводимости плазмы разделение положительных и отрицательных зарядов невозможно на расстояниях больших дебаевской длины и временах больших периода плазменных колебаний.

    Примером неквазинейтральной плазмы является пучок электронов. Однако плотность не-нейтральных плазм должна быть очень мала, иначе они быстро распадутся за счёт кулоновского отталкивания.

    Отличия от газообразного состояния

    Плазму часто называют четвертым состоянием вещества. Она отличается от трёх менее энергетичных агрегатных состояний материи, хотя и похожа на газовую фазу тем, что не имеет определённой формы или объема. До сих пор идёт обсуждение того, является ли плазма отдельным агрегатным состоянием, или же просто горячим газом. Большинство физиков считает что плазма является чем-то большим чем газ по причине следующих различий:

    1. Несмотря на то, что при протекании тока возникает хотя и малое, но тем не менее конечное падение потенциала, во многих случаях электрическое поле в плазме можно считать равным нулю. Градиенты плотности, связанные с наличием электрического поля, могут быть выражены через распределение Больцмана.
    2. Возможность проводить токи делает плазму сильно подверженной влиянию магнитного поля, что приводит к возникновению таких явлений как филаментирование, появление слоев и струй.
    3. Типичным является наличие коллективных эффектов, так как электрические и магнитные силы являются дальнодействующими и гораздо сильнее чем гравитационные.

    Электрические поля имеют другое влияние на скорости частиц чем столкновения, которые всегда ведут к максвеллизации распределения по скоростям. Зависимость сечения кулоновских столкновений от скорости может усиливать это различие, приводя к таким эффектам, как двухтемпературные распределения и убегающие электроны.

    Сложные плазменные явления

    Хотя основные уравнения, описывающие состояния плазмы, относительно просты, в некоторых ситуациях они не могут адекватно отражать поведение реальной плазмы: возникновение таких эффектов — типичное свойство сложных систем, если использовать для их описания простые модели. Наиболее сильное различие между реальным состоянием плазмы и ее математическим описанием наблюдается в так называемых пограничных зонах, где плазма переходит из одного физического состояния в другое (например, из состояния с низкой степенью ионизации в высокоионизационное). Здесь плазма не может быть описана с использованием простых гладких математических функций или, применяя вероятностный подход. Такие эффекты как спонтанное изменение формы плазмы являются следствием сложности взаимодействия заряженных частиц, из которых состоит плазма. Подобные явления интересны тем, что проявляются резко и не являются устойчивыми. Многие из них были изначально изучены в лабораториях, а затем были обнаружены во Вселенной.

    Математическое описание

    Плазму можно описывать на различных уровнях детализации. Обычно плазма описывается отдельно от электромагнитных полей. Совместное описание проводящей жидкости и электромагнитных полей даётся в теории магнитогидродинамических явлений или МГД теории.

    Флюидная (жидкостная) модель

    Во флюидной модели электроны описываются в терминах плотности, температуры и средней скорости. В основе модели лежат: уравнение баланса для плотности, уравнение сохранения импульса, уравнение баланса энергии электронов. В двухжидкостной модели таким же образом рассматриваются ионы.

    Кинетическое описание

    Иногда жидкостная модель оказывается недостаточной для описания плазмы. Более подробное описание даёт кинетическая модель, в которой плазма описывается в терминах функции распределения электронов по координатам и импульсам. В основе модели лежит уравнение Больцмана. Уравнение Больцмана неприменимо для описания плазмы заряженных частиц с кулоновским взаимодействием вследствие дальнодействующего характера кулоновских сил. Поэтому для описания плазмы с кулоновским взаимодействием используется уравнение Власова с самосогласованным электромагнитным полем, созданным заряженными частицами плазмы. Кинетическое описание необходимо применять в случае отсутствия термодинамического равновесия либо в случае присутствия сильных неоднородностей плазмы.

    Particle-In-Cell (частица в ячейке)

    Модели Particle-In-Cell являются более подробными чем кинетические. Они включают в себя кинетическую информацию путём слежения за траекториями большого числа отдельных частиц. Плотности эл. заряда и тока определяются путём суммирования частиц в ячейках, которые малы по сравнению с рассматриваемой задачей но тем не менее содержат большое число частиц. Эл. и магн. поля находятся из плотностей зарядов и токов на границах ячеек.

    Базовые характеристики плазмы

    Все величины даны в Гауссовых СГС единицах за исключением температуры, которая дана в eV и массы ионов, которая дана в единицах массы протона μ = mi / mp ; Z — зарядовое число; k — постоянная Больцмана; К — длина волны; γ — адиабатический индекс; ln Λ — Кулоновский логарифм.

    Частоты

    • Ларморова частота электрона, угловая частота кругового движения электрона в плоскости перпендикулярной магнитному полю:
    • Ларморова частота иона, угловая частота кругового движения иона в плоскости перпендикулярной магнитному полю:
    • плазменная частота (частота плазменных колебаний), частота с которой электроны колеблются около положения равновесия, будучи смещенными относительно ионов:
    • ионная плазменная частота:
    • частота столкновений электронов
    • частота столкновений ионов

    Длины

    • Де-Бройлева длина волны электрона, длина волны электрона в квантовой механике:
    • минимальное расстояние сближения в классическом случае, минимальное расстояние на которое могут сблизиться две заряженных частицы при лобовом столкновении и начальной скорости, соответствующей температуре частиц, в пренебрежении квантово-механическими эффектами:
    • гиромагнитный радиус электрона, радиус кругового движения электрона в плоскости перпендикулярной магнитному полю:
    • гиромагнитный радиус иона, радиус кругового движения иона в плоскости перпендикулярной магнитному полю:
    • размер скин-слоя плазмы, расстояние на которое электромагнитные волны могут проникать в плазму:
    • Радиус Дебая (длина Дебая), расстояние на котором электрические поля экранируются за счёт перераспределения электронов:

    Скорости

    • тепловая скорость электрона, формула для оценки скорости электронов при распределении Максвелла. Средняя скорость, наиболее вероятная скорость и среднеквадратичная скорость отличаются от этого выражения лишь множителями порядка единицы:
    • тепловая скорость иона, формула для оценки скорости ионов при распределении Максвелла:

    v_<Ti></p>
<p> = (kT_i/m_i)^ = 9.79\times10^5\,\mu^T_i^\,\mbox

    Читайте также: