Эволюция представлений о строении клетки с 17 по 21 век сообщение

Обновлено: 02.07.2024

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

Скипидарникова Лариса Владимировна , учитель биологии

История развития клеточной теории

Клеточная теория — это фундаментальное обобщение биологии, которое определяет взаимосвязь всех проявлений жизни на Земле с клеткой, характеризует клетку одновременно как целостную самостоятельную живую систему и как составную часть многоклеточных организмов растений и животных.

Общие сведения

Клеточная теория — основополагающая для общей биологии теория, сформулированная в середине XIX века, предоставила базу для понимания закономерностей живого мира и для развития эволюционного учения. Маттиас Шлейден и Шванн сформулировали клеточную теорию, основываясь на множестве исследований клетки (1838). Вирхов позднее (1858) дополнил ее важнейшим положением (любая клетка происходит из клетки).

Шлейден и Шванн, обобщив имеющиеся знания о клетке, доказали, что клетка является основной единицей любого организма. Клетки животных, растений и бактерии имеют сходное строение. Позже эти выводы стали основой для доказательства единства организмов. Т. Шванн и М. Шлейден ввели в науку основополагающее представление о клетках: вне клеток нет жизни.

В первой четверти XIX века происходит значительное углубление представлений о клеточном строении растений, что связано с существенными улучшениями в конструкции микроскопа (в частности, созданием ахроматических линз).

Ссылка и Молднхоуер устанавливают наличие в растительных клеток самостоятельных стенок. Выясняется, что клетка является определенной морфологически обособленной структурой. В 1831 году Моль доказывает, что даже такие, казалось бы, неклеточных структуры растений, как водоносные трубки, развиваются из клеток.

В 1831 году Роберт Броун описывает ядро ​​и высказывает предположение, что оно является постоянной составной частью растительной клетки.

Школа Пуркинье

В 1801 году Вигиа ввел понятие о тканях животных, однако он выделял ткани на основании анатомического препарирования и не применял микроскопа. Развитие представлений о микроскопическом строении тканей животных связан прежде всего с исследованиями Пуркинье, основавший в Бреславле свою школу.

В 1837 г.. Пуркинье выступил в Праге с серией докладов. В них он сообщил о своих наблюдениях над строением желудочных желез, нервной системы и т. Д. В таблице, прилагаемой к его докладе, были приведены четкие изображения некоторых клеток тканей животных. Тем не менее установить гомологи клеток растений и животных клеток Пуркинье не смог:

Во-первых, под зернышками он понимал то клетки, то клеточные ядра;

Школа Мюллера и работа Шванном

Второй школой, где изучали микроскопическое строение животных тканей, была лаборатория Иоганнеса Мюллера в Берлине. Мюллер изучал микроскопическое строение спинной струны (хорды) его ученик Фридрих Генле опубликовал исследование о кишечный эпителий, в котором дал описание различных его видов и их клеточного строения.

Здесь были выполнены классические исследования Шванн, которые заложили основу клеточной теории. На работу Шванном значительно повлияла школа Пуркинье и Генле. Шванн нашел правильный принцип сравнения клеток растений и элементарных микроскопических структур животных. Он смог установить гомологи и доказать соответствие в строении и росте элементарных микроскопических структур растений и животных.

В первой части книги он рассматривает строение хорды и хряща, показывая, что их элементарные структуры — клетки развиваются одинаково. Далее он доказывает, что микроскопические структуры других тканей и органов животного организма — это тоже клетки, вполне сопоставимы с клетками хряща и хорды.

Во второй части книги сравниваются клетки растений и клетки животных и показывается их соответствие.

В третьей части развиваются теоретические положения и формулируются принципы клеточной теории. Именно исследования Шванном оформили клеточную теорию и доказали (на уровне знаний того времени) единство элементарной структуры животных и растений. Главной ошибкой Шванном была высказана им, вслед за Шлейденом, мысль о возможности возникновения клеток с бесструктурной неклеточного вещества.

Развитие клеточной теории во второй половине XIX века

С 1840-х годов учение о клетке оказывается в центре внимания всей биологии и бурно развивается, превратившись в самостоятельную отрасль науки — цитологию.

Для дальнейшего развития клеточной теории существенное значение имело ее распространение на простейших, которые были признаны свободно живущими клетками (Сибольд, 1848).

В это время меняется представление о составе клетки. Выясняется второстепенное значение клеточной оболочки, которая ранее признавалась существенной частью клетки, и выдвигается на первый план значение протоплазмы (цитоплазмы) и ядра клеток (Моль, Кон, Л. С. Ценковский, Лейдиг, Цезарь), что нашло свое выражение в определении клетки, данном М. Шульце в 1861 г .:

Работы Вирхова оказали неоднозначное влияние на развитие учения о клетке:

Клеточная теория распространялась им на область патологии, способствовало признанию универсальности учения о клетке. Труда Вирхова закрепили отказ от теории цитобластемы Шлейдена и Шванном, привлекли внимание к протоплазмы и ядра, признанными существенными частями клетки.

Вирхов направил развитие клеточной теории путем чисто механистического трактовки организма.

Вирхов сводил клетки в степень самостоятельных существ, в результате чего организм рассматривался не как целое, а просто как сумма клеток.

XX века

Механистический направление в развитии клеточной теории подвергся острой критике. В 1860 году с критикой представлений Вирхова о клетке выступил И. М. Сеченов. Позже клеточная теория испытывала критических оценок со стороны других авторов. Наиболее серьезные и принципиальные возражения были сделаны Гертвигом, А. Г. Гурвич (1904), М. Гейденгайном (1907), Добелла (1911). С большой критикой учения о клетке выступил чешский гистолог Студничка (1929, 1934).

Современная клеточная теория

Современная клеточная теория исходит из того, что клетка является главной формой существования жизни, присуща всем живым организмам, кроме вирусов. Совершенствование клеточной структуры было главным направлением эволюционного развития как у растений, так и у животных, и клеточное строение прочно удержалась в большинстве современных организмов.

Вместе с тем должны быть подвергнуты переоценке догматические и методологически неправильные положения клеточной теории:

Клеточная структура является главной, но не единственной формой существования жизни. Неклеточный формой жизни можно считать вирусы. Правда, признаки живого (обмен веществ, способность к размножению и т.д.) они проявляют только внутри клеток, вне клеток вирус является сложной химическим веществом.

Выяснилось, что существует два типа клеток — прокариотические (клетки бактерий и архей), не имеющих очищенного мембранами ядра, и эукариотические (клетки растений, животных, грибов и простейших), имеющих ядро, окруженное двойной мембраной с ядерными порами. Между клетками прокариот и эукариот существует много других различий. В большинстве прокариот нет внутренних мембранных органоидов (органелл), а в большинстве эукариот являются митохондрии и хлоропласты. Согласно симбиогенез, эти полуавтономные органеллы — потомки бактериальных клеток. Таким образом, эукариотической клетки — система более высокого уровня организации, она не может считаться вполне гомологичной клетке бактерий (клетка бактерий гомологична митохондрии клетки человека). Гомология всех клеток, таким образом, сводится к наличию в них замкнутой внешней мембраны из двойного слоя фосфолипидов (в архей она имеет другой химический состав, чем у остальных групп организмов), рибосом и хромосом — наследственного материала в виде молекул ДНК, образующих комплекс с белками. Это, конечно, не отменяет общего происхождения всех клеток, что подтверждается общностью их химического состава.

Клеточная теория рассматривала организм как сумму клеток, а черты организма открывала в сумме рис составляющих его клеток. Этим игнорировалась целостность организма, закономерности функционирования целого заменялись суммой функ частей.

Догматическая клеточная теория игнорировала специфичность неклеточных структур в организме или даже признавала их, как это делал Вирхов, неживыми. На самом деле, в организме кроме клеток есть многоядерные надклеточном структуры (синцитии, симпласты). Установить специфичность их функционирования и значение для организма является одной из задач современной цитологии.

Целостность организма есть результат природных взаимосвязей. Клетки многоклеточного организма не является индивидуумами, способными существовать самостоятельно (так называемые культуры клеток вне организма представляют собой искусственно создаваемые биологические системы). К самостоятельному существованию способны, как правило, только те клетки многоклеточных организмов, которые дают начало новым особям (гаметы, зиготы, или споры) и могут рассматриваться как отдельные организмы.

С момента обнаружения клеток, до того как было сформулировано современное положение клеточной теории, прошло почти 400 лет. Впервые клетку исследовал в 1665 г. естествоиспытатель из Англии Роберт Гук. Заметив на тонком срезе пробки ячеистые структуры, он дал им название клеток.

современное положение клеточной теории

В свой примитивный микроскоп Гук еще не мог рассмотреть все особенности, но по мере совершенствования оптических приборов, появления методик окрашивания препаратов ученые все больше погружались в мир тонких цитологических структур.

Как появилась клеточная теория

Знаковое открытие, повлиявшее на дальнейший курс исследований и на современное положение клеточной теории, сделано в 30-х годах XIX века. Шотландец Р. Броун, изучая лист растения при помощи светового микроскопа, обнаружил в растительных клетках сходные округлые уплотнения, которые впоследствии назвал ядрами.

С этого момента появился важный признак для сопоставления между собой структурных единиц различных организмов, что стало основой выводов о единстве происхождения живого. Не зря даже современное положение клеточной теории содержит ссылку на данный вывод.

первоначальные и современные положения клеточной теории

Вопрос о происхождении клеток был поставлен в 1838 году немецким ботаником Матиасом Шлейденом. Массово исследуя растительный материал, он отметил, что во всех живых растительных тканях присутствие ядер обязательно.

Его соотечественник зоолог Теодор Шванн сделал такие же выводы относительно тканей животных. Изучив работы Шлейдена и сопоставив множество растительных и животных клеток, он сделал заключение: несмотря на многообразие, все они имеют общий признак – оформленное ядро.

Клеточная теория Шванна и Шлейдена

Собрав воедино имеющиеся факты о клетке, Т. Шванн и М. Шлейден выдвинули главный постулат клеточной теории. Он состоял в том, что все организмы (растения и животные) состоят из клеток, близких по строению.

5 положений современной клеточной теории

В 1858 году было внесено еще одно дополнение в клеточную теорию. Рудольф Вирхов доказал, что организм растет за счет увеличения количества клеток путем деления исходных материнских. Нам это кажется очевидным, но для тех времен его открытие было весьма продвинутым и современным.

На тот момент современное положение клеточной теории Шванна в учебниках формулируется следующим образом:

  1. Все ткани живых организмов имеют клеточное строение.
  2. Клетки животных и растений образуются одним и тем же способом (делением клетки) и имеют сходное строение.
  3. Организм состоит из групп клеток, каждая из них способна к самостоятельной жизнедеятельности.

Став одним из важнейших открытий XIX века, клеточная теория заложила основу представления о единстве происхождения и общности эволюционного развития живых организмов.

Дальнейшее развитие цитологических знаний

Совершенствование исследовательских методов и оборудования позволило ученым значительно углубить знания о строении и жизнедеятельности клеток:

  • доказана связь структуры и функции как отдельных органелл, так и клеток в целом (специализация цитоструктур);
  • каждая клетка в отдельности демонстрирует все свойства, присущие живым организмам (растет, размножается, обменивается веществом и энергией с окружающей средой, подвижна в той или иной степени, адаптируется к изменениям и др.);
  • органеллы не могут по отдельности демонстрировать подобные свойства;
  • у животных, грибов, растений обнаруживаются одинаковые по строению и функциям органеллы;
  • все клетки в организме взаимосвязаны и работают слаженно, выполняя комплексные задачи.

Благодаря новым открытиям, положения теории Шванна и Шлейдена были уточнены и дополнены. Современный научный мир пользуется расширенными постулатами основополагающей теории в биологии.

5 положений современной клеточной теории

В литературе можно встретить различное количество постулатов современной клеточной теории, наиболее полный вариант содержит пять пунктов:

  1. Клетка является наименьшей (элементарной) живой системой, основой строения, размножения, развития и жизнедеятельности организмов. Неклеточные структуры не могут называться живыми.
  2. Клетки появляются исключительно путем деления уже существующих.
  3. Химический состав и строение структурных единиц всех живых организмов сходны.
  4. Многоклеточный организм развивается и растет за счет деления одной/нескольких первоначальных клеток.
  5. Сходное клеточное строение организмов, населяющих Землю, свидетельствует о едином источнике их происхождения.

современное положение клеточной теории

Первоначальные и современные положения клеточной теории во многом перекликаются. Углубленные и расширенные постулаты отражают современный уровень знаний по вопросу строения, жизни и взаимодействия клеток.

Подведем краткие итоги истории развития взглядов на природу клетки, которые, как мы видим, неоднократно менялись.

Второй этап развития представлений о микроструктуре организмов связан с именами Линка и Рудольфи (1804), Тревирануса (1807—1821), Мейена (1830) и др. Этими исследователями, во-первых, было показано, что каждая ячейка-клетка покрыта своей особой оболочкой и потому клетка отделима от других ей подобных; во-вторых, было констатировано наличие клеточного содержимого, обладающего самостоятельной подвижностью. Никакой особой теории с этим этапом развития в науке не связано, если не считать того, что в то время считалась уже бесспорной чрезвычайно широкая распространенность клеточного строения. Наряду с клетками как элементарные структуры рассматривали также волоконца и сосуды растений; их клеточное строение клеточный генез оставались неизвестны.

Третий период клеточного учения является переломным, Он связан с именами Шлейдена (1838) и Шванна (1839). Прежде всего, как обязательный элемент рассматриваются ядро и ядрышко, возникающие путем агломерации элементарных зернышек.

Вместе с тем впервые формулируется клеточная теория, основным моментом которой является принцип общности клеткообразован и я во всех частях живой материи. Способ клеткообразования из сливающихся зернышек признается всеобщим, а отсюда постулируется уже сравнимость всех клеток как растений, так и животных. Основными элементами всех клеток признаются: оболочка, протоплазма и ядро с ядрышком.

Итак, все живые существа, согласно этим воззрениям, состоят из клеток или их производных, но сами клетки возникают из зернышек первично-бесструктурной массы.

Пятым по счету этапом в истории учения о клетке может быть названо направление, пытавшееся разложить к летку на еще более простые живые элементы, сопоставлявшиеся и даже гомологизировавшиеся с бактериями. Этот взгляд развивался рядом французских ученых (Бешан, 1860—1883 гг. и др.) и затем (казалось, в особенно убедительной форме) Альтманом (1890—1894). Достаточных доказательств эта точка зрения, однако, не получила. Тем не менее сходные взгляды в той или иной форме всплывают и до самого последнего времени (Иван Валлин, 1926).

Шестым этапом в изучении клетки условно можно назвать схему, предложенную Вильсоном (1896—1925) в его известной сводке. Она по существу стремится лишь свести все наши сведения о морфологических структурах клетки, не внося никакой принципиально новой точки зрения.

Наконец, последним, седьмым этапом представлений о клетке следует считать схему, которая может быть выведена исходя из современных исследований о природе протоплазмы, ядра и различных включений клетки. Основная сущность этой схемы заключается в том, что структуру клетки мы себе представляем исключительно сложной, несмотря на то, что при применении даже наилучших световых микроскопических объективов субстанция протоплазмы (цитоплазма и ядро) представляется нам гомогенной. Современная методика морфологического исследования клетки, в связи с освоением электронной микроскопии, находится на большой высоте; хуже разработаны гистохимические методы.

Итак, современная схема строения клетки в известной мере сходна с представлениями Дюжардена (1835), Гофмейстера (1867) и др., которые также писали о гомогенности протоплазмы. Говоря о схеме строения клетки, мы и теперь должны по существу ограничиваться лишь очень немногим; мы указываем, что клетка состоит из протоплазмы, одетой тонкой мембраной. В протоплазме мы постоянно обнаруживаем хондриосомы, а также постоянное присутствие ядра. Электронная микроскопия обнаружила в протоплазме еще так называемый ретикулум, рибосомы и некоторые другие мембранные структуры. О более тонком строении ядра мы еще ничего не узнали.

Другими словами, клетка лишь внешне представляется нам просто организованной системой, тогда как ее внутренняя, интимная структура лежит за пределами видимости и нашего понимания. К этому убеждению современная цитология пришла в результате исследований целой плеяды ученых на протяжении последних 100 лет. Исследования, проведенные при использовании электронного микроскопа, ныне это подтвердили и внесли много нового, но клетка осталась клеткой, и никаких более простых и мелких полноценных живых структур не найдено.

В заключение необходимо еще раз подчеркнуть, что меньше всего мы знаем о возникновении клеток. Эта проблема практически совпадает с вопросом о возникновении жизни из неживой материи. Впервые данный вопрос был поставлен Геккелем в 1866 г., но он пока остается целиком в области гипотез.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Бесспорно, разгадка строения молекулы ДНК вызвала революцию в естествознании и повлекла за собой целый ряд новых открытий, без которых нельзя представить не только современную цитологию, но и современную жизнь в целом. За открытием Уотсона и Крика последовал взрыв генетических исследований. Знание структуры ДНК помогло понять процесс репликации (удвоения) ДНК и, таким образом, установить, как генетическая информация передается от поколения к поколению.

Впоследствии был открыт генетический код, несущий информацию о первичной структуре белков — основных компонентов всех клеток. Разгадка устройства наследственного аппарата клетки послужила точкой отсчета в развитии новой науки — молекулярной биологии. Появление таких ее методов, как полимеразная цепная реакция, молекулярное клонирование, секвенирование было бы немыслимо без знания структуры ДНК.

За прошедшие 67 лет стало ясно, что работа Уотсона и Крика по изучению структуры ДНК изменила всю биологию и оказалась важнейшей для медицины. С трудом можно назвать ту область естественных наук, на развитие которой не повлияло их открытие. В 1962 году Джеймс Уотсон, Френсис Крик, вместе с Морисом Уилкинсом, специалистом по рентгеноструктурному анализу, получили Нобелевскую премию. Это, пожалуй, самое выдающееся событие в истории биологии XX века.

Ученых давно интересовала тайна главного свойства всех живых организмов – размножение. Почему дети – идет ли речь о людях, медведях, вирусах – похожи на своих родителей, бабушек и дедушек? Для того, чтобы открыть тайну, биологи исследовали самые разные организмы.

И ученые выяснили, что за сходство детей и родителей отвечают особые частицы живой клетки – хромосомы. Они похожи на маленькие палочки. Небольшие участки палочки-хромосомы назвали генами. Генов очень много, и каждый отвечает за какой-нибудь признак будущего организма.

Если говорить о человеке, то один ген определяет цвет глаз, другой – форму носа… Но из чего состоит ген и как он устроен, этого ученые не знали. Правда, было уже известно: в хромосомах содержится ДНК и ДНК имеет какое-то отношение к генам.

Разгадать тайну гена хотели разные ученые: каждый смотрел на эту тайну с точки зрения своей науки. Но чтобы узнать, как устроен ген, маленькая частица ДНК, надо было узнать, как устроена и из чего состоит сама молекула.
Химики, которые исследуют химический состав веществ, изучали химический состав молекулы ДНК.

Физики стали просвечивать ДНК рентгеновскими лучами, как обычно они просвечивают кристаллы, чтобы узнать, как эти кристаллы устроены. И выяснили, что ДНК похожа на спираль.

Биологи интересовались загадкой гена, конечно, больше всех.

Они догадывались: это как-то связано со структурой молекулы. Но как, не знали. Химикам помог биолог Уотсон. Уотсон привык к тому, что в живой природе многое встречается парами: пара глаз, пара рук, пара ног, существуют, например, два пола: мужской и женский… Ему казалось, что и молекула ДНК может состоять из двух цепочек. Но если ДНК похожа на спираль, как выяснили физики при помощи рентгена, то, как в этой спирали две цепочки держатся друг за друга?

Уотсон предположил, что при помощи А, Г, Ц и Т, которые, как руки, протянуты друг к другу. Вырезав из картона контуры этих химических соединений, Уотсон долго прикладывал их то одной стороной, то другой, пока вдруг не увидел: аденин прекрасно соединяется с тимином, а гуанин с цитозином. Уотсон рассказал об этом Крику.

Молекулярный конструктор придумал другой ученый – химик Полинг. Он строил модели молекул белков и выяснил, что в них обязательно должны быть участки, похожие на спирали. Очень скоро это подтвердили физики той лаборатории, где работал Крик. Важная биологическая проблема была решена теоретическим путем.

Опасности нашей повседневной жизни: Опасность — возможность возникновения обстоятельств, при которых.

Читайте также: