Дифракция в природе и технике сообщение

Обновлено: 17.05.2024

Основной вопрос: Может ли свет огибать препятствия и как это будет происходить.

Гипотеза:

Свет распространяется прямолинейно и следовательно, обходить препятствия не может.

Цели:

Изучение световых явлений на примере дифракции и выявление условий её возникновения и ограничения , которые она накладывает на применение законов геометрической оптики.

Задачи:

  1. Изучить из теории явление дифракции, условия её возникновения и условия при которых она накладывает ограничение на применение законов геометрической оптики .
  2. Провести опыты наглядно показывающие/объясняющие явление дифракции.

Этапы:

  1. Ознакомиться с теорией и информацией в сети интернет.
  2. Провести консультацию у учителей физики и проанализировать видео ранее найденных опытов в сети интернет.
  3. Провести собственные эксперименты (опыты с бумагой, с булавкой и CD-диском).
  4. Проанализировать полученные результаты.
  5. Сделать выводы.

Результаты изучения научной литературы

Дифракцией света называется явление отклонения света от прямолинейного направления распространения при прохождении вблизи препятствий.

Как показывает опыт, свет при определенных условиях может заходить в область геометрической тени.

Если на пути параллельного светового пучка расположено круглое препятствие (круглый диск, шарик или круглое отверстие в непрозрачном экране), то на экране, расположенном на достаточно большом расстоянии от препятствия, появляется дифракционная картина – система чередующихся светлых и темных колец.

Если препятствие имеет линейный характер (щель, нить, край экрана), то на экране возникает система параллельных дифракционных полос.

Дифракционные явления были хорошо известны еще во времена Ньютона, но объяснить их на основе корпускулярной теории света оказалось невозможным. Первое качественное объяснение явления дифракции на основе волновых представлений было дано английским ученым Т. Юнгом.

Явление дифракции накладывает ограничения на применение законов геометрической оптики:

Закон прямолинейного распространения света, законы отражения и преломления света выполняются достаточно точно только , если размеры препятствий много больше длины световой волны.

Дифракция накладывает предел на разрешающую способность оптических приборов:

— в микроскопе при наблюдении очень мелких предметов изображение получается размытым
— в телескопе при наблюдении звезд вместо изображения точки получаем систему светлых и темных полос.

Постановка опытов:
ОПЫТ С БУМАГОЙ

Можно увидеть дифракцию света и на круглом отверстии в листе черной бумаги.
Сделайте большое отверстие, например, при помощи дырокола. Тогда под лупой будет видна легкая цветная кайма по его краям снаружи. У луча света, выходящего из большого отверстия, дифракционная картина почти незаметна. В большинстве случаев ее можно вообще не учитывать, полагая, что свет распространяется исключительно прямолинейно. Дифракционная картина крохотного отверстия, проколотого в бумаге иглой, гораздо больше, чем оно само, и выглядит как система колец.

di2

В этом случае отверстие выступает как источник света с малыми угловыми размерами. Его можно заменить светящейся точкой любого происхождения.

Взяв, например, отражение солнца в шарике от подшипника, лежащем на черном фоне, можно увидеть отчетливую картину, состоящую из колец, как дифракция на отверстии.

Отражение солнца в шарике — не что иное, как его оптически уменьшенное изображение! Так, например, в шарике диаметром 3 мм мы видим солнце таким, каким бы оно виделось с очень далекой планеты. Поэтому звезды, находящиеся от нас гораздо дальше, предстают перед окуляром обычного телескопа как крохотные светящиеся точки, при увеличении которых можно видеть лишь их дифракционные картины.

ОПЫТ С БУЛАВКОЙ

Обычная булавка с колечком укреплена на кусочке дерева и освещена лампой карманного фонари с расстояния 1 — 1,5 м. Если на булавку посмотреть через лупу, то станет отчетливо видна дифракционная картина.

di3


Точно так же рассмотрение мелких предметов через микроскоп с очень большим увеличением позволяет отчетливо видеть их дифракционные картины, и их нередко принимают за реальные детали, иногда приводило к ложным открытиям.

Примеры дифракции в природе и в быту:

Тонкий слой облаков из водяных капелек, закрывающий солнце или месяц, действует как дифракционная решетка. Светило кажется окруженным разноцветным венцом (радужным ореолом) . В случае игольчатых, ледяных облаков получается другое явление: узкое кольцо большого радиуса вокруг солнца или луны. Оно возникает вследствие преломления света.

Если рассматривать пламя свечи через запотевшее стекло, посыпанное очень мелким порошком, то пламя кажется окруженным радужным ореолом.

Радуга возникает в основном вследствие преломления и полного отражения солнечных лучей в шарообразных каплях дождя. Радуга состоит из спектра, расположенного таким образом, что внешняя сторона радуги окрашена в красный цвет, а внутренний край – в фиолетовый цвет; от внешнего края до фиолетового располагаются все остальные цвета спектра. Радиус полукруга виден под углом зрения в 42,5º. Побочная радуга имеет внутренний радиус, видный под углом в 51º, и окрашена изнутри в красный цвет, а снаружи в фиолетовый.


Дифракция и дисперсия - такие красивые и похожие слова, которые звучат как музыка для ушей физика! Как все уже догадались, сегодня мы говорим уже не о геометрической оптике, а о явлениях, обусловленных именно волновой природой света .

Дисперсия света

Итак, в чем заключается явление дисперсии света? В прошлой статье мы рассмотрели закон преломления света. Тогда мы не задумывались, а точнее - не вспоминали о том, что свет (электромагнитная волна) имеет определенную длину. Давайте вспомним:

Свет – электромагнитная волна. Видимый свет – это волны, имеющие длину в интервале от 380 до 770 нанометров.

Так вот, еще старина Ньютон заметил, что показатель преломления зависит от длины волны. Другими словами, красный свет, падая на поверхность и преломляясь, отклонится на другой угол, нежели желтый, зеленый и так далее. Эта зависимость и называется дисперсией.


Пропуская белый свет через призму, можно получить спектр, состоящий из всех цветов радуги. Это явление напрямую объясняется дисперсией света. Раз показатель преломления зависит от длины волны, значит, он зависит и от частоты. Соответственно, скорость света для разных длин волн в веществе также будет различна

Дисперсия света – зависимость скорости света в веществе от частоты.

Где применяется дисперсия света? Да повсюду! Это не только красивое слово, но и красивое явление. Дисперсия света в быту, природе, технике и искусстве. Вот, например, дисперсия красуется на обложке альбома группы Pink Floyd.


Дифракция света

Перед дифракцией нужно сказать про ее "подругу" - интерференцию. Ведь интерференция и дифракция света - это явления, которые наблюдаются одновременно.

Интерференция света – это когда две когерентные световые волны при наложении усиливают друг друга или наоборот ослабляют.

Волны является когерентными, если разность их фаз постоянна во времени, а при сложении получается волна той же частоты. Будет результирующая волна усилена (интерференционный максимум) или наоборот ослаблена (интерференционный минимум) - зависит от разности фаз колебаний. Максимумы и минимумы при интерференции чередуются, образуя интерференционную картину.


Дифракция света – еще одно проявления волновых свойств. Казалось бы, луч света всегда должен распространяться по прямой. Но нет! Встречая препятствие, свет отклоняется от первоначального направления как бы огибая преграду. Какие условия необходимы для наблюдения дифракции света? Собственно, это явление наблюдается на предметах любых размеров, но на больших предметах его наблюдать трудно и почти невозможно. Лучше всего это удается сделать на препятствиях, сопоставимых по размерам с длиной волны. В случае со светом - это очень маленькие препятствия.

Дифракцией света называется явление отклонения света от прямолинейного направления при прохождении вблизи преграды.

Дифракция проявляется не только для света, но и для других волн. Например, для звуковых. Или для волн на море. Отличный пример дифракции – это то, как мы слышим песню группы Пинк Флойд из проезжающей мимо машины, когда сами стоим за углом. Если бы звуковая волна распространялась прямо, она бы просто не достигла наших ушей, и мы бы стояли в полной тишине. Согласитесь, скучно. Зато с дифракцией гораздо веселее.


Для наблюдения явления дифракции используется специальный прибор – дифракционная решетка. Дифракционная решетка представляет собой систему препятствий, которые по размеру сопоставимы с длиной волны. Это специальные параллельные штрихи, выгравированные на поверхности металлической или стеклянной пластины. Расстояние между краями соседних щелей решетки называется периодом решетки или ее постоянной.

Что происходит со светом при прохождении дифракционной решетки? Попадая на решетку и встречая препятствие, световая волна проходит через систему прозрачных и непрозрачных областей, в результате чего разбивается на отдельные пучки когерентного света, которые после дифракции интерферируют друг с другом. Каждая длина волны отклоняется при этом на определенный угол, и происходит разложение света в спектр. В результате мы наблюдаем дифракцию света на решетке


Формула дифракционной решетки:


Здесь d – период решетки, фи – угол отклонения света после прохождения решетки, k – порядок дифракционного максимума, лямбда – длина волны.

Иван Колобков, известный также как Джони. Маркетолог, аналитик и копирайтер компании Zaochnik. Подающий надежды молодой писатель. Питает любовь к физике, раритетным вещам и творчеству Ч. Буковски.

Дифракционная картина возникает в результате интерференции вторичных световых волн при огибании лучами света препятствий или их прохождении через множественные отверстия.

Идея о волновой природе света (см. Спектр электромагнитного излучения) получила серьезное подтверждение в результате открытия и изучения в начале XIX века явлений интерференции и дифракции света. Традиционное со времен Ньютона и из-за его непререкаемого авторитета долго остающееся неизменным представление о свете как о потоке частиц — так называемая корпускулярная теория света — оказалось поставленным под серьезное сомнение после открытия интерференции. А вскоре о корпускулярной теории и вовсе забыли — почти на целое столетие — в результате открытия и исследования явлений дифракции, в результате чего волновая теория света стала новым ортодоксальным и незыблемым представлением о нем. Лишь после объяснения с корпускулярной точки зрения фотоэлектрического эффекта и зарождения квантовой механики корпускулярные представления о свете получили второе рождение в рамках принципа дополнительности.

Если источник света и точка наблюдения удалены от препятствия на незначительное расстояние, исходные и результирующие лучи света не параллельны друг другу — и мы наблюдаем дифракцию Френеля (дифракцию в ближней зоне). Если же источник и точка наблюдения находятся на значительном расстоянии от препятствия (точки дифракции), лучи практически параллельны, и мы наблюдаем дифракцию Фраунгофера (дифракцию в дальней зоне). Фраунгофер, кстати, изобрел целый ряд важных прецизионных оптических приборов, включая дифракционную решетку. Она представляет собой систему расположенных на небольшом расстоянии друг от друга микроскопических линий, отражающих свет. Изначально это была затемненная стеклянная пластина с тщательно нанесенными на нее параллельными штрихами. Каждый такой штрих отражает свет, и его можно считать вторичным источником волн Гюйгенса, которые вступают в интерференцию и взаимно усиливаются под определенными углами после рассеяния на решетке.

Начиная с середины XIX века дифракционная решетка стала важнейшим инструментом спектроскопии — с ее помощью ученые исследуют спектры излучения светящихся объектов и спектры поглощения различных веществ и по ним определяют их химический состав. Одним из важнейших открытий Фраунгофера стало обнаружение темных линий в спектре Солнца. Сегодня мы знаем, что они возникают в результате поглощения световых волн определенной длины относительно холодным веществом солнечной короны, и благодаря этому можем судить о химическом составе нашего светила.

Йозеф ФРАУНГОФЕР

Немецкий физик и оптик, уроженец Штраубинга (Straubing), сын ремесленника-стеклодува. Рано осиротев, пошел в подмастерья к стекольщику. В возрасте 14 лет серьезно пострадал при обрушении новостройки, провел несколько дней под завалом и благодаря этому несчастному случаю приобрел некоторую популярность. В частности, получил от властей Баварии денежную компенсацию, на которую открыл собственное стекольное дело, с которым в 1806 году присоединился к знаменитой баварской фирме Utzscheider, которая в те дни пользовалась славой производителя лучших в мире оптических инструментов. Явление дифракции Фраунгофер исследовал с чисто прикладной точки зрения: делом своей жизни он считал изобретение идеальных ахроматических линз, которые не давали бы радужного ореола вокруг изображения.

evgeniy yakubovski 10.11.2008 19:53 Ответить

Построив теорию рассеяния на произвольном теле пришел к следующему выводу. Рассеянный в дальней зоне сигнал идеально проводящим телом определяется средним радиусом поверхности. Т.е. находишь центр тела, и берешь среднее арифметическое от радиуса поверхности по углам. Далее рассеяние как на сфере этого радиуса. Отличие от рассеяния на сфере в ближней зоне. Очень интересно.

После дождя, когда мокрый асфальт кажется черным, в местах автомобильных стоянок, где на воду в лужах пролито масло и бензин, особенно отчетливо видны блестящие пятна, отливающие всеми цветами радуги. Больше всего заметны цвета зеленый и желтый, но местами видны голубой, синий и пурпурный.

Такие же пятна можно видеть на поверхности воды в реках, озерах и лужах, если они загрязнены нефтью или ее продуктами.

Кто из нас в детстве не выдувал мыльные пузыри. Тонкая пленка мыльного пузыря, так же как и тонкая пленка нефти на поверхности воды, приобретает цветную окраску, тонкий целлофан отсвечивает цветами радуги. Эти красивые явления имеют одну природу, они являются следствием интерференции света в тонких пленках масла, мыльной пены, целлофана.

ИНТЕРФЕРЕНЦИЯ СВЕТА В ТОНКИХ ПЛЕНКАХ

Нефтепродукты на асфальте

В тонких пленках нефти или мыльной воды происходит разделение, а затем соединение световых волн.

На рисунке 46 представлен ход лучей в пленке. Здесь h — толщина пленки (в сильно увеличенном масштабе), S — источник света. Пусть на пленку из точки S падают два монохроматических пучка лучей 1 и 2. Если источник света расположен далеко (а в случае освещения нефтяных пятен на лужах источником является небосвод, т. е. свет, рассеянный воздухом), его можно считать исходящим из бесконечности. Тогда лучи 1 и 2 будут практически параллельны, а фронт световой волны АВ перпендикулярен им.

Обозначим абсолютный показатель преломления света среды n1, а пленки n2.

Рис. 46. Ход световых лучей в тонкой пленке.

Пучок лучей света, встретив пленку в точке А, частично преломляется, а частично отражается. Луч, отраженный в данном случае, нас не интересует, так как он не попадает в глаз. Пучок же преломленных лучей, дойдя до второй поверхности пленки (до точки D), опять частично отражается и частично преломляется. Нас интересует отраженный пучок лучей DC, который в точке С претерпевает частичное преломление и частичное отражение. Пучок лучей 2, преломленный в точке С, попадает в глаз, пучок лучей 2, выходящих из того же источника и падающих на пленку в точке С, также частично преломляется, а частично отражается. Отраженный пучок лучей 2 и пучок лучей 2 интерферируют. Оба пучка лучей могут быть сфокусированы при помощи линзы на экране, где и наблюдается результат интерференции, или на сетчатке глаза, где она воспринимается.

Что же получается на экране? Как видно из рисунка, пучки лучей 2, 2 прошли разные пути до встречи в точке С: первый прошел расстояние AD + DC = 2AD в среде с показателем преломления n2, второй — расстояние ВС в среде с показателем преломления n1

Геометрическая разность хода лучей равна 2AD — ВС; оптическая же разность 1 составляет:

На поверхности пленки всегда найдется много точек, для которых соблюдены одинаковые условия интерференции для данной длины волны. Эти точки расположены цепочками. Их геометрические места представляют полосы светлые или темные в зависимости от длины волны и условий интерференции.

Для светлых полос при данной длине волны выполняется условие:

Рис. 47. Схема для получения колец Ньютона.

Явление интерференции применяется для многих практически полезных целей.

Так, при помощи интерференции можно проверить качество полировки поверхности деталей машины. На явлении интерференции света основано устройство приборов-интерферометров, служащих для измерения длин с точностью до 0,1 длины волны света, определения показателей преломления и др.

ЯВЛЕНИЕ ДИФРАКЦИИ СВЕТА. НАБЛЮДЕНИЕ ЯВЛЕНИЯ ДИФРАКЦИИ

Дифракцию света можно наблюдать, например, посмотрев на свет далекого яркого фонаря через капроновый платок, держа его на расстоянии вытянутой руки.

Дифракционные спектры хорошо видны и при рассматривании источника света, например лампы сквозь ресницы.

Дифракция света на компакт-диске

Если сложить два пальца так, чтобы между ними образовалась узкая щель, и сквозь эту щель смотреть на источник рассеянного света (небо, абажур лампы и т. д.), то можно подобрать такую ширину щели, что в ней явно будет видно несколько темных и светлых полосок. Подобную картину можно видеть в узкой щели открытой двери, если за ней находится лампа или окно. Можно приклеить (парафином или маслом) к картону два лезвия безопасной бритвы и в щели между ними увидеть дифракционную картину.

Дифракционная картина хорошо видна, если в алюминиевой фольге концом иголки (не протыкая насквозь) проколоть маленькое отверстие и смотреть сквозь него на яркий источник света.

Царапины на оконном стекле тоже дают возможность наблюдать дифракцию света. На стекле окон автобусов, троллейбусов имеются царапины. Они возникают при протирании окон, при обдувании их кристалликами песка. Естественно, что большая часть царапин направлена горизонтально или несколько наискось. Стекло с царапинами — это своеобразная дифракционная решетка, на которой дифрагирует свет фонарей, отклоняясь перпендикулярно им. В результате можно видеть два пучка света, исходящих от источника света. Но почему же у них нет спектральной окраски? Это объясняется тем, что период рассматриваемой решетки непостоянен, в результате чего получается сложение спектральных цветов, дающее, как известно, белый свет.

Иногда, когда вы едете в автобусе, на замерзшем оконном стекле можно наблюдать красивую картину. Ледяной покров на окнах при попадании на них света Солнца или фонаря вдруг начинает сиять удивительно прозрачными и чистыми цветами спектра. Явление это несколько минут длится, а затем исчезает вследствие увеличения толщины слоя льда на стекле.

ВЕНЦЫ

Полупрозрачные белые облака медленно скользят перед Луной. И каждый раз, когда новое облако закрывает Луну, мы видим вокруг Луны чудесные разноцветные кольца, диаметр которых лишь в несколько раз больше диаметра Луны. Это венцы.

Аналогичные явления можно видеть и вокруг фонарей и Солнца (только при этом нужно позаботиться о том, чтобы Солнце не ослепляло нас, например надеть темные очки). Венцы не следует путать с гало. Диаметр гало 22 или 46°, в то время как диаметр венцов значительно меньше: 1 — 6°.

Объяснение этому явлению природы надо искать в дифракции света. Облака состоят из капелек воды. Проходя через капли, свет претерпевает дифракцию. Расхождение лучей при этом зависит от величины капли. Множество капель не изменяет картину, а только усиливает ее. Ширина ореола зависит от величины капель: чем меньше капельки, тем шире ореол. Возможно, что венцы могут возникнуть и на облаке, состоящем из ледяных игл.

Читайте также: