Данные в которых заключена информация источника канал связи сообщение носитель

Обновлено: 05.07.2024

Сайт учителя информатики. Технологические карты уроков, Подготовка к ОГЭ и ЕГЭ, полезный материал и многое другое.

Информатика. 7 класса. Босова Л.Л. Оглавление

  • информационные процессы
  • информационная деятельность
  • сбор информации
  • обработка информации
  • хранение информации, носитель информации
  • передача информации, источник, канал связи, приёмник

1.2.1. Понятие информационного процесса

Последовательная смена состояний (изменение) в развитии чего’ либо называется процессом.

Процессы, связанные с изменением информации или действиями с использованием информации, называют информационными процессами.

Можно выделить следующие основные информационные процессы: сбор информации, представление информации, обработка информации, хранение информации, передача информации.

Деятельность человека, связанную с процессами сбора, представления, обработки, хранения и передачи информации, называют информационной деятельностью.

Рассмотрим информационные процессы более подробно.

1.2.2. Сбор информации

Особая ценность собранной информации состоит в том, что она может служить источником новых знаний об окружающем нас мире.

Можно привести примеры сбора информации, предполагающие использование различных измерительных устройств. Так, задача составления прогноза погоды предполагает сбор на метеорологических станциях информации о температуре, осадках, атмосферном давлении, влажности воздуха, скорости и направлении ветра.

Многие интересующие специалистов процессы протекают очень быстро и могут быть сопряжены с опасностью для жизни. Например, такие ситуации могут возникнуть при сборе информации об аэродинамических характеристиках при разработке новой модели автомобиля, о его возможных повреждениях при столкновении с препятствием и т. д. В подобных случаях для сбора информации используются сложные автоматизированные измерительные комплексы.

1.2.3. Обработка информации

Информацию об окружающем мире, собранную непосредственно через органы чувств или с помощью измерительных приборов, человек должен своевременно обрабатывать. Например, при переходе улицы следует очень быстро обрабатывать информацию о сигналах светофора, о движении автомашин и др. Значительно бблыпие информационные потоки должен обрабатывать специалист, обслуживающий пульт управления электростанции или другой сложной технической системы.

Когда пешеход переходит улицу, ученик отвечает на вопрос по истории, решает геометрическую задачу или переводит текст с русского языка на иностранный, а пилот принимает решение о наборе высоты или изменении скорости полёта, все они обрабатывают входную (поступившую) информацию. Из этой информации после её обработки получается выходная информация.

Обработка информации — это целенаправленный процесс изменения содержания или формы представления информации.

Можно выделить два типа обработки информации:

1) обработка, связанная с получением нового содержания, новой информации;

2) обработка, связанная с изменением формы представления информации, не изменяющая её содержания.

К первому типу обработки информации относятся: преобразование по правилам (в том числе вычисления по формулам), исследование объектов познания по их моделям, логические рассуждения, обобщение и др.

Задача. Пятеро одноклассников: Аня, Саша, Лева, Вася и Миша стали победителями олимпиад школьников по физике, математике, информатике, литературе и географии. Известно, что:

1) победитель олимпиады по информатике учит Аню и Сашу работе на компьютере;
2) Лена и Вася тоже заинтересовались информатикой;
3) Саша всегда побаивался физики;
4) Лена, Саша и победитель олимпиады по литературе занимаются плаванием;
5) Саша и Лена поздравили победителя олимпиады по математике;
6) Аня сожалеет о том, что у неё остаётся мало времени на литературу.

Победителем какой олимпиады стал каждый из этих ребят?

Решение. Задачи такого типа решаются с помощью логических рассуждений, которые удобно фиксировать в таблице.



Ответ: Аня — победитель олимпиады по математике, Саша — по географии, Лена — по физике, Вася — по литературе, Миша — по информатике.

Ко второму типу обработки информации можно отнести:

  • структурирование — организацию информации по некоторому правилу, связывающему её в единое целое;
  • кодирование — переход от одной формы представления информации к другой, более удобной для восприятия, хранения, передачи или обработки информаций;
  • отбор информации, требуемой для решения некоторой задачи, из информационного массива.

Большая часть информации в школьных учебниках представлена в форме текста на естественном языке. Представить изучаемый материал в общих, главных чертах, структурировать его, показав связи между отдельными частями, позволяют графические схемы. Одной из разновидностей таких графических схем является граф. Граф состоит из вершин, связанных линиями. Вершины графа могут изображаться кругами, овалами, точками, прямоугольниками и т. д. Линии, связывающие вершины, могут быть направленными (со стрелкой) или ненаправленными (без стрелки). В первом случае их называют дугами, во втором — рёбрами.

Например, типы обработки информации можно представить с помощью графа, изображённого на рис. 1.1.


Главным помощником человека в обработке больших информационных потоков является компьютер. Например, учёному трудно анализировать результаты измерений — десятки и сотни тысяч чисел, собранных с помощью некоторых автоматических устройств. Для получения информации о свойствах изучаемых объектов результаты измерений должны быть интерпретированы. Компьютеры позволяют на основании результатов измерений построить диаграммы и графики, дающие наглядное представление о соотношениях величин и зависимостях свойств в изучаемых предметах, процессах, явлениях.

На уроках информатики вы познакомитесь с возможностями компьютеров в обработке информации разных видов.

1.2.4. Хранение информации

Для того чтобы информация стала достоянием многих людей и могла передаваться последующим поколениям, она должна быть сохранена. История человечества знает разные способы хранения информации. Это и рисунки на стенах пещер, и глиняные таблички с клинописью, и рукописи на папирусе, и тексты на пергаменте, и берестяные грамоты, и всевозможные документы на бумаге. С помощью диктофона можно записать разговор людей или пение птиц, с помощью фотоаппарата или видеокамеры — сохранить изображение.

Хранение информации всегда связано с её носителем — материальным объектом, на котором можно тем или иным способом зафиксировать информацию.

Сохранить информацию — значит, тем или иным способом зафиксировать её на некотором носителе.

Основным носителем информации на протяжении нескольких столетий остаётся бумага, что связано с такими её свойствами, как: относительная дешевизна изготовления; прочность и долговечность; удобство нанесения знаков и рисунков с помощью разноцветных красок.

В наши дни широкое распространение получили электронные носители информации — магнитные диски, оптические диски, флеш-карты и другие. Информация, хранящаяся на электронных носителях, может быть воспроизведена и обработана с помощью компьютера.

Хранилищами информации для человечества являются библиотеки, архивы, патентные бюро, картинные галереи и музеи, видеотеки и фонотеки. Гигантским хранилищем информации является компьютерная сеть Интернет.

1.2.5. Передача информации

Мы постоянно участвуем в процессе передачи информации. Люди передают друг другу просьбы, приказы, отчёты о проделанной работе, публикуют рекламные объявления, отправляют телеграммы, пишут письма. Передача информации происходит при чтении книг, при просмотре телепередач, при разговоре по телефону и общении в компьютерной сети Интернет.

Рассмотрим процесс передачи информации более подробно (рис. 1.2):

1) информация от источника поступает в кодирующее устройство;

2) в кодирующем устройстве информация преобразуется в форму, удобную для передачи;

3) закодированная информация поступает от источника к приёмнику (получателю) по соответствующему каналу передачи информации— каналу связи;

4) приёмник содержит декодирующее устройство; в этом устройстве происходит преобразование закодированной информации, поступившей по каналу связи, к исходной форме.


Информацию можно передать от источника к приёмнику по каналу связи.

В процессе передачи информация может искажаться или теряться, если каналы связи имеют плохое качество или на линии связи действуют помехи.

Универсальным средством передачи информации являются компьютерные сети. С их помощью можно передавать любую информацию (текст, числа, звук, изображение).

1.2.6. Информационные процессы в живой природе и технике

Информационные процессы — необходимое условие жизнедеятельности любого организма. Приведём несколько примеров информационных процессов в живой природе:

  • цветки и соцветия некоторых растений в течение дня поворачиваются вслед за солнцем;
  • пчёлы танцем передают сородичам информацию об источниках корма;
  • многие дикие животные пахучими Метками дают знать чужакам, что эта территория уже занята;
  • трели соловья служат для привлечения самки;
  • домашние животные отличают знакомых людей от незнакомых;
  • животные в цирке выполняют команды дрессировщиков.

Информационные процессы характерны и для технических устройств. Например, автоматическое устройство, называемое термостатом, воспринимает информацию о температуре помещения и в зависимости от заданного человеком температурного режима включает или отключает отопительные приборы. Программно управляемые станки работают, руководствуясь заложенной в них информацией — программой их работы; автопилот управляет самолётом в соответствии с заложенной в него программой и т. д.

Самое главное.

Процессы, связанные с изменением информации или действиями с использованием информации, называют информационными процессами.

Деятельность человека, связанную с процессами сбора, представления, обработки, хранения и передачи информации, называют информационной деятельностью.

Решение практически любой задачи начинается со сбора информации.

Обработка информации — это целенаправленный процесс изменения содержания или формы представления информации.

Сохранить информацию — значит тем или иным способом зафиксировать её на некотором носителе.

Передача информации осуществляется по схеме: источник информации — кодирующее устройство — канал связи — декодирующее устройство — приёмник информации.

Вопросы и задания

1.Ознакомьтесь с материалом презентации к параграфу, содержащейся в электронном приложении к учебнику. Что вы можете сказать о формах представления информации в презентации и в учебники? Какими слайдами вы могли бы дополнить презентацию?

Рассмотрим эти понятия, использовав рекомендации сборника научно-технической терминологии в области теории передачи информации, разработанного Академией наук СССР.

Что такое информация?

Аналогично информация передается в любой организации, где совместно трудится множество людей, в виде приказов, распоряжений и других указаний, т. е. без чего невозможна деятельность большого коллектива. Перечень подобных примеров можно продолжать и дальше. Однако и так ясно, что задачи сбора, передачи, преобразования информации очень важны в различных областях человеческой деятельности, в том числе в системах электросвязи (телекоммуникаций).

В целом информацию можно трактовать как совокупность знаний человека об окружающем его мире.

  • акустических или звуковых сигналов (телефония, радиовещание);
  • текста (телеграфия) и данных от ЭВМ;
  • неподвижных изображений (факсимильная связь);
  • подвижных изображений (телевидение);
  • данных телеметрии, контроля (например, системы охранной, пожарной сигнализации и др.).

Что такое сигнал?

ui (t, A, ω, φ), t1 ≤ t ≤ t2,

где i — номер сигнала; t2 — t1= T — интервал определения сигнала во времени; Α, ω, φ — параметры, т.е. соответственно амплитуда, частота и фаза сигнала.

В зависимости от множества возможных значений параметров и области определения во времени различают следующие виды сигналов:

  • непрерывный и по уровню, и во времени (аналоговый);
  • непрерывный по уровню, но дискретный во времени;
  • дискретный (квантованный) по уровню, но непрерывный во времени;
  • цифровой, т.е. дискретный и по уровню, и во времени.

Примеры различных видов сигналов представлены на рис. 1.1.

Так, речевой сигнал является непрерывным и во времени, и по уровню, а датчик, определяющий значение температуры через каждые 5 мин, выдает сигналы непрерывные по значению (амплитуде), но дискретные во времени.

Рис. 1.1. Примеры основных видов сигналов:
а — непрерывный и по уровню, и во времени; б — непрерывный по уровню, но дискретный во времени; в — дискретный по уровню, но непрерывный во времени; г — дискретный и по уровню, и во времени

В теории электрической связи сигнал принято отождествлять с объектом транспортирования. Следовательно, аппаратура связи по существу является техникой транспортирования или передачи сигналов по каналам телекоммуникаций.

Определим параметры сигнала, которые являются основными при его передаче. К числу таких параметров обычно относятся: длительность, динамический диапазон, ширина спектра.

Так, при телефонной связи речевой сигнал передают в полосе частот от 300 до 3 400 Гц, т. е. ширина спектра сигнала в этом случае F = 3,1 кГц. Этого диапазона частот оказывается вполне достаточно для обеспечения разборчивости речи и узнаваемости абонентов по голосу.

При передаче телевизионного сигнала важнейшим требованием является четкость принимаемого изображения. При стандарте в 625 строк верхняя частота сигнала составляет примерно 6 МГц, т. е. спектр сигнала видеоизображения занимает значительно более широкую полосу частот, чем спектр сигнала звукового сопровождения.

При телеграфной связи ширина спектра сигнала, определяемая скоростью его передачи (телеграфирования), составляет (1,5… 3,0) v, где v — скорость передачи, измеряемая в бодах и равная числу электрических посылок, передаваемых в 1 с. Обычно v = 50 Бод, тогда F ≈ 75 Гц.

Взаимосвязь процессов хранения, обработки и передачи информации, виды информационных носителей, способы обработки информации, виды источников и приемников информации, каналы связи, их виды и способы защиты от шума, единица измерения скорости передачи информации, пропускная способность канала связи

Процессы хранения, обработки и передачи информации являются основными информационными процессами. В разных сочетаниях они присутствуют в получении, поиске, защите, кодировании и других информационных процессах. Рассмотрим хранение, обработку и передачу информации на примере действий школьника, которые он выполняет с информацией при решении задачи.

Опишем информационную деятельность школьника по решению задачи в виде последовательности информационных процессов. Условие задачи (информация) хранится в учебнике. Посредством глаз происходит передача информации из учебника в собственную память школьника, в которой информация хранится. В процессе решения задачи мозг школьника выполняет обработку информации. Полученный результат хранится в памяти школьника. Передача результата — новой информации — происходит с помощью руки школьника посредством записи в тетради. Результат решения задачи хранится в тетради школьника.

Таким образом (рис. 9), можно выделить процессы хранения информации (в памяти человека, на бумаге, диске, аудио- или видеокассете и т. п.), передачи информации (с помощью органов чувств, речи и двигательной системы человека) и обработки информации (в клетках головного мозга человека).

Информационные процессы взаимосвязаны. Например, обработка и передача информации невозможны без ее хранения, а для сохранения обработанной информации ее необходимо передать. Рассмотрим каждый информационный процесс более подробно.


Хранение информации является информационным процессом, в ходе которого информация остается неизменной во времени и пространстве.

В примере о школьнике были рассмотрены такие носители информации, как бумага учебника и тетради (материальный предмет), биологическая память человека (вещество). При получении школьником визуальной информации носителем информации являлся отраженный от бумаги свет (волна).

Выделяют два вида информационных носителей: внутренние и внешние. Внутренние носители (например, биологическая память человека) обладают быстротой и оперативностью воспроиз ведения хранимой информации. Внешние носители (например, бумага, магнитные и оптические диски) более надежны, могут хранить большие объемы информации. Их используют для долговременного хранения информации.

Обработка информации является информационным процессом, в ходе которого информация изменяется содержательно или по форме.

Обработку информации осуществляет исполнитель по определенным правилам. Исполнителем может быть человек, коллектив* животное, машина.

Обрабатываемая информация хранится во внутренней памяти исполнителя. В результате обработки информации исполнителем из исходной информации получается содержательно новая информация или информация, представленная в другой форме (рис. 10).


Вернемся к рассмотренному примеру о школьнике, решившем задачу. Школьник, который являлся исполнителем, получил исходную информацию в виде условия задачи, обработал информацию в соответствии с определенными правилами (например, правилами решения математических задач) и получил новую информацию в виде искомого результата. В процессе обработки информация хранилась в памяти школьника, которая является внутренней памятью человека.

Вид обрабатываемой информации может быть различным, и правила обработки могут быть разными. Автоматизировать процесс обработки можно лишь в том случае, когда информация представлена специальным образом, а правила обработки четко определены.

Передача информации является информационным процессом, в ходе которого информация переносится с одного информационного носителя на другой.

Процесс передачи информации, как ее хранение и обработка, также невозможен без носителя информации. В примере о школьнике в тот момент, когда он читает условие задачи, информация передается с бумаги (с внешнего информационного носителя) в биологическую память школьника (на внутренний информационный носитель). Причем процесс передачи информации происходит с помощью отраженного от бумаги света — волны, которая является носителем информации.

Процесс передачи информации происходит между источником информации, который ее передает, и приемником информации, который ее принимает. Например, книга является источником информации для читающего ее человека, а читающий книгу человек — приемником информации. Передача информации от источника к приемнику осуществляется по каналу связи (рис.11). Каналом связи могут быть воздух, вода, металлические и оптоволоконные провода.


Между источником и приемником информации может существовать обратная связь . В ответ на полученную информацию приемник может передавать информацию источнику. Если источник является одновременно и приемником информации, а приемник является источником, то такой процесс передачи информации называется обменом информацией.

В качестве примера рассмотрим устный ответ ученика учите лю на уроке. В этом случае источником информации являете! ученик, а приемником информации — учитель. Источник и приемник информации имеют носители информации — биологиче скую память. В процессе ответа ученика учителю происходи1: передача информации из памяти ученика в память учителя Каналом связи между учеником и учителем является воздух а процесс передачи информации осуществляется с помощью носителя информации— акустической волны. Если учитель ш только слушает, но и корректирует ответ ученика, а ученик учитывает замечания учителя, то между учителем и учеником происходит обмен информацией.

Информация передается по каналу связи с определенной скоростью, которая измеряется количеством передаваемой информации за единицу времени (бит/с). Реальная скорость передач* информации не может быть больше максимально возможно* скорости передачи информации по данному каналу связи, которая называется пропускной способностью канала связи и зависит от его физических свойств.

Пропускная способность канала связи — максимально возможная скорость передачи информации по данному каналу связи.


Кодирование и декодирование может осуществляться как живым существом (например, человеком, животным), так и техни ческим устройством (например, компьютером, электронным переводчиком).

В процессе передачи информации возможны искажения или потери информации под воздействием помех, которые называются шумом. Шум возникает из-за плохого качества каналов связи или их незащищенности. Существуют разные способы защиты от шума, например техническая защита каналов связи или многократная передача информации.

Например, из-за шума улицы, доносящегося из открытого окна, ученик может не расслышать часть передаваемой учителем звуковой информации. Для того чтобы ученик услышал объяснение учителя без искажений, можно заранее закрыть окно или попросить учителя повторить сказанное.

Сигнал может быть непрерывным или дискретным. Непрерывный сигнал плавно меняет свои параметры во времени. Примером непрерывного сигнала являются изменения атмосферного давления, температуры воздуха, высоты Солнца над горизонтом. Дискретный сигнал скачкообразно меняет свои параметры и принимает конечное число значений в конечном числе моментов времени. Сигналы, представленные в виде отдельных знаков, являются дискретными. Например, сигналы азбуки Морзе, сигналы, служащие для передачи текстовой и числовой информации, — это дискретные сигналы. Поскольку каждому отдельному значению дискретного сигнала можно поставить в соответствие определенное число, то дискретные сигналы иногда называют цифровыми.

Сигналы одного вида могут быть преобразованы в сигналы другого вида. Например, график функции (непрерывный сиг нал) может быть представлен в виде таблицы отдельных значений (дискретный сигнал). И наоборот, зная значения функции для разных значений аргументов, можно построить график функции по точкам. Звучащую музыку, которая передается непрерывным сигналом, можно представить в виде дискретной нотной записи. И наоборот, по дискретным нотам можно сыграть непрерывное музыкальное произведение. Во многих случаях преобразования одного вида сигнала в другой могут приводить к потере части информации.

Существуют технические устройства, которые работают с непрерывными сигналами (например, ртутный термометр, микрофон, магнитофон), и технические устройства, работающие с дискретными сигналами (например, проигрыватель для компакт-дисков, цифровой фотоаппарат, сотовый телефон). Компьютер может работать как с непрерывными, так и дискретными сигналами.

Теоретический материал для самостоятельного изучения:

В основе любой информационной деятельности лежат так называемые информационные процессы — совокупность последовательных действий (операций), производимых над информацией для получения какого-либо результата (достижения цели). Информационные процессы могут быть различными, но все их можно свести к трем основным: обработка информации, передача информации и хранение информации.

Обработка информации

Обработка информации — это целенаправленный процесс изменения формы ее представления или содержания.

Из курса информатики основной школы вам известно, что существует два различных типа обработки информации:

  1. обработка, связанная с получением новой информации (например, нахождение ответа при решении математической задачи; логические рассуждения и др.);
  2. обработка, связанная с изменением формы представления информации, не изменяющая ее содержания. К этому типу относятся:

— кодирование — переход от одной формы представления информации к другой, более удобной для восприятия, хранения, передачи или последующей обработки; один из вариантов кодирования — шифрование, цель которого — скрыть смысл информации от посторонних;

— структурирование — организация информации по некоторому правилу, связывающему ее в единое целое (например, сортировка);

— поиск и отбор информации, требуемой для решения некоторой задачи, из информационного массива (например, поиск в словаре).

Общая схема обработки информации может быть представлена следующим образом:


Исходные данные — это информация, которая подвергается обработке.

Правила — это информация процедурного типа. Они содержат сведения для исполнителя о том, какие действия требуется выполнить, чтобы решить задачу.

Исполнитель — тот объект, который осуществляет обработку. Это может быть человек или компьютер. При этом человек, как правило, является неформальным, творчески действующим исполнителем. Компьютер же способен работать только в строгом соответствии с правилами, т.е. является формальным исполнителем обработки информации.

Рассмотрим отдельные процессы обработки информации более подробно.

Кодирование информации

Кодирование информации — это обработка информации, заключающаяся в ее преобразовании в некоторую форму, удобную для хранения, передачи, обработки информации в дальнейшем.

Код — это система условных обозначений (кодовых слов), используемых для представления информации.

Кодовая таблица — это совокупность используемых кодовых слов и их значений.

Нам уже знакомы примеры равномерных двоичных кодов — пятиразрядный код Бодо и восьмиразрядный код ASCII.

Самый известный пример неравномерного кода — код Морзе. В этом коде все буквы и цифры кодируются в виде различных последовательностей точек и тире.


При использовании неравномерных кодов важно понимать, сколько различных кодовых слов они позволяют построить.

Пример 1. Имеющаяся информация должна быть закодирована в четырехбуквенном алфавите . Выясним, сколько существует различных последовательностей из 7 символов этого алфавита, которые содержат ровно пять букв А.

Нас интересует семибуквенная последовательность, т. е.


Если бы у нас не было условия, что в ней должны содержаться ровно пять букв А, то для первого символа было бы 4 варианта, для второго — тоже 4, и т. д.

Тогда мы получили бы: 4 · 4 · 4 · 4 · 4 · 4 · 4 = 16384 варианта.

Теперь вернемся к имеющемуся условию и заполним пять первых мест буквой А. Получим:


Так как на 6-м и 7-м местах могут стоять любые из трех оставшихся букв B, C, D, то всего существует 9 (3 · 3) вариантов последовательностей.

Но ведь буквы А могут находиться на любых пяти из семи имеющихся позиций. А сколько таких вариантов всего?

Префиксный код — код со словом переменной длины, обладающий тем свойством, что никакое его кодовое слово не может быть началом другого (более длинного) кодового слова.

  1. Код, состоящий из слов 0, 10 и 11, является префиксным.
  2. Код, состоящий из слов 0, 10, 11 и 100, не является префиксным.

Также достаточным условием однозначного декодирования неравномерного код является обратное условие Фано. В нем требуется, чтобы никакой код не был окончанием другого (более длинного) кода.

Пример 2. Двоичные коды для 5 букв латинского алфавита представлены в таблице:


Можно заметить, что для заданных кодов не выполняется прямое условие Фано:

B=01, E=011, и D=10, C=100.

А вот обратное условие Фано выполняется: никакое кодовое слово не является окончанием другого. Следовательно, имеющуюся строку нужно декодировать справа налево (с конца). Получим

01 10 100 011 000 = BDCEA

Для построения префиксных кодов удобно использовать бинарные деревья, в которых от каждого узла отходят только два ребра, помеченные цифрами 0 и 1.

Пример 3. Для кодирования некоторой последовательности, состоящей из букв А, Б, В и Г, решили использовать неравномерный двоичный код, позволяющий однозначно декодировать полученную двоичную последовательность. При этом используются такие кодовые слова: А — 0, Б — 10, В — 110. Каким кодовым словом может быть закодирована буква Г? Если таких слов несколько, укажите кратчайшее из них.

Построим бинарное дерево:


Чтобы найти код символа, нужно пройти по стрелкам от корня дерева к нужному листу, выписывая метки стрелок, по которым мы переходим.

Определим положение букв А, Б и В на этом дереве, зная их коды. Получим:


Чтобы код был префиксным, ни один символ не должен лежать на пути от корня к другому символу. Уберем лишние стрелки:


На получившемся дереве можно определить подходящее расположение буквы Г и его код.

Поиск информации

Задача поиска обычно формулируется следующим образом. Имеется некоторое хранилище информации — информационный массив (телефонный справочник, словарь, расписание поездов, диск с файлами и др.). Требуется найти в нем информацию, удовлетворяющую определенным условиям поиска (телефон какой-то организации, перевод слова, время отправления поезда, нужную фотографию и т. д.). При этом, как правило, необходимо сократить время поиска, которое зависит от способа организации данных и используемого алгоритма поиска.

Алгоритм поиска, в свою очередь, также зависит от способа организации данных.

Если данные никак не упорядочены, то мы имеем дело с неструктурированным набором данных. Для осуществления поиска в таком наборе применяется метод последовательного перебора.

При последовательном переборе просматриваются все элементы подряд, начиная с первого. Поиск при этом завершается в двух случаях:

— искомый элемент найден;

— просмотрен весь набор данных, но искомого элемента среди них не нашлось.

— искомый элемент оказался первым среди просматриваемых. Тогда просмотр всего один;

Если же информация упорядочена, то мы имеем дело со структурой данных, в которой поиск осуществляется быстрее, можно построить оптимальный алгоритм.


Одним из оптимальных алгоритмов поиска в структурированном наборе данных может быть метод половинного деления.

Напомним, что при этом методе искомый элемент сначала сравнивается с центральным элементом последовательности. Если искомый элемент меньше центрального, то поиск продолжается аналогичным образом в левой части последовательности. Если больше, то — в правой. Если же значения искомого и центрального элемента совпадают, то поиск завершается.

Пример 4. В последовательности чисел 61 87 180 201 208 230 290 345 367 389 456 478 523 567 590 требуется найти число 180.

Процесс поиска представлен на схеме:


Передача информации

Передача информации — это процесс распространения информации от источника к приемнику через определенный канал связи.

На рисунке представлена схема модели процесса передачи информации по техническим каналам связи, предложенная Клодом Шенноном.


Работу такой схемы можно пояснить на примере записи речи человека с помощью микрофона на компьютер.

Источником информации является говорящий человек. Кодирующим устройством — микрофон, с помощью которого звуковые волны (речь) преобразуются в электрические сигналы. Канал связи — провода, соединяющие микрофон и компьютер. Декодирующее устройство — звуковая плата компьютера. Приемник информации — жесткий диск компьютера.

В современных технических системах связи борьба с шумом (защита от шума) осуществляется по следующим двум направлениям:

Но чрезмерная избыточность приводит к задержкам и удорожанию связи. Поэтому очень важно иметь алгоритмы получения оптимального кода, одновременно обеспечивающего минимальную избыточность передаваемой информации и максимальную достоверность принятой информации.

Важной характеристикой современных технических каналов передачи информации является их пропускная способность — максимально возможная скорость передачи информации, измеряемая в битах в секунду (бит/с). Пропускная способность канала связи зависит от свойств используемых носителей (электрический ток, радиоволны, свет). Так, каналы связи, использующие оптоволоконные кабели и радиосвязь, обладают пропускной способностью, в тысячи раз превышающей пропускную способность телефонных линий.

Современные технические каналы связи обладают, перед ранее известными, целым рядом достоинств:

— высокая пропускная способность, обеспечиваемая свойствами используемых носителей;

— надёжность, связанная с использованием параллельных каналов связи;

— помехозащищённость, основанная на автоматических системах проверки целостности переданной информации;

— универсальность используемого двоичного кода, позволяющего передавать любую информацию — текст, изображение, звук.

Объём переданной информации I вычисляется по формуле:

где v — пропускная способность канала (в битах в секунду), а t — время передачи.

Рассмотрим пример решения задачи, имеющей отношение к процессу передачи информации.

Пример 5. Документ объемом 10 Мбайт можно передать с одного компьютера на другой двумя способами.

А. Передать по каналу связи без использования архиватора.

Б. Сжать архиватором, передать архив по каналу связи, распаковать.

Какой способ быстрее и насколько, если:

— средняя скорость передачи данных по каналу связи составляет 2 18 бит/с;

— объем сжатого архиватором документа равен 25% от исходного объема;

— время, требуемое на сжатие документа — 5 секунд, на распаковку — 3 секунды?

Для решения данной задачи диаграмма Гантта не нужна; достаточно выполнить расчёты для каждого из имеющихся вариантов передачи информации.

Рассмотрим вариант А. Длительность передачи информации в этом случае составит:

Рассмотрим вариант Б. Длительность передачи информации в этом случае составит:

Итак, вариант Б быстрее на 232 с.

Хранение информации

Сохранить информацию — значит тем или иным способом зафиксировать её на некотором носителе.

Носитель информации — это материальная среда, используемая для записи и хранения информации.

Основным носителем информации для человека является его собственная память. По отношению к человеку все прочие виды носителей информации можно назвать внешними.

Основное свойство человеческой памяти — быстрота, оперативность воспроизведения хранящейся в ней информации. Но наша память не надёжна: человеку свойственно забывать информацию. Именно для более надёжного хранения информации человек использует внешние носители, организует внешние хранилища информации.

Виды внешних носителей менялись со временем: в древности это были камень, дерево, папирус, кожа и др. Долгие годы основным носителем информации была бумага. Развитие компьютерной техники привело к созданию магнитных (магнитная лента, гибкий магнитный диск, жёсткий магнитный диск), оптических (CD, DVD, BD) и других современных носителей информации.

В последние годы появились и получили широкое распространение всевозможные мобильные электронные (цифровые) устройства: планшетные компьютеры, смартфоны, устройства для чтения электронных книг, GPS-навигаторы и др. Появление таких устройств стало возможно, в том числе, благодаря разработке принципиально новых носителей информации, которые:

  1. Обладают большой информационной ёмкостью при небольших физических размерах.
  2. Характеризуются низким энергопотреблением при работе, обеспечивая наряду с этим высокие скорости записи и чтения данных.
  3. Энергонезависимы при хранении.
  4. Имеют долгий срок службы.

Читайте также: