Приключение прямой и плоскости в пространстве сочинение

Обновлено: 04.07.2024

Примером пространственной фигуры может служить геометрическое тело – часть пространства, занимаемое предметом. Геометрическое тело отделяется от окружающего пространства поверхностью.

Две геометрические фигуры называются равными, если их можно совместить так, чтобы они совпали всеми своими частями.

Предполагается, что при перемещении в пространстве геометрические фигуры не изменяются. Пространственные фигуры изображаются на чертеже в виде рисунков, которые выполняются по определённым правилам, основанным на геометрических свойствах фигур.

– через любые три точки пространства, которые не лежат на одной прямой, можно провести плоскость, и к тому же только одну ;

– если две плоскости имеют общую точку, то они пересекаются по прямой, которая проходит через эту точку ;

– через прямую и точку, лежащую вне этой прямой, можно провести плоскость, и к тому же только одну ;

Множество плоскостей, которые проходят через некоторую прямую, называют пучком плоскостей, а прямую, через которую они проходят, – осью пучка. Плоскость на рисунку изображается в виде параллелограмма и обозначается одной буквой, например Р .


– две прямые лежат в одной плоскости, при этом они могут или иметь общую точку, то есть пересекаются, или не иметь общих точек, тогда их называют параллельными ;

– две прямые не лежат в одной плоскости и, следовательно, не имеют общих точек, тогда их называют скрещивающимися.

Условились считать, что угол между двумя скрещивающимися прямыми равняется углу, образованному двумя лучами, выходящими из одной точки и параллельными этим скрещивающимся прямым.


На рисунку прямые АВ и СD – скрещивающиеся, а лучи ОМАВ и ОNСD ; угол между мимолетными прямыми считают таким, который равняется углу МОN .

Расстоянием между двумя параллельными прямыми считают длину заключенного между ними отрезка прямой, перпендикулярной к каждой из параллельных прямых и пересекающей их.

Расстояние между скрещивающимися прямыми измеряется длиной отрезка прямой, перпендикулярной к каждой из скрещивающихся прямых и пересекающей каждую из них в точках, являющихся концами этого отрезка. Расстояние между двумя скрещивающимися прямыми есть наименьшее расстояние между точками, лежащими на этих прямых.


АВ , лежащая в плоскости Р , и СD , пересекающая эту плоскость. Прямая МN перпендикулярна как к АВ , так и к СD . Тогда длина отрезка МN есть расстояние между скрещивающимися прямыми АВ и СD .

– прямая и плоскость имеют одну общую точку, то есть прямая пересекает плоскость ; точку их пересечения называют следом прямой на данной плоскости;

Прямая называется перпендикулярной к плоскости, если она перпендикулярна к любой прямой, которая лежит на этой плоскости.

Прямая, которая пересекает плоскость, но не перпендикулярная к ней, называется наклонной к этой плоскости.

Если прямая перпендикулярна до двух прямых, которые пересекаются и лежат в некоторой плоскости, то она перпендикулярна и к любой прямой, которая лежит в данной плоскости, то есть прямая перпендикулярна к плоскости.

Прямоугольной проекцией точки на плоскость называется след перпендикуляра, проведенного через эту точку к данной плоскости. След перпендикуляра на плоскости называется основанием перпендикуляра, а след наклонной основанием наклонной.

Прямоугольной проекцией наклонной на плоскость называется отрезок прямой, соединяющий основание наклонной и основание перпендикуляра, опущенного из конца наклонной на эту плоскость.

На рисунку АВ , АС и АDнаклонные к плоскости Р , а АОперпендикуляр к этой плоскости. Тогда, если проекция ОВ = ОС , то и наклонные АВ = АС ; если ОD , то и соответственно наклонные АD .


Если из одной и той же точки, лежащей вне плоскости, провести к этой плоскости перпендикуляр и наклонный, то :

Прямая, проведенная на плоскости перпендикулярно к наклонной, перпендикулярна к проекции этой наклонной на данную плоскость.

Прямая, проведенная на плоскости перпендикулярно к проекции наклонной на эту плоскость, перпендикулярна к самой наклонной.

На рисунку АВ – наклонная, а АС – перпендикуляр к плоскости Р ; если MNAB , то и MNDC и, наоборот, если MNCB , то и MNAB .


Углом между прямой и плоскостью называют острый угол между этой прямой и ее проекцией на данную плоскость.

На рисунку АВ – наклонная, а СD – её проекция на плоскость Р . Тогда угол между АВ и плоскостью Р равен АВС .


Угол между прямой и плоскостью наименьший из всех углов, образованных этой прямой с любой прямой, которая лежит в данной плоскости.

Из некоторой точки пространства проведены к данной плоскости две наклонные, каждая из которых равна а , угол между ними равен 60 ° , а угол между их проекциями на данную плоскость – прямой.



АВС – равнобедренный с углом 60 ° при вершине, т. е. равносторонний, поэтому расстояние между основаниями наклонных

ВС = а .


ВОС – равнобедренный прямоугольный (так как проекции ОВ и ОС равных наклонных АВ и АС равны ), гипотенуза которого

ВС = а ,

тогда проекция



АСО = АВО = 45 ° , так как прямоугольныеАВО иАОС равны между собою и одновременно являются равнобедренными треугольниками :



Если плоскость Р и прямая АВ , которая не лежит в плоскости Р , перпендикулярные к одной и той же прямой СD , то они параллельны.

Если прямая АВ параллельна к прямой СD , которая лежит в плоскости Р , то она параллельная к плоскости Р .


Если две плоскости Р и Q , что проходят соответственно через параллельные прямые АВ и СD , пересекаются, то линия их пересечения МN параллельна до обоих данных прямых АВ и СD.


Если плоскость проходит через прямую, параллельную к другой плоскости, и пересекает эту плоскость, то линия пересечения плоскостей параллельна к данной прямой.

Если прямая параллельна к каждой из двух плоскостей, которые пересекаются, то она параллельна к линии их пересечения.

Если одна из двух параллельных прямых параллельная к некоторой плоскости, то и вторая прямая параллельная к той же плоскости или лежит в ней.

Через каждую из двух скрещивающихся прямых проходит плоскость, и к тому же только одна, параллельная к другой прямой.

Правильный треугольник спроектирован на плоскость Р . Вершины треугольника отстоят от этой плоскости на 10, 15 и 17 дм. Найти расстояние от центра треугольника до плоскости Р.


Расстояние от центра правильного треугольника до некоторой плоскости равно среднему арифметическому расстояний от его вершин до этой плоскости.


– если две пересекающиеся прямые одной плоскости параллельны двум пересекающимся прямым другой плоскости, то такие две плоскости параллельные.

Если пересекающиеся прямые АВ м ВС , лежат в плоскости Р , а прями А 1 В 1 и В 1 С 1 – лежат в плоскости Q и

АВА 1 В 1 , а
СВC 1 B 1 , то
РQ .


Если плоскости Р и Q параллельны и плоскость М их пересекает, то прямые пересечения этих плоскостей АВ и СD параллельны.


– если прямая перпендикулярна одной из двух параллельных плоскостей, то она перпендикулярна и к другой плоскости ;

Отрезки двух прямых, заключённые между двумя параллельными плоскостями, равны 51 см и 53 см, а их проекции на одну из этих плоскостей относятся, как 6 : 7 . Определить длину этих проекций и расстояние между данными плоскостями.


Требуется определить ВС , В 1 С 1 и АС. Обозначим

ВС = 6х, В 1 С 1 = 7х

и, учитывая, что АС = А 1 С 1 и з треугольников АВС и А 1 В 1 С 1 получим


Определив ВС и, зная АВ , находим из треугольника АВС по теореме Пифагора расстояние между плоскостями :


Часть плоскости, лежащая по одну сторону какой-либо прямой, принадлежащей этой плоскости, называется полуплоскостью.


Двугранным углом называется геометрическая фигура, образованная двумя полуплоскостями Р и Q , что выходят из одной прямой АВ .


Двугранный угол обозначают или двумя буквами, поставленными у ребра, например АВ , или четырьмя буквами РАВQ , из которых две средние означают ребро, а крайние – грани.

Линейным углом двугранного угла называется угол, образованный двумя перпендикулярами, восстановленными к ребру из произвольной его точки и лежащими на гранях угла.


ОN лежит в плоскости Р , а ОМ – в плоскости Q , причём ОNАВ и ОМАВ , тогда угол МОN называется линейным углом двугранного угла РАВQ .

Если совместить по одной грани два неравных двугранных угла, то больше считается тот из них, между гранями которого находится другая грань второго двугранного угла. На рисунку двугранный угол РАВQ больше за двугранного угла РАВМ .


Если два двугранных угла не равны, то большему двугранному углу соответствует и больший линейный угол.

Двугранные углы называются смежными, если у них одна грань общая, а две другие составляют одну плоскость.

Двугранный угол измеряется его линейным углом, т. е. за единицу измерения двугранных углов принимается такой двугранный угол, линейный угол которого содержит единицу измерения линейных углов. Так, двугранный угол в 1 ° есть угол, линейный угол которого содержит 1 ° , двугранный угол в 1 радиан есть угол, линейный угол которого содержит 1 радиан.


Если плоскость Р проходит через перпендикуляр АВ к плоскости Q , то плоскости Р и Q взаимно перпендикулярны.


Если две плоскости взаимно перпендикулярны, то любая прямая, что лежите в одной из них и перпендикулярная к линии их пересечения, перпендикулярная другой плоскости.

Если две плоскости взаимно перпендикулярные и из какой-либо точки одной из них опущен перпендикуляр на другую, то этот перпендикуляр лежит в первой плоскости.

Плоскость, перпендикулярная двум пересекающимся плоскостям, перпендикулярна ребру, образованного ими двугранного угла.

Катеты прямоугольного треугольника равны а і b . Определить расстояние от вершины прямого угла до плоскости, которая проходит через гипотенузу и составляет угол в 30 ° с плоскостью треугольника.


По теореме о трёх перпендикулярах ОD как проекция наклонной СD на плоскость Р перпендикулярна АВ . Тогда угол

СDО = 30 °

– линейный угол двугранного угла, образованного плоскостью ∆ АВС и плоскостью Р . Из ∆ АВС находим

Прямые в пространстве. Прямая и плоскость в пространстве.

ВложениеРазмер
Прямые в пространстве. Прямая и плоскость в пространстве. 185 КБ

Предварительный просмотр:

Теоретическое занятие по теме:

Прямые в пространстве. Прямая и плоскость в пространстве.

Маршрутный лист занятия:

1. Запишите конспект в тетрадь. Текст, выделенный желтым цветом, конспектировать НЕ нужно, его необходимо внимательно прочитать и разобрать.

Основные понятия стереометрии

Простейшими и, можно сказать, основными фигурами в пространстве являются точки, прямые и плоскости . Наряду с этими фигурами мы будем рассматривать так называемые геометрические тела и их поверхности . Представление о геометрических телах дают окружающие нас предметы.

Основными понятиями стереометрии являются точка, прямая и плоскость, которые являются идеализациями объектов реального пространства.

Прямая является идеализацией тонкой натянутой нити, края стола прямоугольной формы. По прямой распространяется луч света.

Плоскость является идеализацией ровной поверхности воды, поверхности стола, доски, зеркала и т. п.

Точки будем обозначать прописными латинскими буквами A, B, C,…., прямые — строчными латинскими буквами а, Ь, с , . плоскости — греческими … .

Точки, прямые и плоскости будем изображать, как показано на рисунке 1.


Рис. 1

Обратим внимание на то, что прямая является бесконечной, а мы изображаем лишь конечный участок прямой — отрезок, который можно продолжать в обе стороны. Плоскость также является бесконечной, и мы будем изображать лишь ее конечный участок.

А1. Через любые три точки, не лежащие на одной прямой, проходит плоскость, и притом только одна.

http://d3dxadmpi0hxcu.cloudfront.net/goods/ymk/geometry/work1/theory/1/4.jpg

А
В (точки А, В, С лежат в плоскости )
С

А2. Если две точки прямой лежат в плоскости, то все точки прямой лежат в этой плоскости

http://d3dxadmpi0hxcu.cloudfront.net/goods/ymk/geometry/work1/theory/1/5.jpg

АB
Прямая АВ лежит в плоскости

Замечание. Если прямая и плоскость имеют только одну общую точку, то говорят, что они пересекаются.

http://d3dxadmpi0hxcu.cloudfront.net/goods/ymk/geometry/work1/theory/1/6.jpg

а = М
Прямая а и плоскость пересекаются в точке М.

А3. Если две плоскости имеют общую точку, то они имеют общую прямую, на которой лежат все общие точки этих плоскостей.

http://d3dxadmpi0hxcu.cloudfront.net/goods/ymk/geometry/work1/theory/1/7.jpg

= a
и пересекаются по прямой а.

Следствие 1. Через прямую a и не лежащую на ней точку A проходит плоскость, и притом только одна.

Теорема 1


Рис. 6
Следствие 2. Через две пересекающиеся прямые a и b проходит плоскость, и притом только одна.

http://godkosmicheskojjery.ru/img/10-10.jpg

Взаимное расположение прямых в пространстве

Возможны три случая взаимного расположения двух прямых в пространстве (Рис. 8):

а) прямые пересекаются, т. е. имеют только одну общую точку (рис. а);

б) прямые параллельны, т. е. лежат в одной плоскости и не пересекаются (рис.б);

в) прямые скрещивающиеся, т. е. не лежат в одной плоскости (рис. в).


Обязательно запомнить обозначения!

Пересекающиеся прямые обозначают так: a b

Параллельные прямые обозначают так: a b

Скрещивающиеся прямые обозначают так: a ∸ b

Определение. Две прямые называются скрещивающимися, если они не лежат в одной плоскости.

Если одна из двух прямых лежит в некоторой плоскости, а другая прямая пересекает эту плоскость в точке, не лежащей на первой прямой, то эти прямые скрещивающиеся.

Параллельность прямой и плоскости.

Если две точки прямой лежат в данной плоскости, то по аксиоме 2 вся прямая лежит в этой плоскости. Отсюда следует, что возможны три случая взаимного расположения прямой и плоскости в пространстве:

а) прямая лежит в плоскости

б) прямая и плоскость имеют только одну общую точку, т. е. пересекаются

в) прямая и плоскость не имеют ни одной общей точки.

Определение. Прямая и плоскость называются параллельными, если они не имеют общих точек.

Параллельность прямой а и плоскости α обозначается так: а ∥ 𝛼 . Наглядное представление о прямой, параллельной плоскости, дают натянутые троллейбусные или трамвайные провода — они параллельны плоскости земли. Другой пример дает линия пересечения стены и потолка — эта линия параллельна плоскости пола.

Теорема. Если прямая, не лежащая в данной плоскости, параллельна какой-нибудь прямой, лежащей в этой плоскости, то она параллельна данной плоскости.

Доказательство. Рассмотрим плоскость а и две параллельные прямые а и b, расположенные так, что прямая b лежит в плоскости а, а прямая а не лежит в этой плоскости (Рис. 9).


Докажем, что а ∥ 𝛼 .. Допустим, что это не так. Тогда прямая а пересекает плоскость а, а значит, по лемме о пересечении плоскости параллельными прямыми прямая b также пересекает плоскость а. Но это невозможно, так как прямая

b лежит в плоскости а. Итак, прямая а не пересекает плоскость а, поэтому она параллельна этой плоскости. Теорема доказана.

Запишем еще два утверждения , которые часто используются при решении задач.

1°. Если плоскость проходит через данную прямую, параллельную другой плоскости, и пересекает эту плоскость, то линия пересечения плоскостей параллельна данной прямой.

2°. Если одна из двух параллельных прямых параллельна данной плоскости, то другая прямая либо также параллельна данной плоскости, либо лежит в этой плоскости.

Параллельные прямые в пространстве.

Определение. Две прямые в пространстве называются параллельными, если они лежат в одной плоскости и не пересекаются. Параллельность прямых а и b обозначается так: а ∥ 𝑏 . Теорема. Через любую точку пространства, не лежащую на данной прямой, проходит прямая, параллельная данной, и притом только одна.

Доказательство. Рассмотрим прямую а и точку М, не лежащую на этой прямой (Рис. 1о). Через прямую а и точку М проходит плоскость, и притом только одна (п. 3). Обозначим эту плоскость буквой а. Прямая, проходящая через точку М параллельно прямой а, должна лежать в одной плоскости с точкой М и прямой а, т. е. должна лежать в плоскости а. Но в плоскости а, как известно из курса планиметрии, через точку М проходит прямая, параллельная прямой а, и притом только одна. На рисунке эта прямая обозначена буквой b. Итак, b - единственная прямая, проходящая через точку M параллельно прямой а. Теорема доказана.


Перпендикулярные прямые в пространстве.

Две прямые в пространстве называются перпендикулярными (взаимно перпендикулярными), если угол между ними равен 90°. Перпендикулярность прямых а и b обозначается так: a ⊥ 𝑏 . Перпендикулярные прямые могут пересекаться и могут быть скрещивающимися.

Лемма. Если одна из двух параллельных прямых перпендикулярна к третьей прямой, то и другая прямая перпендикулярна к этой прямой.

Определение. Прямая называется перпендикулярной к плоскости, если она перпендикулярна к любой прямой, лежащей в этой плоскости.

Окружающая нас обстановка дает много примеров, иллюстрирующих перпендикулярность прямой и плоскости. Не покосившийся телеграфный столб стоит прямо, т. е. перпендикулярно к плоскости земли. Так же расположены колонны здания по отношению к плоскости фундамента, линии пересечения стен по отношению к плоскости пола и т. д.

Теорема. Если одна из двух параллельных прямых перпендикулярна к плоскости, то и другая прямая перпендикулярна к этой плоскости.

Теорема (O). Если две прямые перпендикулярны к плоскости, то они параллельны.

Признак перпендикулярности прямой и плоскости.

Как проверить, перпендикулярна ли данная прямая к данной плоскости? Этот вопрос имеет практическое значение, например, при установке мачт, колонн зданий и т. д., которые нужно поставить прямо, т. е. перпендикулярно к той плоскости, на которую они ставятся. Оказывается, что для этого нет надобности проверять перпендикулярность по отношению к любой прямой, как о том говорится в определении, а достаточно проверить перпендикулярность лишь к двум пересекающимся прямым, лежащим в плоскости. Это вытекает из следующей теоремы, выражающей признак перпендикулярности прямой и плоскости.

Теорема. Если прямая перпендикулярна к двум пересекающимся прямым, лежащим в плоскости, то она перпендикулярна к этой плоскости.

Теорема. Через любую точку пространства проходит прямая, перпендикулярная к данной плоскости, и притом только одна.

Перпендикуляр и наклонная

Рассмотрим плоскость α и точку А, не лежащую в этой плоскости. Проведем через точку А прямую, перпендикулярную к плоскости α, и обозначим буквой Н точку пересечения этой прямой с плоскостью а (Рис. 11).


Отрезок АН называется перпендикуляром, проведенным из точки А к плоскости а, а точка Н — основанием перпендикуляра. Отметим в плоскости а какую-нибудь точку М, отличную от Н, и проведем отрезок AM. Он называется наклонной, проведенной из точки А к плоскости а, а точка М — основанием наклонной. Отрезок НМ называется проекцией наклонной на плоскость а. Сравним перпендикуляр АН и наклонную AM: в прямоугольном треугольнике АМН сторона АН — катет, а сторона AM— гипотенуза, поэтому АН

Когда мы говорим, что некоторый предмет, например лампочка уличного фонаря, находится на такой-то высоте, скажем, 6 м от земли, то имеем в виду, что расстояние от лампочки до поверхности земли измеряется по перпендикуляру, проведенному от лампочки к плоскости земли.

Теорема о трех перпендикулярах.

Теорема. Прямая, проведенная в плоскости через основание наклонной перпендикулярно к ее проекции на эту плоскость, перпендикулярна и к самой наклонной.

Доказательство. Обратимся к рисунку, на котором отрезок АН — перпендикуляр к плоскости a, AM —наклонная, а — прямая, проведенная в плоскости а через точку М перпендикулярно к проекции НМ наклонной. Докажем, что a ⊥ AM. Рассмотрим плоскость АМН. Прямая а перпендикулярна к этой плоскости, так как она перпендикулярна к двум пересекающимся прямым АН и МНа ⊥ HM по условию и a ⊥ AH, так как АН ⊥ 𝛼 ). Отсюда следует, что прямая а перпендикулярна к любой прямой, лежащей в плоскости АМН, в частности a ⊥ AM. Теорема доказана.

Эта теорема называется теоремой о трех перпендикулярах, так как в ней говорится о связи между тремя перпендикулярами АН, НМ и AM.

Определение. Углом между прямой и плоскостью, пересекающей эту прямую и не перпендикулярной к ней, называется угол между прямой и ее проекцией на плоскость.

2. Рассмотрим следующую задачу (записать в тетрадь):

Точка D не лежит в плоскости треугольника ABC, точки М, N и Р — середины отрезков DA, DB и DC соответственно, точка К лежит на отрезке BN. Выясните взаимное расположение прямых: a) ND и АВ; б) РК и ВС; в) MN и АВ; г) МР и АС; д) KN и AC; е) MD и ВС.

Посмотреть видео-разбор, законспектировать.

3. Вопросы для самоконтроля (ответить устно):

  1. Дать определение стереометрии?
  2. Какие основные фигуры в пространстве вы знаете?
  3. Как обозначаются основные фигуры в пространстве (точка, прямая, плоскость)?
  4. Какие аксиомы стереометрии и следствия из них вы знаете?

4. Домашнее задание (письменно):

1. Перечислите известные вам аксиомы стереометрии.

http://d3mlntcv38ck9k.cloudfront.net/content/konspekt_image/33035/a182c9fd509b9ddc3ecae768c69f0c32.jpg

http://d3mlntcv38ck9k.cloudfront.net/content/konspekt_image/33036/3e90148cdba065632de4ade6b86bea42.jpg

2. Дан куб .

Плоскость – это одна из наиболее важных фигур в планиметрии, поэтому нужно хорошо понимать, что она из себя представляет. В рамках этого материала мы сформулируем само понятие плоскости, покажем, как ее обозначают на письме, и введем необходимые обозначения. Затем мы рассмотрим это понятие в сравнении с точкой, прямой или другой плоскостью и разберем варианты их взаимного расположения. Все определения будут проиллюстрированы графически, а нужные аксиомы сформулированы отдельно. В последнем пункте мы укажем, как правильно задать плоскость в пространстве несколькими способами.

Понятие плоскости и ее обозначения

Плоскость представляет собой одну из простейших фигур в геометрии наравне с прямой и точкой. Ранее мы уже объясняли, что точка и прямая размещаются на плоскости. Если эту плоскость разместить в трехмерном пространстве, то мы получим точки и прямые в пространстве.

В жизни представление о том, что такое плоскость, нам могут дать такие объекты, как поверхность пола, стола или стены. Но нужно учитывать, что в жизни их размеры ограничены, а здесь понятие плоскости связано с бесконечностью.

Прямые и точки, размещенные в пространстве, мы будем обозначать аналогично размещенным на плоскости – с помощью строчных и прописных латинских букв ( B , A , d , q и др.) Если в условиях задачи у нас есть две точки, которые расположены на прямой, то можно выбрать такие обозначения, которые будут соответствовать друг другу, например, прямая D B и точки D и B .

Чтобы обозначить плоскость на письме, традиционно используются маленькие греческие буквы, например, α , γ или π .

Если нам нужно графическое отображение плоскости, то обычно для этого используется замкнутое пространство произвольной формы или параллелограмм.

Плоскость принято рассматривать вместе с прямыми, точками, другими плоскостями. Задачи с этим понятием обычно содержат некоторые варианты их расположения друг относительно друга. Рассмотрим отдельные случаи.

Как могут располагаться плоскость и точка друг относительно друга

Первый способ взаимного расположения заключается в том, что точка расположена на плоскости, т.е. принадлежит ей. Можно сформулировать аксиому:

В любой плоскости есть точки.

Такой вариант расположения также называется прохождением плоскости через точку. Чтобы обозначить это на письме, используется символ ∈ . Так, если нам нужно записать в буквенном виде, что через точку A проходит некая плоскость π , то мы пишем: A ∈ π .

Если некая плоскость задана в пространстве, то число точек, принадлежащих ей, является бесконечным. А какого минимального количества точек будет достаточно для определения плоскости? Ответом на этот вопрос будет следующая аксиома.

Через три точки, которые не расположены на одной прямой, проходит единственная плоскость.

Зная это правило, можно ввести новое обозначение плоскости. Вместо маленькой греческой буквы мы можем использовать названия точек, лежащих в ней, например, плоскость А В С .

Другой способ взаимного расположения точки и плоскости можно выразить с помощью третьей аксиомы:

Можно выделить как минимум 4 точки, которые не будут находиться в одной плоскости.

Графически последнюю аксиому можно представить так:

Варианты взаимного расположения прямой и плоскости

Самый простой вариант – прямая находится в плоскости. Тогда в ней будут расположены как минимум две точки этой прямой. Сформулируем аксиому:

Если хотя бы две точки заданной прямой находятся в некоторой плоскости, это значит, что все точки этой прямой расположены в данной плоскости.

Графически этот вариант расположения выглядит так:

Если у нас есть две прямые, одна из которых лежит в плоскости, а другая ее пересекает, то они являются перпендикулярными друг другу. На письме это обозначается символом ⊥ . Особенности такой позиции мы рассмотрим в отдельной статье. На рисунке это расположение будет выглядеть следующим образом:

Если мы решаем задачу, в которой есть плоскость, нам необходимо знать, что из себя представляет нормальный вектор плоскости.

Нормальный вектор плоскости – это такой вектор, который лежит на перпендикулярной прямой по отношению к плоскости и не равен при этом нулю.

Примеры нормальных векторов плоскости показаны на рисунке:

Если прямая расположена внутри плоскости, то она делит ее на две равные или неравные части (полуплоскости). Тогда такая прямая будет называться границей полуплоскостей.

Любые 2 точки, расположенные в одной полуплоскости, лежат по одной сторону от границы, а две точки, принадлежащие разным полуплоскостям, лежат по разную сторону от границы.

Варианты расположения двух плоскостей друг относительно друга

1. Наиболее простой вариант – две плоскости совпадают друг с другом. Тогда они будут иметь минимум три общие точки.

2. Одна плоскость может пересекать другую. При этом образуется прямая. Выведем аксиому:

Если две плоскости пересекаются, то между ними образуется общая прямая, на которой лежат все возможные точки пересечения.

На графике это будет выглядеть так:

В таком случае между плоскостями образуется угол. Если он будет равен 90 градусам, то плоскости будут перпендикулярны друг другу.

3. Две плоскости могут быть параллельными друг другу, то есть не иметь ни одной точки пересечения.

Если у нас есть не две, а три и больше пересекающихся плоскостей, то такую комбинацию принято называть пучком или связкой плоскостей. Подробнее об этом мы напишем в отдельном материале.

Как задать плоскость в пространстве

В этом пункте мы посмотрим, какие существуют способы задания плоскости в пространстве.

1. Первый способ основан на одной из аксиом: единственная плоскость проходит через 3 точки, не лежащие на одной прямой. Следовательно, мы можем задать плоскость, просто указав три таких точки.

Если у нас есть прямоугольная система координат в трехмерном пространстве, в которой задана плоскость с помощью этого способа, то мы можем составить уравнение этой плоскости (подробнее см, соответствующую статью). Изобразим данный способ на рисунке:

2. Второй способ – задание плоскости с помощью прямой и точки, не лежащей на этой прямой. Это следует из аксиомы о плоскости, проходящей через 3 точки. См. рисунок:

3. Третий способ заключается в задании плоскости, которая проходит через две пересекающиеся прямые (как мы помним, в таком случае тоже есть только одна плоскость.) Проиллюстрируем способ так:

4. Четвертый способ основан на параллельных прямых. Вспомним, какие прямые называются параллельными: они должны лежать в одной плоскости и не иметь ни одной точки пересечения. Получается, что если мы укажем в пространстве две такие прямые, то мы тем самым сможем определить для них ту самую единственную плоскость. Если у нас есть прямоугольная система координат в пространстве, в которой уже задана плоскость этим способом, то мы можем вывести уравнение такой плоскости.

На рисунке этот способ будет выглядеть так:

Если мы вспомним, что такое признак параллельности, то сможем вывести еще один способ задания плоскости:

Если у нас есть две пересекающиеся прямые, которые лежат в некоторой плоскости, которые параллельны двум прямым в другой плоскости, то и сами эти плоскости будут параллельны.

Таким образом, если мы зададим точку, то мы сможем задать плоскость, которая проходит через нее, и ту плоскость, которой она будет параллельна. В таком случае мы тоже можем вывести уравнение плоскости (об этом у нас есть отдельный материал).

Вспомним одну теорему, изученную в рамках курса по геометрии:

Через определенную точку пространства может проходить только одна плоскость, которая будет параллельна заданной прямой.

Это значит, что можно задать плоскость путем указания конкретной точки, через которую она будет проходить, и прямой, которая будет перпендикулярна по отношению к ней. Если плоскость задана этим способом в прямоугольной системе координат, то мы можем составить уравнение плоскости для нее.

Также мы можем указать не прямую, а нормальный вектор плоскости. Тогда можно будет сформулировать общее уравнение.

Мы рассмотрели основные способы, с помощью которых можно задать плоскость в пространстве.


Две прямые, параллельные третьей прямой, параллельны между собой:


Если две точки прямой принадлежат плоскости, то вся прямая принадлежит этой плоскости:

Говорят, что прямая и плоскость пересекаются, если они имеют одну единственную общую точку:

Прямая и плоскость называются параллельными, если они не имеют общих точек:

Признак параллельности прямой и плоскости:

Прямая, не лежащая в плоскости, параллельна этой плоскости тогда и только тогда, когда она параллельна некоторой прямой в этой плоскости:

Признак параллельности прямых:

Если прямая b параллельна плоскости α , а плоскость β проходит через b и пересекает плоскость α по прямой а , то прямые а и b параллельны:

Признак параллельности прямых:

Если прямая параллельна каждой из двух пересекающихся плоскостей, то она параллельна и линии пересечения этих плоскостей:

Прямая, пересекающая плоскость, называется перпендикулярной этой плоскости, если она перпендикулярна любой прямой, которая лежит в данной плоскости и проходит через точку пересечения этой прямой и плоскости.

Через любую точку пространства можно провести прямую, перпендикулярную данной плоскости, и притом только одну.

Признак перпендикулярности прямой и плоскости:

Если прямая перпендикулярна двум пересекающимся прямым, лежащим в плоскости, то она перпендикулярна данной плоскости:


Плоскость, перпендикулярная одной из двух параллельных прямых, перпендикулярна и другой прямой:

Прямые, перпендикулярные одной плоскости, – параллельны:

Перпендикуляром, проведённым из данной точки к данной плоскости, называется отрезок, которые соединяет эту точку с точкой плоскости (основанием перпендикуляра) и лежит на прямой, которая перпендикулярна плоскости. Длину перпендикуляра, проведённого из данной точки к данной плоскости, считают расстоянием между этими точкой и плоскостью.

Наклонной, проведённой из данной точки к плоскости, называется любой отрезок, который соединяет эту точку с точкой плоскости (основанием перпендикуляра) и не является перпендикуляром, проведённым к этой плоскости.

Отрезок, соединяющий основания перпендикуляра и наклонной, проведённых к плоскости из одной точки, называется проекцией (ортогональной проекцией) этой наклонной на плоскость.

АВ – перпендикуляр, проведённый из точки А к плоскости α ;

АС – наклонная, проведённая из точки А к плоскости α ;

В – основание перпендикуляра АВ ;

С – основание наклонной АС ;

ВС – проекция наклонной АС на плоскость α .

Свойства перпендикуляра и наклонной:

  • перпендикуляр, проведённый из точки к плоскости, короче любой наклонной, проведённой из той же точки к той же плоскости;
  • равные наклонные, проведённые из данной точки к плоскости, имеют равные проекции; и наоборот: равным проекциям соответствуют равные наклонные;
  • из двух наклонных, проведённых из данной точки к одной плоскости, больше та, проекция которой больше.

Углом между наклонной и плоскость называется величина угла между наклонной и её ортогональной проекцией на эту плоскость:

Угол между наклонной и её ортогональной проекцией на плоскость меньше угла между этой наклонной и любой другой прямой, проходящей в этой плоскости через основание наклонной:

Теорема про три перпендикуляра:

Если прямая, проведённая на плоскости через основание наклонной, перпендикулярна её проекции, то она перпендикулярна и самой наклонной. И наоборот: если прямая, проведённая на плоскости через основание наклонной, перпендикулярна наклонной, то она перпендикулярна и проекции этой наклонной:

Расстоянием от прямой до параллельной ей плоскости называется расстояние от любой точки этой прямой до плоскости:

АВ – расстояние от прямой а до плоскости α .

Отрезок АВ – общий перпендикуляр прямой а и плоскости α.

Общим перпендикуляром двух скрещивающихся прямых ( a и b ) называется отрезок ( АВ ) с концами на этих прямых, являющийся перпендикуляром к каждой из них.

Две скрещивающиеся прямые всегда имеют общий перпендикуляр, и притом только один.

Длина общего перпендикуляра двух скрещивающихся прямых считается расстоянием между ними:

АВ – расстояние между скрещивающимися a и b .



Если две различные плоскости имеют общую точку, то они пересекаются по прямой, проходящей через эту точку:

Говорят, что две плоскости совпадают, если каждая точка одной плоскости является точкой другой, и наоборот:

Две плоскости называются параллельными, если они не имеют общих точек:

Через точку вне плоскости можно провести плоскость параллельную данной и притом только одну.

Признак параллельности плоскостей:

Если две пересекающиеся прямые одной плоскости соответственно параллельны двум прямым другой плоскости, то эти плоскости параллельны:

Расстоянием между двумя параллельными плоскостями называется расстояние от любой точки одной плоскости до другой плоскости.

Длина некоторого отрезка выражает расстояние между двумя параллельными плоскостями, если этот отрезок является общим перпендикуляром этих плоскостей:

Двугранным углом называется фигура, образованная двумя полуплоскостями с общей ограничивающей их прямой.

Полуплоскости, о которых шла речь, называются гранями двугранного угла, а прямая – ребром двугранного угла:

α и β – грани, KL – ребро двугранного угла.

Плоскость γ , перпендикулярная ребру двугранного угла KL , пересекает его грани α и β по двум полупрямым: СА и СВ . Угол АВС , образованный этими полупрямыми, называется линейным углом двугранного угла.

Все линейные углы данного двугранного угла совмещаются параллельным переносом и равны.

Мера линейного угла служит мерой и двугранного угла, которому этот линейный угол соответствует.

Линейные углы, соответствующие равным двугранным углам, равны. И наоборот: равным линейным углам соответствуют равные двугранные углы.

Углом между двумя пересекающимися плоскостями называется наименьшая из мер двухгранных углов, образованных этими плоскостями.

Две плоскости называются перпендикулярными ( α⊥β ), если угол между ними равен 90°.

Угол между параллельными плоскостями считается равным 0°.

Если φ – величина угла между некоторыми двумя плоскостями, то

Признак перпендикулярности плоскостей:

Если плоскость проходит через прямую, перпендикулярную другой плоскости, то эти плоскости перпендикулярны:

Прямая, проведённая в одной из двух перпендикулярных плоскостей перпендикулярно линии их пересечения, перпендикулярна другой плоскости:

Отрезки параллельных прямых, заключённые между двумя параллельными плоскостями, равны:

Если прямая пересекает одну из двух параллельных плоскостей, то она пересекает и другую плоскость; более того, эта прямая образует с параллельными плоскостями равные углы:

Прямые, полученные при пересечении двух параллельных плоскостей третьей плоскостью, параллельны между собой:

Прямая, перпендикулярная одной из двух параллельных плоскостей, перпендикулярна и другой плоскости:

Две плоскости, перпендикулярные одной и той же прямой, параллельны:

Плоскость, перпендикулярная одной из двух параллельных плоскостей, перпендикулярна и другой плоскости:

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

Составитель: Кулешова Анастасия Владимировна

Описание презентации по отдельным слайдам:

Составитель: Кулешова Анастасия Владимировна

Составитель: Кулешова Анастасия Владимировна

Представление о плоскости дает гладкая поверхность стола или стены. С точки з.

Представление о плоскости дает гладкая поверхность стола или стены. С точки зрения геометрии плоскость следует представлять как простирающуюся неограниченно во все стороны. Плоскость изображается: В виде параллелограмма В виде овала(облачка) Понятие плоскости.

Через любые три точки, не лежащие на одной прямой, можно провести плоскость.

Через любые три точки, не лежащие на одной прямой, можно провести плоскость, и притом только одну. Если две точки прямой лежат в плоскости, то все точки прямой лежат в этой плоскости. Если две плоскости имеют общую точку, то они имеют общую прямую, на которой лежат все общие точки этих плоскостей. А В А В С а А α Аксиомы стереометрии

Через прямую и не лежащую на ней точку проходит плоскость, и притом только од.

Через прямую и не лежащую на ней точку проходит плоскость, и притом только одна. Через две пересекающиеся прямые проходит плоскость, и притом только одна. О а в а А Следствия из аксиом стереометрии

а а А а

Прямая и плоскость называются параллельными, если они не имеют общих точек.

Прямая и плоскость называются параллельными, если они не имеют общих точек. a Параллельность прямой и плоскости.

Если прямая, не лежащая в данной плоскости, параллельна какой-нибудь прямой.

Если прямая, не лежащая в данной плоскости, параллельна какой-нибудь прямой, лежащей в этой плоскости, то она параллельна данной плоскости.

Если плоскость проходит через данную прямую, параллельную другой плоскости, т.

Если плоскость проходит через данную прямую, параллельную другой плоскости, то линия пересечения плоскостей параллельна данной прямой. Если одна из двух параллельных прямых параллельна данной плоскости, то другая прямая либо также параллельна данной плоскости, либо лежит в этой плоскости. a a b Свойства параллельности прямой и плоскости.

Две плоскости называются параллельными, если они не пересекаются. Параллельно.

Две плоскости называются параллельными, если они не пересекаются. Параллельность плоскостей.

Если две пересекающиеся прямые одной плоскости соответственно параллельны дву.

Если две пересекающиеся прямые одной плоскости соответственно параллельны двум прямым другой плоскости, то эти плоскости параллельны. a1 b1 а b M Признак параллельности плоскостей.

Если две параллельные плоскости пересечены третьей, то линии их пересечения п.

Если две параллельные плоскости пересечены третьей, то линии их пересечения параллельны. Отрезки параллельных прямых, заключенные между параллельными плоскостями, равны. a b Свойства параллельных плоскостей.

Прямая называется перпендикулярной к плоскости, если она перпендикулярна к лю.

Прямая называется перпендикулярной к плоскости, если она перпендикулярна к любой прямой, лежащей в этой плоскости. А 7. Перпендикулярность прямой и плоскости.

1 свойство: 1. Если одна из двух параллельных прямых перпендикулярна к плоск.

1 свойство: 1. Если одна из двух параллельных прямых перпендикулярна к плоскости, то и другая прямая перпендикулярна к этой плоскости. Дано: α а а1; а α Доказать: а1 α Доказательство: Проведем произвольную прямую x в плоскости α. Т.к. прямая а α, то а x = > а1 х (по лемме о перпендикулярности двух параллельных прямых к третьей) = > а1 перпендикулярна любой прямой в плоскости α. = > а1 α . a a1 x Свойства перпендикулярности прямой и плоскости.

2свойство: Если две прямые перпендикулярны к плоскости, то они параллельны Д.

2свойство: Если две прямые перпендикулярны к плоскости, то они параллельны Дано: α а α; b α Доказать: а b Доказательство: Через какую-нибудь точку М прямой b проведем прямую b1 а. Из 1-го свойства получили прямая b1 α. Докажем, что прямая b1 совпадает с прямой b. Тем самым будет доказано, что а b. Допустим, что b1 и b не совпадают. Тогда в плоскости β, содержащей прямые b и b1, через a b b1 c M α β точку М проходят две прямые, перпендикулярные к прямой с, по которой пересекаются плоскости α и β. Но это невозможно, т.к. если b α и b1 α , то эти прямые перпендикулярны любой прямой в этой плоскости(в данном случае прямой с), но согласно теореме, через точку, не лежащую на прямой можно провести только одну прямую перпендикулярную данной, следовательно, прямая а b.

Если прямая перпендикулярна к двум пересекающимся прямым, лежащим в плоскост.

Если прямая перпендикулярна к двум пересекающимся прямым, лежащим в плоскости, то она перпендикулярна к этой плоскости. a b c Признак перпендикулярности прямой и плоскости.

Через любую точку пространства проходит прямая, перпендикуляр-ная к данной п.

Через любую точку пространства проходит прямая, перпендикуляр-ная к данной плоскости, и притом только одна. O A c Теорема о перпендикулярности прямой и плоскости.

Расстояние, т.е. длина перпендикуляра, проведенного из точки А к плоскости α.

Расстояние, т.е. длина перпендикуляра, проведенного из точки А к плоскости α, называется расстоянием от точки А до плоскости α. Например, AH. А Н М Расстояние от точки до плоскости.

Прямая, проведенная в плоскости через основание наклонной перпендикулярно к.

Прямая, проведенная в плоскости через основание наклонной перпендикулярно к ее проекции на эту плоскость, перпендикулярна и к самой наклонной. А Н М а α Теорема о трех перпендикулярах.

Прямая, проведенная в плоскости через основание наклонной перпендикулярно к.

Прямая, проведенная в плоскости через основание наклонной перпендикулярно к ней, перпендикулярна к ее проекции. А Н М а α Обратная теорема о трех перпендикулярах.

Углом между прямой и плоскостью, пересекающей эту прямую и не перпендикулярно.

Углом между прямой и плоскостью, пересекающей эту прямую и не перпендикулярной к ней, называется угол между прямой и ее проекцией на плоскость. М а А Угол между прямой и плоскостью.

Определение 1. Двугранным углом называется часть пространства, ограниченная.

Определение 1. Двугранным углом называется часть пространства, ограниченная двумя полуплоскостями, границей каждой из которых служит их общая прямая. Двугранный угол также называют углом между данными плоскостями. Определение 2. Плоскости (полуплоскости), которые ограничивают двугранный угол, называются гранями двугранного угла. Определение 3. Линия пересечения граней двугранного угла называется ребром двугранного угла. Определение 4. Линейным углом двугранного угла называется угол, образованный двумя полупрямыми, полученными при пересечении граней двугранного угла плоскостью, перпендикулярной ребру этого двугранного угла. Значение линейного угла данного двугранного угла есть значение данного двугранного угла. Двугранный угол.

Определение 1. Фигура, образованная тремя лучами (ребрами), исходящими из од.

Определение 1. Фигура, образованная тремя лучами (ребрами), исходящими из одной точки (вершины) и не лежащими в одной плоскости, и тремя частями плоскостей (гранями), заключенных между этими частями, называется трехгранным углом. Определение 2. Грань трехгранного угла называется также плоским углом трехгранного угла. Определение 3. Двугранные углы, образованные гранями трехгранного угла, называются двугранными углами трехгранного угла. Определение 4. Несколько плоскостей, пересекающихся в одной точке, разбивают пространство на части, каждая из которых может быть названа многогранным углом. Трехгранный угол.

Перпендикулярность плоскостей.

 Другое изображение перпендикулярных плоскостей:

Другое изображение перпендикулярных плоскостей:

Если одна из двух плоскостей проходит через прямую, перпендикулярную к другой.

Если одна из двух плоскостей проходит через прямую, перпендикулярную к другой плоскости, то такие плоскости перпендикулярны. А С Признак перпендикулярности плоскостей.

Другой рисунок. Если плоскость β проходит через прямую АВ, перпендикулярную к.

Другой рисунок. Если плоскость β проходит через прямую АВ, перпендикулярную к плоскости α, то β перпендикулярна α А

Следствие. Плоскость, перпендикулярная к прямой, по которой пересекаются две.

Следствие. Плоскость, перпендикулярная к прямой, по которой пересекаются две данные плоскости, перпендикулярна к каждой их этих плоскостей.

Читайте также: